Spaces:
Running
on
Zero
Running
on
Zero
| import random | |
| import os | |
| import spaces | |
| import numpy as np | |
| import torch | |
| from PIL import Image | |
| import huggingface_hub | |
| import gradio as gr | |
| from src.pipeline_flux_kontext_nag import NAGFluxKontextPipeline | |
| from src.transformer_flux import NAGFluxTransformer2DModel | |
| MAX_SEED = np.iinfo(np.int32).max | |
| MAX_IMAGE_SIZE = 2048 | |
| DEFAULT_GUIDANCE_SCALE = 2.5 | |
| DEFAULT_NEGATIVE_PROMPT = "Low resolution, blurry, lack of details" | |
| transformer = NAGFluxTransformer2DModel.from_pretrained( | |
| "black-forest-labs/FLUX.1-Kontext-dev", | |
| subfolder="transformer", | |
| torch_dtype=torch.bfloat16, | |
| ) | |
| pipe = NAGFluxKontextPipeline.from_pretrained( | |
| "black-forest-labs/FLUX.1-Kontext-dev", | |
| transformer=transformer, | |
| torch_dtype=torch.bfloat16, | |
| ) | |
| device = "cuda" | |
| pipe = pipe.to(device) | |
| examples = [ | |
| ["./assets/monster.png", "Transform to 1960s pop art poster style.", "Use a bright pink, green and blue color palette.", 5], | |
| ["./assets/rabbit.jpg", "Using this elegant style, create a portrait of a cute Godzilla wearing a pearl tiara and lace collar, maintaining the same refined quality and soft color tones.", DEFAULT_NEGATIVE_PROMPT, 5], | |
| ] | |
| def get_duration( | |
| input_image, | |
| prompt, | |
| negative_prompt, guidance_scale, | |
| nag_negative_prompt, nag_scale, | |
| width, height, | |
| num_inference_steps, | |
| seed, randomize_seed, | |
| compare, | |
| ): | |
| duration = int(num_inference_steps) * 1.5 + 5 | |
| if compare: | |
| duration *= 1.7 | |
| return duration | |
| def sample( | |
| input_image, | |
| prompt, | |
| negative_prompt=None, guidance_scale=DEFAULT_GUIDANCE_SCALE, | |
| nag_negative_prompt=None, nag_scale=5.0, | |
| width=1024, height=1024, | |
| num_inference_steps=25, | |
| seed=2025, randomize_seed=False, | |
| compare=True, | |
| ): | |
| prompt = prompt.strip() | |
| negative_prompt = negative_prompt.strip() if negative_prompt and negative_prompt.strip() else None | |
| guidance_scale = float(guidance_scale) | |
| width, height = int(width), int(height) | |
| num_inference_steps = int(num_inference_steps) | |
| if (randomize_seed): | |
| seed = random.randint(0, MAX_SEED) | |
| else: | |
| seed = int(seed) | |
| if input_image is not None: | |
| input_image = input_image.convert("RGB") | |
| generator = torch.Generator(device="cuda").manual_seed(seed) | |
| if input_image is not None: | |
| image_nag = pipe( | |
| prompt=prompt, | |
| image=input_image, | |
| negative_prompt=negative_prompt, | |
| guidance_scale=guidance_scale, | |
| nag_negative_prompt=nag_negative_prompt, | |
| nag_scale=nag_scale, | |
| generator=generator, | |
| width=input_image.size[0], | |
| height=input_image.size[1], | |
| num_inference_steps=num_inference_steps, | |
| ).images[0] | |
| else: | |
| image_nag = pipe( | |
| prompt=prompt, | |
| negative_prompt=negative_prompt, | |
| guidance_scale=guidance_scale, | |
| nag_negative_prompt=nag_negative_prompt, | |
| nag_scale=nag_scale, | |
| generator=generator, | |
| width=width, | |
| height=height, | |
| num_inference_steps=num_inference_steps, | |
| ).images[0] | |
| if compare: | |
| generator = torch.Generator(device="cuda").manual_seed(seed) | |
| if input_image is not None: | |
| image_normal = pipe( | |
| prompt=prompt, | |
| image=input_image, | |
| negative_prompt=negative_prompt, | |
| guidance_scale=guidance_scale, | |
| generator=generator, | |
| width=input_image.size[0], | |
| height=input_image.size[1], | |
| num_inference_steps=num_inference_steps, | |
| ).images[0] | |
| else: | |
| image_normal = pipe( | |
| prompt=prompt, | |
| negative_prompt=negative_prompt, | |
| guidance_scale=guidance_scale, | |
| generator=generator, | |
| width=width, | |
| height=height, | |
