""" SAAP Cost Efficiency Logger - Advanced Cost Tracking & Analytics Monitors OpenRouter costs, performance metrics, and budget management """ import asyncio import json import logging from datetime import datetime, timedelta from typing import Dict, List, Optional, Any from dataclasses import dataclass, asdict from pathlib import Path import sqlite3 import aiosqlite from collections import defaultdict from ..config.settings import get_settings # Initialize cost logging cost_logger = logging.getLogger("saap.cost") performance_logger = logging.getLogger("saap.performance") @dataclass class CostAnalytics: """Comprehensive cost analytics""" time_period: str total_cost_usd: float total_requests: int successful_requests: int failed_requests: int average_cost_per_request: float total_tokens: int average_response_time: float cost_per_1k_tokens: float tokens_per_second: float top_expensive_models: List[Dict[str, Any]] cost_by_agent: Dict[str, float] cost_by_provider: Dict[str, float] daily_budget_utilization: float cost_trend_24h: List[Dict[str, Any]] efficiency_score: float # Tokens per dollar @dataclass class PerformanceBenchmark: """Performance benchmarking data""" provider: str model: str avg_response_time: float tokens_per_second: float cost_per_token: float success_rate: float cost_efficiency_score: float sample_size: int class CostEfficiencyLogger: """Advanced cost tracking and analytics system""" def __init__(self): self.settings = get_settings() self.cost_db_path = "logs/saap_cost_tracking.db" self.analytics_cache = {} self.cost_alerts = [] # Ensure logs directory exists Path("logs").mkdir(exist_ok=True) # Initialize database asyncio.create_task(self._initialize_database()) cost_logger.info("๐Ÿ’ฐ Cost Efficiency Logger initialized") async def _initialize_database(self): """Initialize SQLite database for cost tracking""" async with aiosqlite.connect(self.cost_db_path) as db: await db.execute(""" CREATE TABLE IF NOT EXISTS cost_metrics ( id INTEGER PRIMARY KEY AUTOINCREMENT, timestamp TEXT NOT NULL, agent_id TEXT NOT NULL, provider TEXT NOT NULL, model TEXT NOT NULL, input_tokens INTEGER NOT NULL, output_tokens INTEGER NOT NULL, total_tokens INTEGER NOT NULL, cost_usd REAL NOT NULL, response_time_seconds REAL NOT NULL, request_success BOOLEAN NOT NULL, cost_per_1k_tokens REAL, tokens_per_second REAL, metadata TEXT ) """) await db.execute(""" CREATE INDEX IF NOT EXISTS idx_timestamp ON cost_metrics(timestamp) """) await db.execute(""" CREATE INDEX IF NOT EXISTS idx_agent_id ON cost_metrics(agent_id) """) await db.execute(""" CREATE INDEX IF NOT EXISTS idx_provider ON cost_metrics(provider) """) await db.commit() async def log_cost_metrics(self, metrics_data: Dict[str, Any]): """Log cost metrics to database and generate analytics""" # Calculate derived metrics metrics_data['cost_per_1k_tokens'] = ( metrics_data['cost_usd'] / (metrics_data['total_tokens'] / 1000) if metrics_data['total_tokens'] > 0 else 0 ) metrics_data['tokens_per_second'] = ( metrics_data['total_tokens'] / metrics_data['response_time_seconds'] if metrics_data['response_time_seconds'] > 0 else 0 ) # Store in database async with aiosqlite.connect(self.cost_db_path) as db: await db.execute(""" INSERT INTO cost_metrics ( timestamp, agent_id, provider, model, input_tokens, output_tokens, total_tokens, cost_usd, response_time_seconds, request_success, cost_per_1k_tokens, tokens_per_second, metadata ) VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?) """, ( metrics_data['timestamp'], metrics_data['agent_id'], metrics_data['provider'], metrics_data['model'], metrics_data['input_tokens'], metrics_data['output_tokens'], metrics_data['total_tokens'], metrics_data['cost_usd'], metrics_data['response_time_seconds'], metrics_data['request_success'], metrics_data['cost_per_1k_tokens'], metrics_data['tokens_per_second'], json.dumps(metrics_data.get('metadata', {})) )) await db.commit() # Real-time cost logging if metrics_data['request_success']: cost_logger.info( f"๐Ÿ’ฐ COST: {metrics_data['agent_id']} | " f"${metrics_data['cost_usd']:.6f} | " f"{metrics_data['total_tokens']} tokens | " f"{metrics_data['response_time_seconds']:.2f}s | " f"{metrics_data['tokens_per_second']:.1f} tok/s | " f"${metrics_data['cost_per_1k_tokens']:.4f}/1k" ) else: cost_logger.error( f"โŒ FAILED: {metrics_data['agent_id']} | " f"{metrics_data['provider']} | " f"{metrics_data['response_time_seconds']:.2f}s timeout" ) # Check for budget alerts await self._check_budget_alerts() async def _check_budget_alerts(self): """Check and generate budget alerts""" daily_cost = await self.get_daily_cost() daily_budget = self.settings.agents.daily_cost_budget usage_percentage = (daily_cost / daily_budget) * 100 # Generate alerts at specific thresholds thresholds = [50, 75, 90, 95, 100] for threshold in thresholds: if usage_percentage >= threshold: alert_key = f"daily_budget_{threshold}" if alert_key not in self.cost_alerts: self.cost_alerts.append(alert_key) if threshold < 100: cost_logger.warning( f"โš ๏ธ BUDGET ALERT: ${daily_cost:.4f} / ${daily_budget} " f"({usage_percentage:.1f}%) - {threshold}% threshold reached" ) else: cost_logger.critical( f"๐Ÿšจ BUDGET EXCEEDED: ${daily_cost:.4f} / ${daily_budget} " f"({usage_percentage:.1f}%) - Switching to free models!" ) break async def get_daily_cost(self) -> float: """Get current daily cost""" today = datetime.now().strftime('%Y-%m-%d') async with aiosqlite.connect(self.cost_db_path) as db: cursor = await db.execute(""" SELECT SUM(cost_usd) FROM cost_metrics WHERE date(timestamp) = ? AND request_success = 1 """, (today,)) result = await cursor.fetchone() return result[0] or 0.0 async def get_cost_analytics(self, hours: int = 24) -> CostAnalytics: """Generate comprehensive cost analytics""" cutoff_time = (datetime.now() - timedelta(hours=hours)).isoformat() async with aiosqlite.connect(self.cost_db_path) as db: # Basic metrics cursor = await db.execute(""" SELECT COUNT(*) as total_requests, SUM(CASE WHEN request_success = 1 THEN 1 ELSE 0 END) as successful_requests, SUM(CASE WHEN request_success = 0 THEN 1 ELSE 0 END) as failed_requests, SUM(cost_usd) as total_cost, SUM(total_tokens) as total_tokens, AVG(response_time_seconds) as avg_response_time FROM cost_metrics WHERE timestamp >= ? """, (cutoff_time,)) basic_stats = await cursor.fetchone() if not basic_stats or basic_stats[0] == 0: return self._empty_analytics(hours) total_requests, successful_requests, failed_requests, total_cost, total_tokens, avg_response_time = basic_stats # Cost by agent cursor = await db.execute(""" SELECT agent_id, SUM(cost_usd) as cost FROM cost_metrics WHERE timestamp >= ? AND request_success = 1 GROUP BY agent_id ORDER BY cost DESC """, (cutoff_time,)) cost_by_agent = {row[0]: row[1] for row in await cursor.fetchall()} # Cost by provider cursor = await db.execute(""" SELECT provider, SUM(cost_usd) as cost FROM