saap-plattform / backend /cost_efficiency_logger.py
Hwandji's picture
feat: initial HuggingFace Space deployment
4343907
raw
history blame
19.5 kB
"""
SAAP Cost Efficiency Logger - Advanced Cost Tracking & Analytics
Monitors OpenRouter costs, performance metrics, and budget management
"""
import asyncio
import json
import logging
from datetime import datetime, timedelta
from typing import Dict, List, Optional, Any
from dataclasses import dataclass, asdict
from pathlib import Path
import sqlite3
import aiosqlite
from collections import defaultdict
from ..config.settings import get_settings
# Initialize cost logging
cost_logger = logging.getLogger("saap.cost")
performance_logger = logging.getLogger("saap.performance")
@dataclass
class CostAnalytics:
"""Comprehensive cost analytics"""
time_period: str
total_cost_usd: float
total_requests: int
successful_requests: int
failed_requests: int
average_cost_per_request: float
total_tokens: int
average_response_time: float
cost_per_1k_tokens: float
tokens_per_second: float
top_expensive_models: List[Dict[str, Any]]
cost_by_agent: Dict[str, float]
cost_by_provider: Dict[str, float]
daily_budget_utilization: float
cost_trend_24h: List[Dict[str, Any]]
efficiency_score: float # Tokens per dollar
@dataclass
class PerformanceBenchmark:
"""Performance benchmarking data"""
provider: str
model: str
avg_response_time: float
tokens_per_second: float
cost_per_token: float
success_rate: float
cost_efficiency_score: float
sample_size: int
class CostEfficiencyLogger:
"""Advanced cost tracking and analytics system"""
def __init__(self):
self.settings = get_settings()
self.cost_db_path = "logs/saap_cost_tracking.db"
self.analytics_cache = {}
self.cost_alerts = []
# Ensure logs directory exists
Path("logs").mkdir(exist_ok=True)
# Initialize database
asyncio.create_task(self._initialize_database())
cost_logger.info("πŸ’° Cost Efficiency Logger initialized")
async def _initialize_database(self):
"""Initialize SQLite database for cost tracking"""
async with aiosqlite.connect(self.cost_db_path) as db:
await db.execute("""
CREATE TABLE IF NOT EXISTS cost_metrics (
id INTEGER PRIMARY KEY AUTOINCREMENT,
timestamp TEXT NOT NULL,
agent_id TEXT NOT NULL,
provider TEXT NOT NULL,
model TEXT NOT NULL,
input_tokens INTEGER NOT NULL,
output_tokens INTEGER NOT NULL,
total_tokens INTEGER NOT NULL,
cost_usd REAL NOT NULL,
response_time_seconds REAL NOT NULL,
request_success BOOLEAN NOT NULL,
cost_per_1k_tokens REAL,
tokens_per_second REAL,
metadata TEXT
)
""")
await db.execute("""
CREATE INDEX IF NOT EXISTS idx_timestamp ON cost_metrics(timestamp)
""")
await db.execute("""
CREATE INDEX IF NOT EXISTS idx_agent_id ON cost_metrics(agent_id)
""")
await db.execute("""
CREATE INDEX IF NOT EXISTS idx_provider ON cost_metrics(provider)
""")
await db.commit()
async def log_cost_metrics(self, metrics_data: Dict[str, Any]):
"""Log cost metrics to database and generate analytics"""
# Calculate derived metrics
metrics_data['cost_per_1k_tokens'] = (
metrics_data['cost_usd'] / (metrics_data['total_tokens'] / 1000)
if metrics_data['total_tokens'] > 0 else 0
)
metrics_data['tokens_per_second'] = (
metrics_data['total_tokens'] / metrics_data['response_time_seconds']
