File size: 11,349 Bytes
64e881e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d468fc9
 
 
 
64e881e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
# PyTorch 2.8 (temporary hack)
import os
os.system('pip install --upgrade --pre --extra-index-url https://download.pytorch.org/whl/nightly/cu126 "torch<2.9" spaces')

# Actual demo code
import spaces
import torch
from diffusers.pipelines.wan.pipeline_wan_i2v import WanImageToVideoPipeline
from diffusers.models.transformers.transformer_wan import WanTransformer3DModel
from diffusers.utils.export_utils import export_to_video
import gradio as gr
import tempfile
import numpy as np
from PIL import Image
import random
import gc
from optimization import optimize_pipeline_
from huggingface_hub import hf_hub_download

SECRET_KEY = os.environ.get("SECRET_KEY")

# 如果在 Space 中没有设置密钥
if not SECRET_KEY:
    raise ValueError("请设置 SECRET_KEY 环境变量。")

MODEL_ID = "Wan-AI/Wan2.2-I2V-A14B-Diffusers"

# 在这里配置所有的 LoRA。
LORA_REPO_ID = "IdlecloudX/Flux_and_Wan_Lora"
LORA_SETS = {
    "NF": {
        "high_noise": {"file": "NSFW-22-H-e8.safetensors", "adapter_name": "nf_high"},
        "low_noise": {"file": "NSFW-22-L-e8.safetensors", "adapter_name": "nf_low"}
    },
    "BP": {
        "high_noise": {"file": "Wan2.2_BP-v1-HighNoise-I2V_T2V.safetensors", "adapter_name": "bp_high"},
        "low_noise": {"file": "Wan2.2_BP-v1-LowNoise-I2V_T2V.safetensors", "adapter_name": "bp_low"}
    },
    "Py-v1": {
        "high_noise": {"file": "WAN2.2-HighNoise_Pyv1-I2V_T2V.safetensors", "adapter_name": "py_high"},
        "low_noise": {"file": "WAN2.2-LowNoise_Pyv1-I2V_T2V.safetensors", "adapter_name": "py_low"}
    }
}

LANDSCAPE_WIDTH = 832
LANDSCAPE_HEIGHT = 576
MAX_SEED = np.iinfo(np.int32).max

FIXED_FPS = 16
MIN_FRAMES_MODEL = 8
MAX_FRAMES_MODEL = 81

MIN_DURATION = round(MIN_FRAMES_MODEL/FIXED_FPS,1)
MAX_DURATION = round(MAX_FRAMES_MODEL/FIXED_FPS,1)


pipe = WanImageToVideoPipeline.from_pretrained(MODEL_ID,
    transformer=WanTransformer3DModel.from_pretrained('cbensimon/Wan2.2-I2V-A14B-bf16-Diffusers',
        subfolder='transformer',
        torch_dtype=torch.bfloat16,
        device_map='cuda',
    ),
    transformer_2=WanTransformer3DModel.from_pretrained('cbensimon/Wan2.2-I2V-A14B-bf16-Diffusers',
        subfolder='transformer_2',
        torch_dtype=torch.bfloat16,
        device_map='cuda',
    ),
    torch_dtype=torch.bfloat16,
).to('cuda')


print("开始优化 Pipeline...")
optimize_pipeline_(pipe,
    image=Image.new('RGB', (LANDSCAPE_WIDTH, LANDSCAPE_HEIGHT)),
    prompt='prompt',
    height=LANDSCAPE_HEIGHT,
    width=LANDSCAPE_WIDTH,
    num_frames=MAX_FRAMES_MODEL,
)
print("优化完成。")

for name, lora_set in LORA_SETS.items():
    print(f"--- 开始加载 LoRA 集合: {name} ---")

    # 加载 High Noise
    high_noise_config = lora_set["high_noise"]
    print(f"正在加载 High Noise: {high_noise_config['file']}...")
    pipe.load_lora_weights(LORA_REPO_ID, weight_name=high_noise_config['file'], adapter_name=high_noise_config['adapter_name'])
    print("High Noise LoRA 加载完成。")

