Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -118,16 +118,12 @@ with ui.navset_card_tab(id="tab"):
|
|
| 118 |
ax.set_ylabel("Loss rate")
|
| 119 |
return fig
|
| 120 |
|
| 121 |
-
@render.
|
| 122 |
def plot_context_size_scaling():
|
| 123 |
df = pd.read_csv("14m.csv")
|
| 124 |
fig = plot_loss_rates(df, "14M")
|
| 125 |
if fig:
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
fd, path = tempfile.mkstemp(suffix=".svg")
|
| 129 |
-
fig.savefig(path)
|
| 130 |
-
return {"src": str(path), "width": "600px", "format": "svg"}
|
| 131 |
|
| 132 |
with ui.nav_panel("Model loss analysis"):
|
| 133 |
ui.panel_title("Neurips stuff")
|
|
@@ -178,7 +174,7 @@ with ui.navset_card_tab(id="tab"):
|
|
| 178 |
ax.set_ylabel("Loss rate")
|
| 179 |
return fig
|
| 180 |
|
| 181 |
-
@render.
|
| 182 |
def plot_model_scaling():
|
| 183 |
df = pd.read_csv("training_data_5.csv")
|
| 184 |
df = df[df["epoch_interp"] > 0.035]
|
|
@@ -186,11 +182,7 @@ with ui.navset_card_tab(id="tab"):
|
|
| 186 |
df, input.param_type(), input.loss_type(), input.model_type()
|
| 187 |
)
|
| 188 |
if fig:
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
fd, path = tempfile.mkstemp(suffix=".svg")
|
| 192 |
-
fig.savefig(path)
|
| 193 |
-
return {"src": str(path), "width": "600px", "format": "svg"}
|
| 194 |
|
| 195 |
with ui.nav_panel("Scaling Laws"):
|
| 196 |
ui.panel_title("Params & Losses")
|
|
@@ -237,15 +229,11 @@ with ui.navset_card_tab(id="tab"):
|
|
| 237 |
ax.set_ylabel("Loss")
|
| 238 |
return fig
|
| 239 |
|
| 240 |
-
@render.
|
| 241 |
def plot_big_boy_model():
|
| 242 |
df = pd.read_csv("training_data_5.csv")
|
| 243 |
fig = plot_loss_rates_model_scale(
|
| 244 |
df, input.loss_type_scale(), input.model_type_scale()
|
| 245 |
)
|
| 246 |
if fig:
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
fd, path = tempfile.mkstemp(suffix=".svg")
|
| 250 |
-
fig.savefig(path)
|
| 251 |
-
return {"src": str(path), "width": "600px", "format": "svg"}
|
|
|
|
| 118 |
ax.set_ylabel("Loss rate")
|
| 119 |
return fig
|
| 120 |
|
| 121 |
+
@render.plot()
|
| 122 |
def plot_context_size_scaling():
|
| 123 |
df = pd.read_csv("14m.csv")
|
| 124 |
fig = plot_loss_rates(df, "14M")
|
| 125 |
if fig:
|
| 126 |
+
return fig
|
|
|
|
|
|
|
|
|
|
|
|
|
| 127 |
|
| 128 |
with ui.nav_panel("Model loss analysis"):
|
| 129 |
ui.panel_title("Neurips stuff")
|
|
|
|
| 174 |
ax.set_ylabel("Loss rate")
|
| 175 |
return fig
|
| 176 |
|
| 177 |
+
@render.plot()
|
| 178 |
def plot_model_scaling():
|
| 179 |
df = pd.read_csv("training_data_5.csv")
|
| 180 |
df = df[df["epoch_interp"] > 0.035]
|
|
|
|
| 182 |
df, input.param_type(), input.loss_type(), input.model_type()
|
| 183 |
)
|
| 184 |
if fig:
|
| 185 |
+
return fig
|
|
|
|
|
|
|
|
|
|
|
|
|
| 186 |
|
| 187 |
with ui.nav_panel("Scaling Laws"):
|
| 188 |
ui.panel_title("Params & Losses")
|
|
|
|
| 229 |
ax.set_ylabel("Loss")
|
| 230 |
return fig
|
| 231 |
|
| 232 |
+
@render.plot()
|
| 233 |
def plot_big_boy_model():
|
| 234 |
df = pd.read_csv("training_data_5.csv")
|
| 235 |
fig = plot_loss_rates_model_scale(
|
| 236 |
df, input.loss_type_scale(), input.model_type_scale()
|
| 237 |
)
|
| 238 |
if fig:
|
| 239 |
+
return fig
|
|
|
|
|
|
|
|
|
|
|
|