if metrics_data['response_time_seconds'] > 0 else 0
)
# Store in database
async with aiosqlite.connect(self.cost_db_path) as db:
await db.execute("""
INSERT INTO cost_metrics (
timestamp, agent_id, provider, model, input_tokens, output_tokens,
total_tokens, cost_usd, response_time_seconds, request_success,
cost_per_1k_tokens, tokens_per_second, metadata
) VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)
""", (
metrics_data['timestamp'],
metrics_data['agent_id'],
metrics_data['provider'],
metrics_data['model'],
metrics_data['input_tokens'],
metrics_data['output_tokens'],
metrics_data['total_tokens'],
metrics_data['cost_usd'],
metrics_data['response_time_seconds'],
metrics_data['request_success'],
metrics_data['cost_per_1k_tokens'],
metrics_data['tokens_per_second'],
json.dumps(metrics_data.get('metadata', {}))
))
await db.commit()
# Real-time cost logging
if metrics_data['request_success']:
cost_logger.info(
f"πŸ’° COST: {metrics_data['agent_id']} | "
f"${metrics_data['cost_usd']:.6f} | "
f"{metrics_data['total_tokens']} tokens | "
f"{metrics_data['response_time_seconds']:.2f}s | "
f"{metrics_data['tokens_per_second']:.1f} tok/s | "
f"${metrics_data['cost_per_1k_tokens']:.4f}/1k"
)
else:
cost_logger.error(
f"❌ FAILED: {metrics_data['agent_id']} | "
f"{metrics_data['provider']} | "
f"{metrics_data['response_time_seconds']:.2f}s timeout"
)
# Check for budget alerts
await self._check_budget_alerts()
async def _check_budget_alerts(self):
"""Check and generate budget alerts"""
daily_cost = await self.get_daily_cost()
daily_budget = self.settings.agents.daily_cost_budget
usage_percentage = (daily_cost / daily_budget) * 100
# Generate alerts at specific thresholds
thresholds = [50, 75, 90, 95, 100]
for threshold in thresholds:
if usage_percentage >= threshold:
alert_key = f"daily_budget_{threshold}"
if alert_key not in self.cost_alerts:
self.cost_alerts.append(alert_key)
if threshold < 100:
cost_logger.warning(
f"⚠️ BUDGET ALERT: ${daily_cost:.4f} / ${daily_budget} "
f"({usage_percentage:.1f}%) - {threshold}% threshold reached"
)
else:
cost_logger.critical(
f"🚨 BUDGET EXCEEDED: ${daily_cost:.4f} / ${daily_budget} "
f"({usage_percentage:.1f}%) - Switching to free models!"
)
break
async def get_daily_cost(self) -> float:
"""Get current daily cost"""
today = datetime.now().strftime('%Y-%m-%d')
async with aiosqlite.connect(self.cost_db_path) as db:
cursor = await db.execute("""
SELECT SUM(cost_usd) FROM cost_metrics
WHERE date(timestamp) = ? AND request_success = 1
""", (today,))
result = await cursor.fetchone()
return result[0] or 0.0
async def get_cost_analytics(self, hours: int = 24) -> CostAnalytics:
"""Generate comprehensive cost analytics"""
cutoff_time = (datetime.now() - timedelta(hours=hours)).isoformat()
async with aiosqlite.connect(self.cost_db_path) as db:
# Basic metrics
cursor = await db.execute("""
SELECT
COUNT(*) as total_requests,
SUM(CASE WHEN request_success = 1 THEN 1 ELSE 0 END) as successful_requests,
SUM(CASE WHEN request_success = 0 THEN 1 ELSE 0 END) as failed_requests,
SUM(cost_usd) as total_cost,
SUM(total_tokens) as total_tokens,
AVG(response_time_seconds) as avg_response_time
FROM cost_metrics
WHERE timestamp >= ?