    # 加载 Low Noise
    low_noise_config = lora_set["low_noise"]
    print(f"正在加载 Low Noise: {low_noise_config['file']}...")
    pipe.load_lora_weights(LORA_REPO_ID, weight_name=low_noise_config['file'], adapter_name=low_noise_config['adapter_name'])
    print("Low Noise LoRA 加载完成。")
print("所有自定义 LoRA 加载完毕。")

for i in range(3):
    gc.collect()
    torch.cuda.synchronize()
    torch.cuda.empty_cache()

default_prompt_i2v = "make this image come alive, cinematic motion, smooth animation"
default_negative_prompt = "色调艳丽, 过曝, 静态, 细节模糊不清, 字幕, 风格, 作品, 画作, 画面, 静止, 整体发灰, 最差质量, 低质量, JPEG压缩残留, 丑陋的, 残缺的, 多余的手指, 画得不好的手部, 画得不好的脸部, 畸形的, 毁容的, 形态畸形的肢体, 手指融合, 静止不动的画面, 杂乱的背景, 三条腿, 背景人很多, 倒着走"


def resize_image(image: Image.Image) -> Image.Image:
    if image.height > image.width:
        transposed = image.transpose(Image.Transpose.ROTATE_90)
        resized = resize_image_landscape(transposed)
        return resized.transpose(Image.Transpose.ROTATE_270)
    return resize_image_landscape(image)


def resize_image_landscape(image: Image.Image) -> Image.Image:
    target_aspect = LANDSCAPE_WIDTH / LANDSCAPE_HEIGHT
    width, height = image.size
    in_aspect = width / height
    if in_aspect > target_aspect:
        new_width = round(height * target_aspect)
        left = (width - new_width) // 2
        image = image.crop((left, 0, left + new_width, height))
    else:
        new_height = round(width / target_aspect)
        top = (height - new_height) // 2
        image = image.crop((0, top, width, top + new_height))
    return image.resize((LANDSCAPE_WIDTH, LANDSCAPE_HEIGHT), Image.LANCZOS)

def get_duration(
    secret_key,
    input_image,
    prompt,
    steps,
    negative_prompt,
    duration_seconds,
    guidance_scale,
    guidance_scale_2,
    seed,
    randomize_seed,
    selected_loras,
    progress,
):
    return int(steps) * 15

@spaces.GPU(duration=get_duration)
def generate_video(
    secret_key,
    input_image,
    prompt,
    steps = 4,
    negative_prompt=default_negative_prompt,
    duration_seconds = MAX_DURATION,
    guidance_scale = 1,
    guidance_scale_2 = 1,
    seed = 42,
    randomize_seed = False,
    selected_loras = [],
    progress=gr.Progress(track_tqdm=True),
):
    if secret_key != SECRET_KEY:
        raise gr.Error("无效的密钥!请输入正确的密钥。")

    if input_image is None:
        raise gr.Error("Please upload an input image.")

    num_frames = np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL)
    current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
    resized_image = resize_image(input_image)

    num_inference_steps = int(steps)
    switch_step = num_inference_steps // 2

    class LoraSwitcher:
        def __init__(self, selected_lora_names):
            self.switched = False
            self.high_noise_adapters = []
            self.low_noise_adapters = []

            if selected_lora_names:
                for name in selected_lora_names:
                    if name in LORA_SETS:
                        self.high_noise_adapters.append(LORA_SETS[name]["high_noise"]["adapter_name"])
                        self.low_noise_adapters.append(LORA_SETS[name]["low_noise"]["adapter_name"])

        def __call__(self, pipe, step_index, timestep, callback_kwargs):
            # 在第一步设置正确的 LoRA 状态
            if step_index == 0:
                self.switched = False
                # 如果用户选择了 LoRA,则激活 High Noise 版本
                if self.high_noise_adapters:
                    print(f"激活 High Noise LoRA: {self.high_noise_adapters}")
                    pipe.set_adapters(self.high_noise_adapters, adapter_weights=[1.0] * len(self.high_noise_adapters))
                # 如果用户没有选择 LoRA,则通过将权重设为0来禁用任何可能残留的 LoRA
                elif pipe.get_active_adapters():
                    active_adapters = pipe.get_active_adapters()
                    print(f"未选择 LoRA,通过设置权重为0来禁用残留的 LoRA: {active_adapters}")
                    pipe.set_adapters(active_adapters, adapter_weights=[0.0] * len(active_adapters))