| num_inference_steps=num_inference_steps, | |
| ).images[0] | |
| else: | |
| image_normal = Image.new("RGB", image_nag.size, color=(0, 0, 0)) | |
| return (image_normal, image_nag), seed | |
| def sample_example( | |
| input_image, | |
| prompt, | |
| nag_negative_prompt, | |
| nag_scale, | |
| ): | |
| outputs, seed = sample( | |
| input_image=input_image, | |
| prompt=prompt, | |
| negative_prompt=None, guidance_scale=DEFAULT_GUIDANCE_SCALE, | |
| nag_negative_prompt=nag_negative_prompt, nag_scale=nag_scale, | |
| width=1024, height=1024, | |
| num_inference_steps=25, | |
| seed=2025, randomize_seed=False, | |
| compare=True, | |
| ) | |
| return outputs, DEFAULT_GUIDANCE_SCALE, 1024, 1024, 25, seed, True | |
| css=""" | |
| #col-container { | |
| margin: 0 auto; | |
| max-width: 960; | |
| } | |
| """ | |
| with gr.Blocks(css=css) as demo: | |
| with gr.Column(elem_id="col-container"): | |
| gr.Markdown('''# Normalized Attention Guidance (NAG) Flux-Kontext-Dev | |
| NAG demos: [LTX Video Fast](https://huggingface.co/spaces/ChenDY/NAG_ltx-video-distilled), [Wan2.1-T2V-14B](https://huggingface.co/spaces/ChenDY/NAG_wan2-1-fast), [FLUX.1-dev](https://huggingface.co/spaces/ChenDY/NAG_FLUX.1-dev) | |
| Implementation of [Normalized Attention Guidance](https://chendaryen.github.io/NAG.github.io/) | |
| [Paper](https://arxiv.org/abs/2505.21179), [GitHub](https://github.com/ChenDarYen/Normalized-Attention-Guidance), [ComfyUI](https://github.com/ChenDarYen/ComfyUI-NAG) | |
| ''') | |
| with gr.Row(): | |
| with gr.Column(): | |
| input_image = gr.Image(label="Upload the image for editing", type="pil") | |
| prompt = gr.Textbox( | |
| label="Prompt", | |
| max_lines=3, | |
| placeholder="Enter your prompt", | |
| ) | |
| nag_negative_prompt = gr.Textbox( | |
| label="Negative Prompt for NAG", | |
| value=DEFAULT_NEGATIVE_PROMPT, | |
| max_lines=3, | |
| ) | |
| nag_scale = gr.Slider(label="NAG Scale", minimum=1., maximum=20., step=0.25, value=5.) | |
| compare = gr.Checkbox(label="Compare with baseline", info="If unchecked, only sample with NAG will be generated.", value=True) | |
| button = gr.Button("Generate", min_width=120) | |
| with gr.Accordion("Advanced Settings", open=False): | |
| negative_prompt = gr.Textbox(label="Negative Prompt", value=None, visible=False) | |
| guidance_scale = gr.Slider(label="Guidance Scale", minimum=1., maximum=15., step=0.1, value=DEFAULT_GUIDANCE_SCALE) | |
| with gr.Row(): | |
| width = gr.Slider( | |
| label="Width", | |
| minimum=256, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=32, | |
| value=1024, | |
| ) | |
| height = gr.Slider( | |
| label="Height", | |
| minimum=256, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=32, | |
| value=1024, | |
| ) | |
| num_inference_steps = gr.Slider(label="Inference Steps", minimum=1, maximum=50, step=1, value=25) | |
| seed = gr.Slider(label="Seed", minimum=1, maximum=MAX_SEED, step=1, randomize=True) | |
| randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
| with gr.Column(): | |
| output = gr.ImageSlider(label="Left: Baseline, Right: With NAG", interactive=False) | |
| gr.Examples( | |
| examples=examples, | |
| fn=sample_example, | |
| inputs=[ | |
| input_image, | |
| prompt, | |
| nag_negative_prompt, | |
| nag_scale, | |
| ], | |
| outputs=[output, guidance_scale, width, height, num_inference_steps, seed, compare], | |
| cache_examples="lazy", | |
| ) | |
| gr.on( | |
| triggers=[ | |
| button.click, | |
| prompt.submit | |
| ], | |
| fn=sample, | |
| inputs=[ | |
| input_image, | |
| prompt, | |
| negative_prompt, guidance_scale, | |
| nag_negative_prompt, nag_scale, | |
| width, height, | |
| num_inference_steps, | |
| seed, randomize_seed, | |
| compare, | |
| ], | |
| outputs=[output, seed], | |
| ) | |
| if __name__ == "__main__": | |
| huggingface_hub.login(os.getenv('HF_TOKEN')) | |
| demo.launch(share=True) | |