File size: 9,741 Bytes
08c468e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
import os
import sys
import time
import subprocess
import threading
import shutil
from pathlib import Path
from typing import Dict, Tuple, Optional, List
from faster_whisper import WhisperModel
import ctranslate2 as ct2


BASE_DIR = Path(__file__).resolve().parent
UPLOAD_DIR = BASE_DIR / "uploads"
DEFAULT_OUTPUT_DIR = BASE_DIR / "outputs"
UPLOAD_DIR.mkdir(exist_ok=True)
DEFAULT_OUTPUT_DIR.mkdir(exist_ok=True)


def _bundle_base() -> Path:
    return BASE_DIR

def _local_model_path(choice: str) -> Optional[Path]:
    mroot = _bundle_base() / "models"
    key = (choice or "").lower().strip()
    folder = {"fast": "small", "balanced": "medium", "best": "large-v2"}.get(key)
    if not folder:
        return None
    p = mroot / folder
    return p if p.exists() else None

def _detect_device() -> str:
    try:
        return "cuda" if ct2.get_cuda_device_count() > 0 else "cpu"
    except Exception:
        return "cpu"

def _compute_candidates(profile: str, device: str) -> list[str]:
    if device == "cuda":
        base = {"fast": "int8_float16", "balanced": "float16", "best": "float32"} \
               .get(profile, "float16")
        return [base, "float16", "float32"]
    else:
        base = {"fast": "int8", "balanced": "int16", "best": "float32"} \
               .get(profile, "int16")
        return [base, "int16", "float32"]


_model_cache: Dict[str, WhisperModel] = {}
_model_meta: Dict[str, dict] = {}

def get_model(model_choice: str) -> Tuple[WhisperModel, dict]:
    key = (model_choice or "fast").lower().strip()
    if key in _model_cache:
        return _model_cache[key], _model_meta[key]

    size = "small" if key == "fast" else "medium" if key == "balanced" else "large-v2"
    if key not in ("fast", "balanced", "best"):
        key, size = "balanced", "medium"

    local = _local_model_path(key)
    model_id = str(local) if local else size

    device = _detect_device()
    candidates = _compute_candidates(key, device)

    last_err = None
    for compute in candidates:
        try:
            print(f"[GETSUBTITLES] Loading '{model_id}' device={device} compute_type='{compute}'")
            model = WhisperModel(model_id, device=device, compute_type=compute)
            meta = {
                "model_choice": key,
                "model_name": model_id,
                "compute_type": compute,
                "device": device,
                "source": "local" if local else "hub",
            }
            _model_cache[key] = model
            _model_meta[key] = meta
            return model, meta
        except Exception as e:
            print(f"[GETSUBTITLES] Failed compute_type={compute}: {e}")
            last_err = e

    raise RuntimeError(f"Could not load model on {device} with any compute type. Last error: {last_err}")



def _ffmpeg_path() -> str:
    return shutil.which("ffmpeg") or "ffmpeg"

def to_wav16k_mono(src: Path, dst: Path):
    cmd = [_ffmpeg_path(), "-y", "-i", str(src), "-ac", "1", "-ar", "16000", str(dst)]
    try:
        subprocess.run(cmd, check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
    except subprocess.CalledProcessError as e:
        print(f"FFmpeg error: {e.stderr.decode()}")
        raise

def write_srt_from_segments(segments, out_path: Path):
    def fmt(t):
        h = int(t // 3600); t -= h*3600
        m = int(t // 60);   t -= m*60
        s = int(t);         ms = int((t - s)*1000)
        return f"{h:02d}:{m:02d}:{s:02d},{ms:03d}"
    with out_path.open("w", encoding="utf-8") as f:
        for i, seg in enumerate(segments, 1):
            f.write(f"{i}\n{fmt(seg.start)} --> {fmt(seg.end)}\n{seg.text.strip()}\n\n")


VERT_MAX_CHARS_PER_LINE  = 38
VERT_MAX_WORDS_PER_BLOCK = 10
VERT_MAX_DURATION_S      = 2.2
VERT_MIN_DURATION_S      = 0.7
PUNCT_BREAK = {".", ",", "!", "?", "…", ":", ";", "—", "–"}

def _fmt_time(seconds: float) -> str:
    h = int(seconds // 3600)
    m = int((seconds % 3600) // 60)
    s = int(seconds % 60)
    ms = int(round((seconds - int(seconds)) * 1000))
    return f"{h:02}:{m:02}:{s:02},{ms:03}"

def _clean_spaces(s: str) -> str:
    return (s.replace(" ,", ",")
             .replace(" .", ".")
             .replace(" !", "!")
             .replace(" ?", "?")
             .replace(" …", "…")
             .replace(" :", ":")
             .replace(" ;", ";"))