cost_metrics WHERE timestamp >= ? AND request_success = 1 GROUP BY provider ORDER BY cost DESC """, (cutoff_time,)) cost_by_provider = {row[0]: row[1] for row in await cursor.fetchall()} # Top expensive models cursor = await db.execute(""" SELECT model, SUM(cost_usd) as total_cost, COUNT(*) as requests, AVG(cost_per_1k_tokens) as avg_cost_per_1k FROM cost_metrics WHERE timestamp >= ? AND request_success = 1 GROUP BY model ORDER BY total_cost DESC LIMIT 5 """, (cutoff_time,)) top_expensive_models = [ { 'model': row[0], 'total_cost': row[1], 'requests': row[2], 'avg_cost_per_1k_tokens': row[3] } for row in await cursor.fetchall() ] # Hourly cost trend (last 24 hours) cursor = await db.execute(""" SELECT strftime('%Y-%m-%d %H:00', timestamp) as hour, SUM(cost_usd) as cost, COUNT(*) as requests FROM cost_metrics WHERE timestamp >= datetime('now', '-24 hours') AND request_success = 1 GROUP BY strftime('%Y-%m-%d %H:00', timestamp) ORDER BY hour """, ()) cost_trend_24h = [ {'hour': row[0], 'cost': row[1], 'requests': row[2]} for row in await cursor.fetchall() ] # Calculate derived metrics average_cost_per_request = total_cost / total_requests if total_requests > 0 else 0 cost_per_1k_tokens = (total_cost / (total_tokens / 1000)) if total_tokens > 0 else 0 tokens_per_second = total_tokens / (avg_response_time * total_requests) if avg_response_time and total_requests > 0 else 0 efficiency_score = total_tokens / total_cost if total_cost > 0 else 0 # Daily budget utilization daily_cost = await self.get_daily_cost() daily_budget_utilization = (daily_cost / self.settings.agents.daily_cost_budget) * 100 return CostAnalytics( time_period=f"{hours}h", total_cost_usd=total_cost or 0, total_requests=total_requests or 0, successful_requests=successful_requests or 0, failed_requests=failed_requests or 0, average_cost_per_request=average_cost_per_request, total_tokens=total_tokens or 0, average_response_time=avg_response_time or 0, cost_per_1k_tokens=cost_per_1k_tokens, tokens_per_second=tokens_per_second, top_expensive_models=top_expensive_models, cost_by_agent=cost_by_agent, cost_by_provider=cost_by_provider, daily_budget_utilization=daily_budget_utilization, cost_trend_24h=cost_trend_24h, efficiency_score=efficiency_score ) def _empty_analytics(self, hours: int) -> CostAnalytics: """Return empty analytics object""" return CostAnalytics( time_period=f"{hours}h", total_cost_usd=0.0, total_requests=0, successful_requests=0, failed_requests=0, average_cost_per_request=0.0, total_tokens=0, average_response_time=0.0, cost_per_1k_tokens=0.0, tokens_per_second=0.0, top_expensive_models=[], cost_by_agent={}, cost_by_provider={}, daily_budget_utilization=0.0, cost_trend_24h=[], efficiency_score=0.0 ) async def get_performance_benchmarks(self, hours: int = 24) -> List[PerformanceBenchmark]: """Get performance benchmarks by provider and model""" cutoff_time = (datetime.now() - timedelta(hours=hours)).isoformat() async with aiosqlite.connect(self.cost_db_path) as db: cursor = await db.execute(""" SELECT provider, model, AVG(response_time_seconds) as avg_response_time, AVG(tokens_per_second) as avg_tokens_per_second, AVG(cost_per_1k_tokens) as avg_cost_per_1k, SUM(CASE WHEN request_success = 1 THEN 1 ELSE 0 END) * 100.0 / COUNT(*) as success_rate, COUNT(*) as sample_size, SUM(total_tokens) as total_tokens, SUM(cost_usd) as total_cost FROM cost_metrics WHERE timestamp >= ? GROUP BY provider, model HAVING COUNT(*) >= 