Upload 3 files
Browse files- app.py +51 -0
- cnn_model.pth +3 -0
- requirements.txt +4 -0
app.py
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
import torchvision.models as models
|
| 4 |
+
from torchvision import transforms
|
| 5 |
+
from torch import nn
|
| 6 |
+
from PIL import Image
|
| 7 |
+
|
| 8 |
+
transform = transforms.Compose([
|
| 9 |
+
transforms.Resize((128, 128)),
|
| 10 |
+
transforms.ToTensor()
|
| 11 |
+
])
|
| 12 |
+
|
| 13 |
+
model = models.mobilenet_v2()
|
| 14 |
+
num_ftrs = model.classifier[1].in_features
|
| 15 |
+
model.classifier[1] = nn.Linear(num_ftrs, 2)
|
| 16 |
+
model = model.to("cpu")
|
| 17 |
+
model.load_state_dict(torch.load("cnn_model.pth", weights_only=True, map_location="cpu"))
|
| 18 |
+
model.eval()
|
| 19 |
+
|
| 20 |
+
label = ["nsfw", "safe"]
|
| 21 |
+
|
| 22 |
+
def inference(image):
|
| 23 |
+
image = transform(image).unsqueeze(0)
|
| 24 |
+
|
| 25 |
+
with torch.no_grad():
|
| 26 |
+
output = model(image)
|
| 27 |
+
output = torch.nn.functional.softmax(output, dim=1)
|
| 28 |
+
|
| 29 |
+
predicted_class = torch.argmax(output, dim=1).item()
|
| 30 |
+
score = output[0][predicted_class]
|
| 31 |
+
|
| 32 |
+
if label[predicted_class] == "nsfw":
|
| 33 |
+
output = f'Boneka ini terlalu seksi dan tidak aman dilihat anak kecil (NSFW) [{label[predicted_class]}:{score}]'
|
| 34 |
+
else:
|
| 35 |
+
output = f'Boneka ini aman (SAFE) [{label[predicted_class]}:{score}]'
|
| 36 |
+
|
| 37 |
+
return output
|
| 38 |
+
|
| 39 |
+
with gr.Blocks() as demo:
|
| 40 |
+
with gr.Row():
|
| 41 |
+
with gr.Column():
|
| 42 |
+
inputs = gr.Image(type="pil")
|
| 43 |
+
with gr.Column():
|
| 44 |
+
btn = gr.Button("Cek")
|
| 45 |
+
pred = gr.Text(label="Prediction")
|
| 46 |
+
|
| 47 |
+
btn.click(fn=inference, inputs=inputs, outputs=pred)
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
demo.queue().launch()
|
cnn_model.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:653ceeb6fb4b1a27f7a01aae154fc68222b0b42c625d0ffefbe1eeaed1fb19c7
|
| 3 |
+
size 9150650
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio==3.34.0
|
| 2 |
+
torchvision==0.18.1
|
| 3 |
+
pillow==10.3.0
|
| 4 |
+
torch==2.3.1
|