Spaces:
Sleeping
Sleeping
File size: 14,189 Bytes
4343907 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 |
#!/usr/bin/env python3
"""
SAAP colossus Server Integration - ColosusSAAPAgent
=================================================
Direct integration with colossus Server für Phase 1 Infrastructure Foundation.
Hybrid Architecture: CachyOS (Orchestrierung) + colossus (LLM Processing)
Server Details:
- URL: https://ai.adrian-schupp.de
- Model: mistral-small3.2:24b-instruct-2506
- Performance Target: < 2s Response-Zeit
Integration with existing SAAP Agent Communication System.
"""
import asyncio
import json
import time
import logging
import os
from typing import Dict, Any, Optional, List
from dataclasses import dataclass, field
import aiohttp
import redis.asyncio as redis
from dotenv import load_dotenv
# Load environment variables
load_dotenv()
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
@dataclass
class ColossusConfig:
"""colossus Server Configuration"""
base_url: str = "https://ai.adrian-schupp.de"
api_key: str = field(default_factory=lambda: os.getenv("COLOSSUS_API_KEY", ""))
model: str = "mistral-small3.2:24b-instruct-2506"
max_tokens: int = 1000
temperature: float = 0.7
timeout: int = 30 # seconds
def __post_init__(self):
"""Validate configuration after initialization"""
if not self.api_key:
raise ValueError(
"❌ COLOSSUS_API_KEY environment variable not set.\n"
"Please set it in your .env file:\n"
"COLOSSUS_API_KEY=your-api-key-here"
)
class ColosusSAAPAgent:
"""
SAAP Agent mit colossus Server Integration
Hybrid Architecture:
- CachyOS: Agent Orchestrierung, Message Queue, System Management
- colossus: High-Performance LLM Processing, AI Inference
"""
def __init__(self,
agent_name: str,
agent_role: str = "Coordinator",
config: Optional[ColossusConfig] = None,
redis_url: str = "redis://localhost:6379"):
self.agent_name = agent_name
self.agent_role = agent_role
self.config = config or ColossusConfig()
self.redis_url = redis_url
# Agent context for specialized roles
self.agent_contexts = {
"Coordinator": "Du bist Agent A (Coordinator) für SAAP. Du koordinierst Multi-Agent Workflows und delegierst Tasks effizient.",
"Developer": "Du bist Agent B (Developer) mit Expertise in Python, Node.js, Vue.js. Du fokussierst auf Clean Code und Performance.",
"Analyst": "Du bist Agent C (Analyst) für Requirements-Analyse, Use Cases und Systemdesign. Du lieferst strukturierte Analysen.",
"General": "Du bist ein SAAP Multi-Agent mit genereller KI-Expertise für vielseitige Tasks."
}
# Performance tracking
self.performance_stats = {
"total_requests": 0,
"total_response_time": 0.0,
"average_response_time": 0.0,
"errors": 0,
"successful_requests": 0
}
# Redis connection (will be initialized async)
self.redis_client = None
async def initialize(self):
"""Initialize async components"""
try:
self.redis_client = await redis.from_url(self.redis_url)
await self.redis_client.ping()
logger.info(f"✅ {self.agent_name} connected to Redis")
# Register agent in Redis
await self.register_agent()
except Exception as e:
logger.error(f"❌ Redis connection failed for {self.agent_name}: {e}")
# Continue without Redis - degraded mode
async def register_agent(self):
"""Register agent with SAAP system"""
if not self.redis_client:
return
agent_info = {
"name": self.agent_name,
"role": self.agent_role,
"status": "active",
"model": self.config.model,
"server": "colossus",
"capabilities": ["llm_processing", "multi_agent_communication", "task_coordination"],
"performance_target": "< 2s response time",
"timestamp": time.time()
}
await self.redis_client.hset(
f"agent:{self.agent_name}",
mapping={k: json.dumps(v) if isinstance(v, (dict, list)) else str(v)
for k, v in agent_info.items()}
)
# Add to active agents set
await self.redis_client.sadd("active_agents", self.agent_name)
logger.info(f"📝 {self.agent_name} registered with SAAP system")
async def call_colossus_api(self, prompt: str) -> Dict[str, Any]:
"""
Direct API call to colossus Server
Returns response with performance metrics
"""
start_time = time.time()
try:
headers = {
"Authorization": f"Bearer {self.config.api_key}",
"Content-Type": "application/json"
}
# Add agent context to prompt
context = self.agent_contexts.get(self.agent_role, self.agent_contexts["General"])
enhanced_prompt = f"{context}\\n\\nAufgabe: {prompt}"
payload = {
"model": self.config.model,
"messages": [
{"role": "user", "content": enhanced_prompt}
],
"max_tokens": self.config.max_tokens,
"temperature": self.config.temperature
}
async with aiohttp.ClientSession(timeout=aiohttp.ClientTimeout(total=self.config.timeout)) as session:
async with session.post(
f"{self.config.base_url}/v1/chat/completions",
headers=headers,
json=payload
) as response:
if response.status == 200:
result = await response.json()
# Extract response text
content = result.get("choices", [{}])[0].get("message", {}).get("content", "No response")
# Calculate performance
response_time = time.time() - start_time
# Update stats
self.performance_stats["total_requests"] += 1
self.performance_stats["successful_requests"] += 1
self.performance_stats["total_response_time"] += response_time
self.performance_stats["average_response_time"] = (
self.performance_stats["total_response_time"] /
self.performance_stats["total_requests"]
)
return {
"success": True,
"content": content,
"response_time": response_time,
"model": self.config.model,
"server": "colossus",
"agent": self.agent_name,
"role": self.agent_role,
"performance_check": response_time < 2.0 # Success if < 2s
}
else:
error_text = await response.text()
raise Exception(f"API Error {response.status}: {error_text}")
except Exception as e:
# Update error stats
self.performance_stats["errors"] += 1
self.performance_stats["total_requests"] += 1
response_time = time.time() - start_time
logger.error(f"❌ colossus API call failed: {e}")
return {
"success": False,
"error": str(e),
"response_time": response_time,
"agent": self.agent_name,
"server": "colossus",
"performance_check": False
}
async def process_message(self, message: str, context: Optional[Dict] = None) -> Dict[str, Any]:
"""
Process incoming message with colossus LLM
Integrates with SAAP Message Queue System
"""
# Log message processing
logger.info(f"🤖 {self.agent_name} ({self.agent_role}) processing message...")