""", (cutoff_time,))
basic_stats = await cursor.fetchone()
if not basic_stats or basic_stats[0] == 0:
return self._empty_analytics(hours)
total_requests, successful_requests, failed_requests, total_cost, total_tokens, avg_response_time = basic_stats
# Cost by agent
cursor = await db.execute("""
SELECT agent_id, SUM(cost_usd) as cost
FROM cost_metrics
WHERE timestamp >= ? AND request_success = 1
GROUP BY agent_id
ORDER BY cost DESC
""", (cutoff_time,))
cost_by_agent = {row[0]: row[1] for row in await cursor.fetchall()}
# Cost by provider
cursor = await db.execute("""
SELECT provider, SUM(cost_usd) as cost
FROM cost_metrics
WHERE timestamp >= ? AND request_success = 1
GROUP BY provider
ORDER BY cost DESC
""", (cutoff_time,))
cost_by_provider = {row[0]: row[1] for row in await cursor.fetchall()}
# Top expensive models
cursor = await db.execute("""
SELECT model, SUM(cost_usd) as total_cost, COUNT(*) as requests,
AVG(cost_per_1k_tokens) as avg_cost_per_1k
FROM cost_metrics
WHERE timestamp >= ? AND request_success = 1
GROUP BY model
ORDER BY total_cost DESC
LIMIT 5
""", (cutoff_time,))
top_expensive_models = [
{
'model': row[0],
'total_cost': row[1],
'requests': row[2],
'avg_cost_per_1k_tokens': row[3]
}
for row in await cursor.fetchall()
]
# Hourly cost trend (last 24 hours)
cursor = await db.execute("""
SELECT
strftime('%Y-%m-%d %H:00', timestamp) as hour,
SUM(cost_usd) as cost,
COUNT(*) as requests
FROM cost_metrics
WHERE timestamp >= datetime('now', '-24 hours') AND request_success = 1
GROUP BY strftime('%Y-%m-%d %H:00', timestamp)
ORDER BY hour
""", ())
cost_trend_24h = [
{'hour': row[0], 'cost': row[1], 'requests': row[2]}
for row in await cursor.fetchall()
]
# Calculate derived metrics
average_cost_per_request = total_cost / total_requests if total_requests > 0 else 0
cost_per_1k_tokens = (total_cost / (total_tokens / 1000)) if total_tokens > 0 else 0
tokens_per_second = total_tokens / (avg_response_time * total_requests) if avg_response_time and total_requests > 0 else 0
efficiency_score = total_tokens / total_cost if total_cost > 0 else 0
# Daily budget utilization
daily_cost = await self.get_daily_cost()
daily_budget_utilization = (daily_cost / self.settings.agents.daily_cost_budget) * 100
return CostAnalytics(
time_period=f"{hours}h",
total_cost_usd=total_cost or 0,
total_requests=total_requests or 0,
successful_requests=successful_requests or 0,
failed_requests=failed_requests or 0,
average_cost_per_request=average_cost_per_request,
total_tokens=total_tokens or 0,
average_response_time=avg_response_time or 0,
cost_per_1k_tokens=cost_per_1k_tokens,
tokens_per_second=tokens_per_second,
top_expensive_models=top_expensive_models,
cost_by_agent=cost_by_agent,
cost_by_provider=cost_by_provider,
daily_budget_utilization=daily_budget_utilization,
cost_trend_24h=cost_trend_24h,
efficiency_score=efficiency_score
)
def _empty_analytics(self, hours: int) -> CostAnalytics:
"""Return empty analytics object"""
return CostAnalytics(
time_period=f"{hours}h",
total_cost_usd=0.0,
total_requests=0,
successful_requests=0,
failed_requests=0,
average_cost_per_request=0.0,
total_tokens=0,
average_response_time=0.0,
cost_per_1k_tokens=0.0,
tokens_per_second=0.0,
top_expensive_models=[],
cost_by_agent={},
cost_by_provider={},
daily_budget_utilization=0.0,
cost_trend_24h=[],
efficiency_score=0.0
)
async def get_performance_benchmarks(self, hours: int = 24) -> List[PerformanceBenchmark]:
"""Get performance benchmarks by provider and model"""
cutoff_time = (datetime.now() - timedelta(hours=hours)).isoformat()
async with aiosqlite.connect(self.cost_db_path) as db:
cursor = await db.execute("""
SELECT
provider,
model,
AVG(response_time_seconds) as avg_response_time,
AVG(tokens_per_second) as avg_tokens_per_second,
AVG(cost_per_1k_tokens) as avg_cost_per_1k,
SUM(CASE WHEN request_success = 1 THEN 1 ELSE 0 END) * 100.0 / COUNT(*) as success_rate,
COUNT(*) as sample_size,
SUM(total_tokens) as total_tokens,
SUM(cost_usd) as total_cost
FROM cost_metrics
WHERE timestamp >= ?
