import streamlit as st import requests import pandas as pd from datetime import datetime st.title('SuperKart Data Viewer') st.markdown('A simple Streamlit app to fetch data from the Flask API deployed on Hugging Face.') # Define the API endpoint URL. # *** REPLACE with your actual deployed Flask API URL *** api_url = "https://.hf.space/data" def fetch_data(): try: response = requests.get(api_url) if response.status_code == 200: return response.json() else: st.error(f"Error fetching data from API: {response.status_code} - {response.text}") return None except requests.exceptions.RequestException as e: st.error(f"Failed to connect to the API: {e}") return None if st.button('Fetch and Process Data'): with st.spinner('Fetching and processing data...'): data = fetch_data() if data: df = pd.DataFrame(data) df['Years_Since_Establishment'] = datetime.now().year - df['Store_Establishment_Year'] df['Product_MRP_per_Weight'] = df['Product_MRP'] / df['Product_Weight'] st.success('Data fetched and processed successfully!') st.dataframe(df)