Spaces:
Runtime error
Runtime error
| import torch._dynamo | |
| torch._dynamo.config.suppress_errors = True | |
| import torch | |
| import gradio as gr | |
| import os | |
| import base64 | |
| from glob import glob | |
| from pathlib import Path | |
| from typing import Optional | |
| from diffusers import StableVideoDiffusionPipeline | |
| from diffusers.utils import load_image, export_to_video | |
| from PIL import Image | |
| import uuid | |
| import random | |
| from huggingface_hub import login, hf_hub_download | |
| import spaces | |
| model_directory = './checkpoints' | |
| try: | |
| hf_hub_download(repo_id="vdo/stable-video-diffusion-img2vid-xt-1-1", filename="svd_xt_1_1.safetensors", local_dir=model_directory, cache_dir=model_directory) | |
| except (Exception, BaseException) as error: | |
| print(error) | |
| # pipe = StableVideoDiffusionPipeline.from_pretrained( | |
| # # "stabilityai/stable-video-diffusion-img2vid-xt-1-1", | |
| # "vdo/stable-video-diffusion-img2vid-xt-1-1", | |
| # torch_dtype=torch.float16, | |
| # variant="fp16" | |
| # ) | |
| # pipe.save_pretrained("./checkpoints", variant="fp16") | |
| if not os.path.exists(model_directory): | |
| pipe = StableVideoDiffusionPipeline.from_pretrained( | |
| # "stabilityai/stable-video-diffusion-img2vid-xt-1-1", | |
| "vdo/stable-video-diffusion-img2vid-xt-1-1", | |
| torch_dtype=torch.float16, | |
| variant="fp16" | |
| ) | |
| pipe.save_pretrained("./checkpoints", variant="fp16") | |
| else: | |
| try: | |
| pipe = StableVideoDiffusionPipeline.from_pretrained( | |
| model_directory, | |
| torch_dtype=torch.float16, | |
| variant="fp16" | |
| ) | |
| except: | |
| pipe = StableVideoDiffusionPipeline.from_pretrained( | |
| # "stabilityai/stable-video-diffusion-img2vid-xt-1-1", | |
| "vdo/stable-video-diffusion-img2vid-xt-1-1", | |
| torch_dtype=torch.float16, | |
| variant="fp16" | |
| ) | |
| pipe.save_pretrained("./checkpoints", variant="fp16") | |
| # device = "cuda" if torch.cuda.is_available() else "cpu" | |
| # pipe.to(device) | |
| # pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) | |
| #pipe.vae = torch.compile(pipe.vae, mode="reduce-overhead", fullgraph=True) | |
| max_64_bit_int = 2**63 - 1 | |
| def generate_video( | |
| image: Image, | |
| seed: int, | |
| motion_bucket_id: int = 127, | |
| fps_id: int = 6, | |
| version: str = "svd_xt", | |
| cond_aug: float = 0.02, | |
| decoding_t: int = 3, # Number of frames decoded at a time! This eats most VRAM. Reduce if necessary. | |
| device: str = "cuda", | |
| output_folder: str = "outputs", | |
| ): | |
| global pipe | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| pipe.to(device) | |
| # note julian: normally we should resize input images, but normally they are already in 1024x576, so.. | |
| # also, I would like to experiment with vertical videos, and 1024x512 videos | |
| image = resize_image(image) | |
| if image.mode == "RGBA": | |
| image = image.convert("RGB") | |
| generator = torch.manual_seed(seed) | |
| os.makedirs(output_folder, exist_ok=True) | |
| base_count = len(glob(os.path.join(output_folder, "*.mp4"))) | |
| video_path = os.path.join(output_folder, f"{base_count:06d}.mp4") | |
| # pipe.to("cuda") | |
| frames = pipe(image, decode_chunk_size=decoding_t, generator=generator, motion_bucket_id=motion_bucket_id, noise_aug_strength=0.1, num_frames=25).frames[0] | |
| export_to_video(frames, video_path, fps=fps_id) | |
| torch.manual_seed(seed) | |
| # Read the content of the video file and encode it to base64 | |
| # with open(video_path, "rb") as video_file: | |
| # video_base64 = base64.b64encode(video_file.read()).decode('utf-8') | |
| # Prepend the appropriate data URI header with MIME type | |
| # video_data_uri = 'data:video/mp4;base64,' + video_base64 | |
| # clean-up (otherwise there is a risk of "ghosting", eg. someone seeing the previous generated video", | |
| # of one of the steps go wrong) | |
| # os.remove(video_path) | |
| # return video_data_uri | |
| return video_path | |
| def resize_image(image, output_size=(1024, 576)): | |
| # Calculate aspect ratios | |
| target_aspect = output_size[0] / output_size[1] # Aspect ratio of the desired size | |
| image_aspect = image.width / image.height # Aspect ratio of the original image | |
| # Resize then crop if the original image is larger | |
| if image_aspect > target_aspect: | |
| # Resize the image to match the target height, maintaining aspect ratio | |
| new_height = output_size[1] | |
| new_width = int(new_height * image_aspect) | |
| resized_image = image.resize((new_width, new_height), Image.LANCZOS) | |
| # Calculate coordinates for cropping | |
| left = (new_width - output_size[0]) / 2 | |
| top = 0 | |
| right = (new_width + output_size[0]) / 2 | |
| bottom = output_size[1] | |
| else: | |
| # Resize the image to match the target width, maintaining aspect ratio | |
| new_width = output_size[0] | |
| new_height = int(new_width / image_aspect) | |
| resized_image = image.resize((new_width, new_height), Image.LANCZOS) | |
| # Calculate coordinates for cropping | |
| left = 0 | |
| top = (new_height - output_size[1]) / 2 | |
| right = output_size[0] | |
| bottom = (new_height + output_size[1]) / 2 | |
| # Crop the image | |
| cropped_image = resized_image.crop((left, top, right, bottom)) | |
| return cropped_image | |
| css = """ | |
| img, video { | |
| max-height: 400px; | |
| object-fit: contain; | |
| } | |
| video { | |
| margin: 0 auto | |
| } | |
| """ | |
| with gr.Blocks(css=css) as SVD_XT_1_1: | |
| with gr.Row(): | |
| with gr.Column(): | |
| image = gr.Image(label="Upload your image", type="pil") | |
| generate_btn = gr.Button("Generate") | |
| # base64_out = gr.Textbox(label="Base64 Video") | |
| seed = gr.Slider(label="Seed", value=42, randomize=False, minimum=0, maximum=max_64_bit_int, step=1) | |
| motion_bucket_id = gr.Slider(label="Motion bucket id", info="Controls how much motion to add/remove from the image", value=127, minimum=1, maximum=255) | |
| fps_id = gr.Slider(label="Frames per second", info="The length of your video in seconds will be 25/fps", value=6, minimum=5, maximum=30) | |
| with gr.Column(): | |
| video_out = gr.Video( | |
| autoplay=True, | |
| # height=512, | |
| # width=512, | |
| # elem_id="video_output" | |
| ) | |
| generate_btn.click( | |
| fn=generate_video, | |
| inputs=[image, seed, motion_bucket_id, fps_id], | |
| outputs=video_out, | |
| api_name="run" | |
| ) | |
| SVD_XT_1_1.launch() |