def _should_break(line: str, block_start: float, last_end: float, last_token: str) -> bool:
    duration = (last_end - block_start) if (last_end is not None and block_start is not None) else 0.0
    if duration >= VERT_MAX_DURATION_S:
        return True
    if len(line) >= VERT_MAX_CHARS_PER_LINE - 3 and last_token and last_token[-1] in PUNCT_BREAK:
        return True
    return False

def build_vertical_blocks(words: List[dict]) -> List[dict]:
    blocks = []
    i, n = 0, len(words)
    while i < n:
        line = ""
        block_start = words[i]["start"]
        block_end   = words[i]["end"]
        count = 0
        j = i
        while j < n:
            w = words[j]
            token = w["text"]
            extra_len = (1 if line else 0) + len(token)
            if len(line) + extra_len > VERT_MAX_CHARS_PER_LINE and count > 0:
                break
            if count >= VERT_MAX_WORDS_PER_BLOCK:
                break
            line = f"{line} {token}" if line else token
            block_end = w["end"]
            count += 1
            j += 1
            if _should_break(line, block_start, block_end, token):
                break
        while j < n:
            duration = block_end - block_start
            if duration >= VERT_MIN_DURATION_S:
                break
            last_token = words[j-1]["text"] if j-1 >= 0 else ""
            if last_token and last_token[-1] in {".", "!", "?"}:
                break
            next_token = words[j]["text"]
            extra_len = (1 if line else 0) + len(next_token)
            if len(line) + extra_len > VERT_MAX_CHARS_PER_LINE:
                break
            line = f"{line} {next_token}"
            block_end = words[j]["end"]
            count += 1
            j += 1
        if line.strip():
            blocks.append({
                "start": block_start,
                "end": block_end,
                "text": _clean_spaces(line.strip())
            })
        i = j if j > i else i + 1
    return blocks

def write_srt_from_blocks(blocks: List[dict], out_path: Path):
    with out_path.open("w", encoding="utf-8") as f:
        for idx, b in enumerate(blocks, start=1):
            f.write(f"{idx}\n")
            f.write(f"{_fmt_time(b['start'])} --> {_fmt_time(b['end'])}\n")
            f.write(f"{b['text']}\n\n")


class Job:
    def __init__(self, job_id: str, original_name: str, out_dir: Path):
        self.job_id = job_id
        self.original_name = original_name
        self.out_dir = out_dir
        self.duration: float = 0.0
        self.progress: float = 0.0  # 0..1
        self.status: str = "queued"  # queued|running|done|error
        self.error_msg: Optional[str] = None
        self.language: Optional[str] = None
        self.model_choice: Optional[str] = None
        self.model_name: Optional[str] = None
        self.compute_type: Optional[str] = None
        self.started_at: float = time.time()
        self.finished_at: Optional[float] = None
        self.srt_path: Optional[Path] = None

JOBS: Dict[str, Job] = {}
JOBS_LOCK = threading.Lock() 


def run_transcription(job_id: str,
                      wav_path: Path,
                      language: Optional[str],
                      task: str,
                      model_choice: str,
                      out_dir: Path,
                      style: str):
    
    with JOBS_LOCK:
        job = JOBS[job_id]

    try:
        job.status = "loading_model"
        
        model, meta = get_model(model_choice)
        job.model_choice = meta["model_choice"]
        job.model_name = meta["model_name"]
        job.compute_type = meta["compute_type"]

        use_word_ts = (style == "vertical")
        segments, info = model.transcribe(
            str(wav_path),
            task=task,
            language=language,
            word_timestamps=use_word_ts
        )

        job.language = info.language
        job.duration = float(info.duration or 0.0)
        job.status = "running"

        seg_list = []
        last_end = 0.0
        for seg in segments:
            seg_list.append(seg)
            last_end = max(last_end, float(getattr(seg, "end", 0.0) or 0.0))
            if job.duration > 0:
                with JOBS_LOCK:
                    job.progress = min(last_end / job.duration, 0.999)


        srt_path = out_dir / f"{job.original_name}.srt"

        if style == "vertical":
            words = []
            for seg in seg_list:
                if getattr(seg, "words", None):
                    for w in seg.words:
                        token = (w.word or "").strip()
                        if not token or w.start is None or w.end is None:
                            continue
                        words.append({"text": token, "start": float(w.start), "end": float(w.end)})
            if words:
                blocks = build_vertical_blocks(words)
                write_srt_from_blocks(blocks, srt_path)
            else:
                write_srt_from_segments(seg_list, srt_path)
        else:
            write_srt_from_segments(seg_list, srt_path)

        with JOBS_LOCK:
            job.srt_path = srt_path
            job.progress = 1.0
            job.status = "done"
            job.finished_at = time.time()

    except Exception as e:
        with JOBS_LOCK:
            job.status = "error"
            job.error_msg = str(e)
            job.finished_at = time.time()