# Call colossus API
result = await self.call_colossus_api(message)
# Add SAAP-specific metadata
result.update({
"agent_name": self.agent_name,
"agent_role": self.agent_role,
"timestamp": time.time(),
"message_id": context.get("message_id") if context else None,
"thread_id": context.get("thread_id") if context else None
})
# Store in Redis if available
if self.redis_client and result["success"]:
await self._store_message_result(message, result)
# Performance logging
performance_emoji = "⚡" if result.get("performance_check", False) else "⏱️"
logger.info(f"{performance_emoji} {self.agent_name}: {result.get('response_time', 0):.2f}s")
return result
async def _store_message_result(self, message: str, result: Dict[str, Any]):
"""Store message and result in Redis for monitoring"""
if not self.redis_client:
return
message_data = {
"input": message,
"output": result.get("content", ""),
"agent": self.agent_name,
"role": self.agent_role,
"response_time": result.get("response_time", 0),
"timestamp": result.get("timestamp", time.time()),
"success": result.get("success", False)
}
# Store in message history
await self.redis_client.lpush(
f"messages:{self.agent_name}",
json.dumps(message_data)
)
# Keep only recent messages (last 100)
await self.redis_client.ltrim(f"messages:{self.agent_name}", 0, 99)
# Update agent status
await self.redis_client.hset(
f"agent:{self.agent_name}",
"last_activity",
str(time.time())
)
async def get_performance_stats(self) -> Dict[str, Any]:
"""Get comprehensive performance statistics"""
stats = self.performance_stats.copy()
# Add colossus-specific metrics
stats.update({
"server": "colossus",
"model": self.config.model,
"performance_target_met": stats["average_response_time"] < 2.0,
"success_rate": (
(stats["successful_requests"] / stats["total_requests"]) * 100
if stats["total_requests"] > 0 else 0
),
"agent_name": self.agent_name,
"agent_role": self.agent_role
})
return stats
async def cleanup(self):
"""Cleanup connections"""
if self.redis_client:
await self.redis_client.srem("active_agents", self.agent_name)
await self.redis_client.close()
# Example Usage & Testing
async def test_colossus_integration():
"""Test colossus Server Integration"""
print("🚀 Testing SAAP colossus Server Integration...")
# Create test agents
agents = [
ColosusSAAPAgent("agent_coordinator", "Coordinator"),
ColosusSAAPAgent("agent_developer", "Developer"),
ColosusSAAPAgent("agent_analyst", "Analyst")
]
# Initialize all agents
for agent in agents:
await agent.initialize()
# Test messages
test_messages = [
"Analysiere die SAAP Multi-Agent-Architektur und identifiziere Optimierungsbedarfe.",
"Entwickle Python Code für Redis Message Queue Integration.",
"Erstelle Use Cases für Agent-zu-Agent Kommunikation."
]
# Process messages in parallel
tasks = []
for i, agent in enumerate(agents):
message = test_messages[i % len(test_messages)]
tasks.append(agent.process_message(message, {"test_id": i}))
results = await asyncio.gather(*tasks, return_exceptions=True)
# Print results
print("\\n" + "="*60)
print("🎯 SAAP colossus Integration Results:")
print("="*60)
for i, result in enumerate(results):
if isinstance(result, Exception):
print(f"❌ Agent {i+1}: Error - {result}")
else:
agent_name = result.get("agent_name", f"Agent_{i+1}")
response_time = result.get("response_time", 0)
success = result.get("success", False)
performance = "✅ < 2s" if result.get("performance_check", False) else f"⏱️ {response_time:.2f}s"
print(f"{'✅' if success else '❌'} {agent_name}: {performance}")
if success:
content = result.get("content", "")[:100] + "..." if len(result.get("content", "")) > 100 else result.get("content", "")
print(f" Response: {content}")
# Performance summary
print("\\n" + "="*60)
print("📊 Performance Summary:")
for agent in agents:
stats = await agent.get_performance_stats()
print(f"🤖 {agent.agent_name} ({agent.agent_role}):")
print(f" Average Response Time: {stats['average_response_time']:.2f}s")
print(f" Success Rate: {stats['success_rate']:.1f}%")
print(f" Performance Target Met: {'✅' if stats['performance_target_met'] else '❌'}")
# Cleanup
for agent in agents:
await agent.cleanup()
print("\\n🎉 colossus Integration Test Complete!")
if __name__ == "__main__":
asyncio.run(test_colossus_integration())
|