File size: 14,872 Bytes
4343907
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
#!/usr/bin/env python3
"""
SAAP Colossus Server Integration Agent
Integration von colossus Server (https://ai.adrian-schupp.de) in SAAP Multi-Agent System
Author: Hanan Wandji Danga & Jane Alesi
"""
import os
from dotenv import load_dotenv
import requests
import json
import time
import asyncio
import redis
from typing import Dict, List, Optional, Any
import logging

# Load environment variables
load_dotenv()

class ColossusSAAPAgent:
    def __init__(self, agent_name: str, role: str, api_key: str, base_url: str = "https://ai.adrian-schupp.de"):
        """
        Initialisierung des Colossus SAAP Agents
        
        Args:
            agent_name: Name des Agents (z.B. "agent_coordinator")
            role: Rolle des Agents (z.B. "Coordinator", "Developer", "Analyst") 
            api_key: API Key für colossus Server
            base_url: Base URL des colossus Servers
        """
        self.agent_name = agent_name
        self.role = role
        self.api_key = api_key
        self.base_url = base_url
        self.model_name = "mistral-small3.2:24b-instruct-2506"
        
        # Redis Configuration für SAAP Message Queue
        self.redis_client = redis.Redis(host='localhost', port=6379, decode_responses=True)
        self.message_queue = f"saap_agent_{agent_name}"
        
        # Agent Context für rollenspezifische Antworten
        self.context = self._initialize_context()
        
        # Logging Setup
        logging.basicConfig(level=logging.INFO)
        self.logger = logging.getLogger(f"ColossusSAAP.{agent_name}")
        
        self.logger.info(f"🚀 {agent_name} ({role}) initiated with colossus Server")

    def _initialize_context(self) -> str:
        """Initialisiert rollenspezifischen Kontext für den Agent"""
        contexts = {
            "Coordinator": """Du bist der SAAP Agent Coordinator. Deine Aufgabe ist es:
- Multi-Agent Workflows zu koordinieren
- Aufgaben an spezialisierte Agenten zu delegieren
- Systemüberblick zu behalten und Entscheidungen zu treffen
- Effizienz und Performance des gesamten SAAP-Systems zu optimieren""",
            
            "Developer": """Du bist der SAAP Developer Agent. Deine Aufgabe ist es:
- Code zu schreiben und zu überprüfen
- Technische Implementierungen zu planen
- Architektur-Entscheidungen zu treffen
- Code-Qualität und Best Practices sicherzustellen""",
            
            "Analyst": """Du bist der SAAP Analyst Agent. Deine Aufgabe ist es:
- Daten und Anforderungen zu analysieren
- Use Cases zu definieren und dokumentieren
- System-Performance zu bewerten
- Optimierungspotenziale zu identifizieren""",
            
            "default": f"""Du bist ein SAAP Agent mit der Rolle '{self.role}'. 
Beantworte Anfragen professionell und hilfsbereit basierend auf deiner Spezialisierung."""
        }
        return contexts.get(self.role, contexts["default"])

    async def send_request_to_colossus(self, prompt: str, max_tokens: int = 500) -> Dict[str, Any]:
        """
        Sendet Request an colossus Server und misst Performance
        
        Args:
            prompt: Der Eingabe-Prompt
            max_tokens: Maximale Token-Anzahl für Response
            
        Returns:
            Dict mit Response, Performance-Metriken und Metadaten
        """
        start_time = time.time()
        
        # Request Headers
        headers = {
            "Authorization": f"Bearer {self.api_key}",
            "Content-Type": "application/json"
        }
        
        # Request Body (OpenAI-kompatible API vermutlich)
        payload = {
            "model": self.model_name,
            "messages": [
                {"role": "system", "content": self.context},
                {"role": "user", "content": prompt}
            ],
            "max_tokens": max_tokens,
            "temperature": 0.7
        }
        
        try:
            # API Call an colossus Server
            response = requests.post(
                f"{self.base_url}/v1/chat/completions",  # Standard OpenAI API Format
                headers=headers,
                json=payload,
                timeout=30
            )
            
            response_time = time.time() - start_time
            
            if response.status_code == 200:
                data = response.json()
                