3 ORDER BY avg_tokens_per_second DESC """, (cutoff_time,)) benchmarks = [] for row in await cursor.fetchall(): provider, model, avg_response_time, avg_tokens_per_second, avg_cost_per_1k, success_rate, sample_size, total_tokens, total_cost = row # Calculate cost efficiency score (tokens per dollar) cost_efficiency_score = total_tokens / total_cost if total_cost > 0 else 0 cost_per_token = total_cost / total_tokens if total_tokens > 0 else 0 benchmarks.append(PerformanceBenchmark( provider=provider, model=model, avg_response_time=avg_response_time, tokens_per_second=avg_tokens_per_second or 0, cost_per_token=cost_per_token, success_rate=success_rate / 100, # Convert to decimal cost_efficiency_score=cost_efficiency_score, sample_size=sample_size )) return benchmarks async def generate_cost_report(self, hours: int = 24) -> str: """Generate detailed cost report""" analytics = await self.get_cost_analytics(hours) benchmarks = await self.get_performance_benchmarks(hours) report_lines = [ "=" * 60, f"๐Ÿ“Š SAAP Cost Efficiency Report - Last {hours} Hours", "=" * 60, "", "๐Ÿ’ฐ COST SUMMARY:", f" Total Cost: ${analytics.total_cost_usd:.6f}", f" Requests: {analytics.total_requests} ({analytics.successful_requests} successful)", f" Average Cost/Request: ${analytics.average_cost_per_request:.6f}", f" Daily Budget Used: {analytics.daily_budget_utilization:.1f}%", "", "๐Ÿ”ข TOKEN METRICS:", f" Total Tokens: {analytics.total_tokens:,}", f" Cost per 1K Tokens: ${analytics.cost_per_1k_tokens:.4f}", f" Tokens per Second: {analytics.tokens_per_second:.1f}", f" Efficiency Score: {analytics.efficiency_score:.1f} tokens/$", "" ] if analytics.cost_by_provider: report_lines.extend([ "๐Ÿข COST BY PROVIDER:", *[f" {provider}: ${cost:.6f}" for provider, cost in analytics.cost_by_provider.items()], "" ]) if analytics.cost_by_agent: report_lines.extend([ "๐Ÿค– COST BY AGENT:", *[f" {agent}: ${cost:.6f}" for agent, cost in list(analytics.cost_by_agent.items())[:5]], "" ]) if analytics.top_expensive_models: report_lines.extend([ "๐Ÿ’ธ TOP EXPENSIVE MODELS:", *[f" {model['model']}: ${model['total_cost']:.6f} ({model['requests']} requests)" for model in analytics.top_expensive_models[:3]], "" ]) if benchmarks: report_lines.extend([ "โšก PERFORMANCE BENCHMARKS:", f"{'Provider':<15} {'Model':<25} {'Speed (t/s)':<12} {'Cost/Token':<12} {'Success':<8}", "-" * 80 ]) for bench in benchmarks[:5]: report_lines.append( f"{bench.provider:<15} {bench.model[:24]:<25} {bench.tokens_per_second:<12.1f} " f"${bench.cost_per_token:<11.8f} {bench.success_rate:<8.1%}" ) report_lines.append("") report_lines.extend([ "=" * 60, f"Generated: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}", "=" * 60 ]) return "\n".join(report_lines) async def cleanup_old_data(self, days_to_keep: int = 30): """Cleanup old cost tracking data""" cutoff_date = (datetime.now() - timedelta(days=days_to_keep)).isoformat() async with aiosqlite.connect(self.cost_db_path) as db: cursor = await db.execute(""" DELETE FROM cost_metrics WHERE timestamp < ? """, (cutoff_date,)) deleted_rows = cursor.rowcount await db.commit() if deleted_rows > 0: cost_logger.info(f"๐Ÿงน Cleaned up {deleted_rows} old cost records (>{days_to_keep} days)") def reset_daily_alerts(self): """Reset daily cost alerts (called at midnight)""" self.cost_alerts.clear() cost_logger.info("๐Ÿ”” Daily cost alerts reset") # Global cost logger instance cost_efficiency_logger = CostEfficiencyLogger()