Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -5,7 +5,7 @@ import pandas as pd
|
|
| 5 |
from pathlib import Path
|
| 6 |
import matplotlib
|
| 7 |
import numpy as np
|
| 8 |
-
import gradio
|
| 9 |
|
| 10 |
############################################################# 2D Line Plot ########################################################
|
| 11 |
### dvq stuff, obvs this will just be an import in the final version
|
|
@@ -883,6 +883,39 @@ with ui.navset_card_tab(id="tab"):
|
|
| 883 |
return fig
|
| 884 |
with ui.nav_panel("Viral Model"):
|
| 885 |
gr.load("models/Hack90/virus_pythia_31_1024").launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 886 |
# @render.image
|
| 887 |
# def image():
|
| 888 |
# img = None
|
|
|
|
| 5 |
from pathlib import Path
|
| 6 |
import matplotlib
|
| 7 |
import numpy as np
|
| 8 |
+
import gradio as gr
|
| 9 |
|
| 10 |
############################################################# 2D Line Plot ########################################################
|
| 11 |
### dvq stuff, obvs this will just be an import in the final version
|
|
|
|
| 883 |
return fig
|
| 884 |
with ui.nav_panel("Viral Model"):
|
| 885 |
gr.load("models/Hack90/virus_pythia_31_1024").launch()
|
| 886 |
+
|
| 887 |
+
with ui.nav_panel("Viral Model Training"):
|
| 888 |
+
ui.page_opts(fillable=True)
|
| 889 |
+
ui.panel_title("Does context size matter for a nucleotide model?")
|
| 890 |
+
|
| 891 |
+
def plot_loss_rates(df, type):
|
| 892 |
+
# interplot each column to be same number of points
|
| 893 |
+
x = np.linspace(0, 1, 1000)
|
| 894 |
+
loss_rates = []
|
| 895 |
+
labels = ['32', '64', '128', '256', '512', '1024']
|
| 896 |
+
#drop the column step
|
| 897 |
+
df = df.drop(columns=['Step'])
|
| 898 |
+
for col in df.columns:
|
| 899 |
+
y = df[col].dropna().astype('float', errors = 'ignore').dropna().values
|
| 900 |
+
f = interp1d(np.linspace(0, 1, len(y)), y)
|
| 901 |
+
loss_rates.append(f(x))
|
| 902 |
+
fig, ax = plt.subplots()
|
| 903 |
+
for i, loss_rate in enumerate(loss_rates):
|
| 904 |
+
ax.plot(x, loss_rate, label=labels[i])
|
| 905 |
+
ax.legend()
|
| 906 |
+
ax.set_title(f'Loss rates for a {type} parameter model')
|
| 907 |
+
ax.set_xlabel('Training steps')
|
| 908 |
+
ax.set_ylabel('Loss rate')
|
| 909 |
+
return fig
|
| 910 |
+
|
| 911 |
+
@render.plot
|
| 912 |
+
def plot():
|
| 913 |
+
fig = None
|
| 914 |
+
df = pd.read_csv('14m.csv')
|
| 915 |
+
mpl.rcParams.update(mpl.rcParamsDefault)
|
| 916 |
+
fig = plot_loss_rates(df, '14M')
|
| 917 |
+
return fig
|
| 918 |
+
|
| 919 |
# @render.image
|
| 920 |
# def image():
|
| 921 |
# img = None
|