                # Performance Metrics berechnen
                response_text = data['choices'][0]['message']['content']
                token_count = data.get('usage', {}).get('total_tokens', 0)
                
                result = {
                    "success": True,
                    "response": response_text,
                    "response_time": round(response_time, 2),
                    "token_count": token_count,
                    "model": self.model_name,
                    "agent_role": self.role,
                    "timestamp": time.time()
                }
                
                self.logger.info(f"✅ colossus Response: {response_time:.2f}s, {token_count} tokens")
                return result
                
            else:
                error_result = {
                    "success": False,
                    "error": f"HTTP {response.status_code}: {response.text}",
                    "response_time": round(response_time, 2),
                    "timestamp": time.time()
                }
                self.logger.error(f"❌ colossus Error: {response.status_code}")
                return error_result
                
        except requests.exceptions.RequestException as e:
            error_result = {
                "success": False,
                "error": f"Request failed: {str(e)}",
                "response_time": round(time.time() - start_time, 2),
                "timestamp": time.time()
            }
            self.logger.error(f"❌ colossus Connection Error: {e}")
            return error_result

    async def process_message(self, message: str, sender: str = "system") -> Dict[str, Any]:
        """
        Verarbeitet eingehende Nachricht und generiert intelligente Antwort
        """
        self.logger.info(f"🔄 {self.agent_name} processing message from {sender}")
        
        # Erweiterte Prompt-Konstruktion mit Sender-Kontext
        enhanced_prompt = f"""[Nachricht von {sender}]
{message}

Bitte antworte als {self.role} Agent im SAAP System. Sei präzise und hilfreich."""

        # colossus Server Request
        result = await self.send_request_to_colossus(enhanced_prompt)
        
        if result["success"]:
            # Message in Redis Queue für andere Agenten
            response_data = {
                "agent_name": self.agent_name,
                "agent_role": self.role,
                "original_message": message,
                "response": result["response"],
                "sender": sender,
                "performance": {
                    "response_time": result["response_time"],
                    "token_count": result["token_count"]
                },
                "timestamp": result["timestamp"],
                "server": "colossus"
            }
            
            # Publish to Redis for other agents and dashboard
            self.redis_client.lpush(f"saap_responses", json.dumps(response_data))
            self.redis_client.publish(f"saap_agent_updates", json.dumps(response_data))
            
            self.logger.info(f"✅ Response generated and published to Redis")
            return result
        else:
            self.logger.error(f"❌ Failed to process message: {result.get('error')}")
            return result

    async def listen_for_messages(self):
        """
        Lauscht auf eingehende Nachrichten in der Redis Queue
        """
        self.logger.info(f"👂 {self.agent_name} listening for messages on {self.message_queue}")
        
        while True:
            try:
                # Pop message from Redis queue
                message_data = self.redis_client.brpop(self.message_queue, timeout=1)
                
                if message_data:
                    _, message_json = message_data
                    message_obj = json.loads(message_json)
                    
                    # Process the message
                    await self.process_message(
                        message=message_obj.get("content", ""),
                        sender=message_obj.get("sender", "unknown")
                    )
                    
                # Small delay to prevent excessive CPU usage
                await asyncio.sleep(0.1)
                
            except KeyboardInterrupt:
                self.logger.info(f"🛑 {self.agent_name} shutting down")
                break
            except Exception as e:
                self.logger.error(f"❌ Error in message listener: {e}")
                await asyncio.sleep(1)

    def send_message_to_agent(self, target_agent: str, message: str):
        """
        Sendet Nachricht an einen anderen SAAP Agent
        """
        message_data = {
            "content": message,
            "sender": self.agent_name,
            "timestamp": time.time()
        }
        
        self.redis_client.lpush(f"saap_agent_{target_agent}", json.dumps(message_data))
        self.logger.info(f"📤 Message sent to {target_agent}")

    async def health_check(self) -> Dict[str, Any]:
        """
        Überprüft Gesundheitsstatus des colossus Servers
        """
        try:
            test_prompt = "Hello, this is a connection test."
            result = await self.send_request_to_colossus(test_prompt, max_tokens=50)
            
            health_status = {
                "agent_name": self.agent_name,
                "colossus_status": "healthy" if result["success"] else "unhealthy",
                "response_time": result.get("response_time", 0),
                "error": result.get("error") if not result["success"] else None,
                "timestamp": time.time()
            }
            
            return health_status
            
        except Exception as e:
            return {
                "agent_name": self.agent_name,
                "colossus_status": "error",
                "error": str(e),
                "timestamp": time.time()
            }

