Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1005,7 +1005,7 @@ with ui.navset_card_tab(id="tab"):
|
|
| 1005 |
selected=["compliment", "cross_entropy", "headless"]
|
| 1006 |
)
|
| 1007 |
ui.input_slider("x_filter", "x_filter", 0, 1, 0.01)
|
| 1008 |
-
def plot_loss_rates_model(df, param_types, loss_types, model_types
|
| 1009 |
# interplot each column to be same number of points
|
| 1010 |
x = np.linspace(0, 1, 1000)
|
| 1011 |
loss_rates = []
|
|
@@ -1026,16 +1026,14 @@ with ui.navset_card_tab(id="tab"):
|
|
| 1026 |
# print(loss_rates)
|
| 1027 |
|
| 1028 |
for i, loss_rate in enumerate(loss_rates):
|
| 1029 |
-
df_madmad = pd.DataFrame({'x':x, 'loss':loss_rate})
|
| 1030 |
|
| 1031 |
-
# df_madmad = df_madmad.sort_values(by='x')
|
| 1032 |
-
df_madmad = df_madmad[df_madmad['x']>x_filter]
|
| 1033 |
-
x = df_madmad['x'].to_list()
|
| 1034 |
-
loss_rate = df_madmad['loss'].to_list(
|
| 1035 |
-
|
| 1036 |
-
|
| 1037 |
-
except:
|
| 1038 |
-
return fig
|
| 1039 |
|
| 1040 |
ax.legend()
|
| 1041 |
ax.set_xlabel('Training steps')
|
|
@@ -1048,8 +1046,9 @@ with ui.navset_card_tab(id="tab"):
|
|
| 1048 |
def plot_model_scaling():
|
| 1049 |
fig = None
|
| 1050 |
df = pd.read_csv('training_data_5.csv')
|
|
|
|
| 1051 |
mpl.rcParams.update(mpl.rcParamsDefault)
|
| 1052 |
-
fig = plot_loss_rates_model(df, input.param_type(),input.loss_type(),input.model_type()
|
| 1053 |
|
| 1054 |
import tempfile
|
| 1055 |
fd, path = tempfile.mkstemp(suffix = '.svg')
|
|
|
|
| 1005 |
selected=["compliment", "cross_entropy", "headless"]
|
| 1006 |
)
|
| 1007 |
ui.input_slider("x_filter", "x_filter", 0, 1, 0.01)
|
| 1008 |
+
def plot_loss_rates_model(df, param_types, loss_types, model_types):
|
| 1009 |
# interplot each column to be same number of points
|
| 1010 |
x = np.linspace(0, 1, 1000)
|
| 1011 |
loss_rates = []
|
|
|
|
| 1026 |
# print(loss_rates)
|
| 1027 |
|
| 1028 |
for i, loss_rate in enumerate(loss_rates):
|
| 1029 |
+
# df_madmad = pd.DataFrame({'x':x, 'loss':loss_rate})
|
| 1030 |
|
| 1031 |
+
# # df_madmad = df_madmad.sort_values(by='x')
|
| 1032 |
+
# df_madmad = df_madmad[df_madmad['x']>x_filter]
|
| 1033 |
+
# x = df_madmad['x'].to_list()
|
| 1034 |
+
# loss_rate = df_madmad['loss'].to_list(
|
| 1035 |
+
ax.plot(x, loss_rate, label=labels[i])
|
| 1036 |
+
|
|
|
|
|
|
|
| 1037 |
|
| 1038 |
ax.legend()
|
| 1039 |
ax.set_xlabel('Training steps')
|
|
|
|
| 1046 |
def plot_model_scaling():
|
| 1047 |
fig = None
|
| 1048 |
df = pd.read_csv('training_data_5.csv')
|
| 1049 |
+
df = df[df['epoch_interp']>0.035]
|
| 1050 |
mpl.rcParams.update(mpl.rcParamsDefault)
|
| 1051 |
+
fig = plot_loss_rates_model(df, input.param_type(),input.loss_type(),input.model_type() )
|
| 1052 |
|
| 1053 |
import tempfile
|
| 1054 |
fd, path = tempfile.mkstemp(suffix = '.svg')
|