GROUP BY provider, model
HAVING COUNT(*) >= 3
ORDER BY avg_tokens_per_second DESC
""", (cutoff_time,))
benchmarks = []
for row in await cursor.fetchall():
provider, model, avg_response_time, avg_tokens_per_second, avg_cost_per_1k, success_rate, sample_size, total_tokens, total_cost = row
# Calculate cost efficiency score (tokens per dollar)
cost_efficiency_score = total_tokens / total_cost if total_cost > 0 else 0
cost_per_token = total_cost / total_tokens if total_tokens > 0 else 0
benchmarks.append(PerformanceBenchmark(
provider=provider,
model=model,
avg_response_time=avg_response_time,
tokens_per_second=avg_tokens_per_second or 0,
cost_per_token=cost_per_token,
success_rate=success_rate / 100, # Convert to decimal
cost_efficiency_score=cost_efficiency_score,
sample_size=sample_size
))
return benchmarks
async def generate_cost_report(self, hours: int = 24) -> str:
"""Generate detailed cost report"""
analytics = await self.get_cost_analytics(hours)
benchmarks = await self.get_performance_benchmarks(hours)
report_lines = [
"=" * 60,
f"πŸ“Š SAAP Cost Efficiency Report - Last {hours} Hours",
"=" * 60,
"",
"πŸ’° COST SUMMARY:",
f" Total Cost: ${analytics.total_cost_usd:.6f}",
f" Requests: {analytics.total_requests} ({analytics.successful_requests} successful)",
f" Average Cost/Request: ${analytics.average_cost_per_request:.6f}",
f" Daily Budget Used: {analytics.daily_budget_utilization:.1f}%",
"",
"πŸ”’ TOKEN METRICS:",
f" Total Tokens: {analytics.total_tokens:,}",
f" Cost per 1K Tokens: ${analytics.cost_per_1k_tokens:.4f}",
f" Tokens per Second: {analytics.tokens_per_second:.1f}",
f" Efficiency Score: {analytics.efficiency_score:.1f} tokens/$",
""
]
if analytics.cost_by_provider:
report_lines.extend([
"🏒 COST BY PROVIDER:",
*[f" {provider}: ${cost:.6f}" for provider, cost in analytics.cost_by_provider.items()],
""
])
if analytics.cost_by_agent:
report_lines.extend([
"πŸ€– COST BY AGENT:",
*[f" {agent}: ${cost:.6f}" for agent, cost in list(analytics.cost_by_agent.items())[:5]],
""
])
if analytics.top_expensive_models:
report_lines.extend([
"πŸ’Έ TOP EXPENSIVE MODELS:",
*[f" {model['model']}: ${model['total_cost']:.6f} ({model['requests']} requests)"
for model in analytics.top_expensive_models[:3]],
""
])
if benchmarks:
report_lines.extend([
"⚑ PERFORMANCE BENCHMARKS:",
f"{'Provider':<15} {'Model':<25} {'Speed (t/s)':<12} {'Cost/Token':<12} {'Success':<8}",
"-" * 80
])
for bench in benchmarks[:5]:
report_lines.append(
f"{bench.provider:<15} {bench.model[:24]:<25} {bench.tokens_per_second:<12.1f} "
f"${bench.cost_per_token:<11.8f} {bench.success_rate:<8.1%}"
)
report_lines.append("")
report_lines.extend([
"=" * 60,
f"Generated: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}",
"=" * 60
])
return "\n".join(report_lines)
async def cleanup_old_data(self, days_to_keep: int = 30):
"""Cleanup old cost tracking data"""
cutoff_date = (datetime.now() - timedelta(days=days_to_keep)).isoformat()
async with aiosqlite.connect(self.cost_db_path) as db:
cursor = await db.execute("""
DELETE FROM cost_metrics WHERE timestamp < ?
""", (cutoff_date,))
deleted_rows = cursor.rowcount
await db.commit()
if deleted_rows > 0:
cost_logger.info(f"🧹 Cleaned up {deleted_rows} old cost records (>{days_to_keep} days)")
def reset_daily_alerts(self):
"""Reset daily cost alerts (called at midnight)"""
self.cost_alerts.clear()
cost_logger.info("πŸ”” Daily cost alerts reset")
# Global cost logger instance
cost_efficiency_logger = CostEfficiencyLogger()