""" """ from typing import Any from typing import Callable from typing import ParamSpec import spaces import torch from torch.utils._pytree import tree_map_only from torchao.quantization import quantize_ from torchao.quantization import Float8DynamicActivationFloat8WeightConfig from torchao.quantization import Int8WeightOnlyConfig from optimization_utils import capture_component_call from optimization_utils import aoti_compile from optimization_utils import drain_module_parameters P = ParamSpec('P') # --- 新的、更精确的动态塑形定义 --- # VAE 时间缩放因子为 1,latent_frames = num_frames。范围是 [8, 81]。 LATENT_FRAMES_DIM = torch.export.Dim('num_latent_frames', min=8, max=81) # Transformer 的 patch_size 为 (1, 2, 2),这意味着输入潜像的高度和宽度 # 实际上被除以 2。如果符号追踪器假设奇数是可能的,这会产生约束失败。 # # 为了解决这个问题,我们为 *打过补丁后* (即除法后) 的尺寸定义动态维度, # 然后将输入形状表示为该维度的 2 倍。这在数学上向编译器保证了 # 输入潜像维度始终为偶数,从而满足约束。 # 应用的像素尺寸范围:[480, 832]。VAE 缩放因子为 8。 # 潜像维度范围:[480/8, 832/8] = [60, 104]。 # 打过补丁后的潜像维度范围:[60/2, 104/2] = [30, 52]。 LATENT_PATCHED_HEIGHT_DIM = torch.export.Dim('latent_patched_height', min=30, max=52) LATENT_PATCHED_WIDTH_DIM = torch.export.Dim('latent_patched_width', min=30, max=52) # 现在,我们为 transformer 的 `hidden_states` 输入定义动态形状, # 其形状为 (batch_size, channels, num_frames, height, width)。 TRANSFORMER_DYNAMIC_SHAPES = { 'hidden_states': { 2: LATENT_FRAMES_DIM, 3: 2 * LATENT_PATCHED_HEIGHT_DIM, # 保证高度为偶数 4: 2 * LATENT_PATCHED_WIDTH_DIM, # 保证宽度为偶数 }, } # --- 定义结束 --- INDUCTOR_CONFIGS = { 'conv_1x1_as_mm': True, 'epilogue_fusion': False, 'coordinate_descent_tuning': True, 'coordinate_descent_check_all_directions': True, 'max_autotune': True, 'triton.cudagraphs': True, } def optimize_pipeline_(pipeline: Callable[P, Any], *args: P.args, **kwargs: P.kwargs): @spaces.GPU(duration=1500) def compile_transformer(): # LoRA 融合部分保持不变 pipeline.load_lora_weights( "Kijai/WanVideo_comfy", weight_name="Lightx2v/lightx2v_I2V_14B_480p_cfg_step_distill_rank128_bf16.safetensors", adapter_name="lightx2v" ) kwargs_lora = {} kwargs_lora["load_into_transformer_2"] = True pipeline.load_lora_weights( "Kijai/WanVideo_comfy", weight_name="Lightx2v/lightx2v_I2V_14B_480p_cfg_step_distill_rank128_bf16.safetensors", adapter_name="lightx2v_2", **kwargs_lora ) pipeline.set_adapters(["lightx2v", "lightx2v_2"], adapter_weights=[1., 1.]) pipeline.fuse_lora(adapter_names=["lightx2v"], lora_scale=3., components=["transformer"]) pipeline.fuse_lora(adapter_names=["lightx2v_2"], lora_scale=1., components=["transformer_2"]) pipeline.unload_lora_weights() # 捕获单次调用以获取 args/kwargs 结构 with capture_component_call(pipeline, 'transformer') as call: pipeline(*args, **kwargs) dynamic_shapes = tree_map_only((torch.Tensor, bool), lambda t: None, call.kwargs) dynamic_shapes |= TRANSFORMER_DYNAMIC_SHAPES # 量化保持不变 quantize_(pipeline.transformer, Float8DynamicActivationFloat8WeightConfig()) quantize_(pipeline.transformer_2, Float8DynamicActivationFloat8WeightConfig()) # --- 简化的编译流程 --- exported_1 = torch.export.export( mod=pipeline.transformer, args=call.args, kwargs=call.kwargs, dynamic_shapes=dynamic_shapes, ) exported_2 = torch.export.export( mod=pipeline.transformer_2, args=call.args, kwargs=call.kwargs, dynamic_shapes=dynamic_shapes, ) compiled_1 = aoti_compile(exported_1, INDUCTOR_CONFIGS) compiled_2 = aoti_compile(exported_2, INDUCTOR_CONFIGS) # 返回两个已编译的模型 return compiled_1, compiled_2 # 量化文本编码器 (与之前相同) quantize_(pipeline.text_encoder, Int8WeightOnlyConfig()) # 获取两个经过动态塑形的已编译模型 compiled_transformer_1, compiled_transformer_2 = compile_transformer() # --- 简化的赋值流程 --- pipeline.transformer.forward = compiled_transformer_1 drain_module_parameters(pipeline.transformer) pipeline.transformer_2.forward = compiled_transformer_2 drain_module_parameters(pipeline.transformer_2)