            # 在切换点,切换到 Low Noise LoRA(仅当有 LoRA 被选择时)
            if self.low_noise_adapters and step_index >= switch_step and not self.switched:
                print(f"在第 {step_index} 步切换到 Low Noise LoRA: {self.low_noise_adapters}")
                pipe.set_adapters(self.low_noise_adapters, adapter_weights=[1.0] * len(self.low_noise_adapters))
                self.switched = True
            return callback_kwargs

    lora_switcher_callback = LoraSwitcher(selected_loras)

    output_frames_list = pipe(
        image=resized_image,
        prompt=prompt,
        negative_prompt=negative_prompt,
        height=resized_image.height,
        width=resized_image.width,
        num_frames=num_frames,
        guidance_scale=float(guidance_scale),
        guidance_scale_2=float(guidance_scale_2),
        num_inference_steps=num_inference_steps,
        generator=torch.Generator(device="cuda").manual_seed(current_seed),
        callback_on_step_end=lora_switcher_callback,
    ).frames[0]

    with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
        video_path = tmpfile.name

    export_to_video(output_frames_list, video_path, fps=FIXED_FPS)

    return video_path, current_seed

with gr.Blocks() as demo:
    gr.Markdown("# Fast 4 steps Wan 2.2 I2V (14B) with Lightning LoRA")
    gr.Markdown("run Wan 2.2 in just 4-8 steps, with [Lightning LoRA](https://huggingface.co/Kijai/WanVideo_comfy/tree/main/Wan22-Lightning), fp8 quantization & AoT compilation - compatible with 🧨 diffusers and ZeroGPU⚡️")
    with gr.Row():
        with gr.Column():
            secret_key_input = gr.Textbox(label="密钥 (Secret Key)", placeholder="Enter your key here...", type="password")

            input_image_component = gr.Image(type="pil", label="Input Image (auto-resized to target H/W)")
            prompt_input = gr.Textbox(label="Prompt", value=default_prompt_i2v)
            duration_seconds_input = gr.Slider(minimum=MIN_DURATION, maximum=MAX_DURATION, step=0.1, value=3.5, label="Duration (seconds)", info=f"Clamped to model's {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps.")
            
            lora_selection_checkbox = gr.CheckboxGroup(
                choices=list(LORA_SETS.keys()),
                label="选择要应用的 LoRA (可多选)",
                info="选择一个或多个 LoRA 风格进行组合。"
            )
            
            with gr.Accordion("Advanced Settings", open=False):
                negative_prompt_input = gr.Textbox(label="Negative Prompt", value=default_negative_prompt, lines=3)
                seed_input = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, interactive=True)
                randomize_seed_checkbox = gr.Checkbox(label="Randomize seed", value=True, interactive=True)
                steps_slider = gr.Slider(minimum=1, maximum=30, step=1, value=6, label="Inference Steps")
                guidance_scale_input = gr.Slider(minimum=0.0, maximum=10.0, step=0.5, value=1, label="Guidance Scale - high noise stage")
                guidance_scale_2_input = gr.Slider(minimum=0.0, maximum=10.0, step=0.5, value=1, label="Guidance Scale 2 - low noise stage")

            generate_button = gr.Button("Generate Video", variant="primary")
        with gr.Column():
            video_output = gr.Video(label="Generated Video", autoplay=True, interactive=False)

    ui_inputs = [
        secret_key_input,
        input_image_component, prompt_input, steps_slider,
        negative_prompt_input, duration_seconds_input,
        guidance_scale_input, guidance_scale_2_input, seed_input, randomize_seed_checkbox,
        lora_selection_checkbox
    ]
    generate_button.click(fn=generate_video, inputs=ui_inputs, outputs=[video_output, seed_input])

if __name__ == "__main__":
    demo.queue().launch(mcp_server=True)