# Performance Benchmarking Funktionen
class ColossusBenchmark:
    def __init__(self, api_key: str):
        self.api_key = api_key
        self.base_url = "https://ai.adrian-schupp.de"
        
    async def run_performance_benchmark(self, test_prompts: List[str]) -> Dict[str, Any]:
        """
        Führt Performance-Benchmark mit verschiedenen Test-Prompts durch
        """
        results = []
        
        # Temporärer Agent für Benchmark
        benchmark_agent = ColossusSAAPAgent("benchmark_agent", "Benchmark", self.api_key)
        
        for i, prompt in enumerate(test_prompts):
            print(f"🧪 Running test {i+1}/{len(test_prompts)}: {prompt[:50]}...")
            
            result = await benchmark_agent.send_request_to_colossus(prompt)
            results.append({
                "test_id": i + 1,
                "prompt": prompt,
                "success": result["success"],
                "response_time": result.get("response_time", 0),
                "token_count": result.get("token_count", 0),
                "error": result.get("error") if not result["success"] else None
            })
            
            # Pause zwischen Tests um Server nicht zu überlasten
            await asyncio.sleep(1)
        
        # Statistiken berechnen
        successful_tests = [r for r in results if r["success"]]
        
        if successful_tests:
            avg_response_time = sum(r["response_time"] for r in successful_tests) / len(successful_tests)
            avg_token_count = sum(r["token_count"] for r in successful_tests) / len(successful_tests)
            
            benchmark_summary = {
                "total_tests": len(test_prompts),
                "successful_tests": len(successful_tests),
                "success_rate": len(successful_tests) / len(test_prompts) * 100,
                "average_response_time": round(avg_response_time, 2),
                "average_token_count": round(avg_token_count, 0),
                "performance_target_met": avg_response_time < 2.0,  # < 2s Ziel
                "results": results
            }
        else:
            benchmark_summary = {
                "total_tests": len(test_prompts),
                "successful_tests": 0,
                "success_rate": 0,
                "error": "No successful tests completed",
                "results": results
            }
        
        return benchmark_summary

# Utility Functions für SAAP Integration
def create_saap_colossus_agents(api_key: str) -> List[ColossusSAAPAgent]:
    """
    Erstellt die 3 Basis-Agenten für SAAP Multi-Agent System wie im Plan
    """
    agents = [
        ColossusSAAPAgent("agent_coordinator", "Coordinator", api_key),
        ColossusSAAPAgent("agent_developer", "Developer", api_key),  
        ColossusSAAPAgent("agent_analyst", "Analyst", api_key)
    ]
    return agents

if __name__ == "__main__":
    # Demo und Testing
    import asyncio
    
    # Load API key from environment variable
    API_KEY = os.getenv("COLOSSUS_API_KEY")
    
    if not API_KEY:
        print("❌ Error: COLOSSUS_API_KEY not set in environment variables")
        print("Please set it in backend/.env file:")
        print("COLOSSUS_API_KEY=sk-your-actual-key-here")
        exit(1)
    
    async def demo_colossus_integration():
        print("🚀 SAAP colossus Server Integration Demo")
        
        # Create test agent
        agent = ColossusSAAPAgent("demo_coordinator", "Coordinator", API_KEY)
        
        # Health check
        print("\n📊 Health Check...")
        health = await agent.health_check()
        print(f"Status: {health}")
        
        # Test message processing
        if health.get("colossus_status") == "healthy":
            print("\n💬 Processing test message...")
            result = await agent.process_message(
                "Erkläre mir die Vorteile einer Multi-Agent-Architektur für SAAP.",
                "test_user"
            )
            print(f"Response: {result.get('response', 'No response')}")
        
        # Performance benchmark
        print("\n🧪 Running mini performance benchmark...")
        benchmark = ColossusBenchmark(API_KEY)
        test_prompts = [
            "Was ist SAAP?",
            "Erkläre Multi-Agent Systeme in 3 Sätzen.",
            "Vorteile von On-Premise vs Cloud AI?"
        ]
        
        benchmark_results = await benchmark.run_performance_benchmark(test_prompts)
        print(f"Benchmark Results: {benchmark_results}")
    
    # Run demo
    asyncio.run(demo_colossus_integration())