Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -981,21 +981,21 @@ with ui.navset_card_tab(id="tab"):
|
|
| 981 |
ui.input_selectize(
|
| 982 |
"param_type",
|
| 983 |
"Select Param Type:",
|
| 984 |
-
["14", "31", "70", "160"],
|
| 985 |
multiple=True,
|
| 986 |
selected=["14", "70"]
|
| 987 |
)
|
| 988 |
ui.input_selectize(
|
| 989 |
"model_type",
|
| 990 |
"Select Model Type:",
|
| 991 |
-
["pythia", "denseformer"],
|
| 992 |
multiple=True,
|
| 993 |
selected=['pythia','denseformer']
|
| 994 |
)
|
| 995 |
ui.input_selectize(
|
| 996 |
"loss_type",
|
| 997 |
"Select Loss Type:",
|
| 998 |
-
["compliment", "cross_entropy", "headless"],
|
| 999 |
multiple=True,
|
| 1000 |
selected=["compliment", "cross_entropy", "headless"]
|
| 1001 |
)
|
|
@@ -1032,7 +1032,7 @@ with ui.navset_card_tab(id="tab"):
|
|
| 1032 |
@render.plot()
|
| 1033 |
def plot_model_scaling():
|
| 1034 |
fig = None
|
| 1035 |
-
df = pd.read_csv('
|
| 1036 |
mpl.rcParams.update(mpl.rcParamsDefault)
|
| 1037 |
fig = plot_loss_rates_model(df, input.param_type(),input.loss_type(),input.model_type())
|
| 1038 |
return fig
|
|
|
|
| 981 |
ui.input_selectize(
|
| 982 |
"param_type",
|
| 983 |
"Select Param Type:",
|
| 984 |
+
["14", "31", "70", "160", "410"],
|
| 985 |
multiple=True,
|
| 986 |
selected=["14", "70"]
|
| 987 |
)
|
| 988 |
ui.input_selectize(
|
| 989 |
"model_type",
|
| 990 |
"Select Model Type:",
|
| 991 |
+
["pythia", "denseformer", "evo"],
|
| 992 |
multiple=True,
|
| 993 |
selected=['pythia','denseformer']
|
| 994 |
)
|
| 995 |
ui.input_selectize(
|
| 996 |
"loss_type",
|
| 997 |
"Select Loss Type:",
|
| 998 |
+
["compliment", "cross_entropy", "headless", "2d", "2d_representation_MSEPlusCE"],
|
| 999 |
multiple=True,
|
| 1000 |
selected=["compliment", "cross_entropy", "headless"]
|
| 1001 |
)
|
|
|
|
| 1032 |
@render.plot()
|
| 1033 |
def plot_model_scaling():
|
| 1034 |
fig = None
|
| 1035 |
+
df = pd.read_csv('training_data_4.csv')
|
| 1036 |
mpl.rcParams.update(mpl.rcParamsDefault)
|
| 1037 |
fig = plot_loss_rates_model(df, input.param_type(),input.loss_type(),input.model_type())
|
| 1038 |
return fig
|