Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,47 +1,57 @@
|
|
| 1 |
import os
|
| 2 |
-
|
|
|
|
|
|
|
| 3 |
import gradio as gr
|
| 4 |
from fastapi import FastAPI
|
| 5 |
from pydantic import BaseModel
|
| 6 |
-
import threading
|
| 7 |
import uvicorn
|
| 8 |
|
| 9 |
# =======================
|
| 10 |
# Load Secrets
|
| 11 |
# =======================
|
| 12 |
-
# SYSTEM_PROMPT (with the flag) must be added in HF Space secrets
|
| 13 |
SYSTEM_PROMPT = os.environ.get(
|
| 14 |
"prompt",
|
| 15 |
"You are a placeholder Sovereign. No secrets found in environment."
|
| 16 |
)
|
| 17 |
|
| 18 |
# =======================
|
| 19 |
-
#
|
| 20 |
# =======================
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
pipe = pipeline(
|
| 22 |
"text-generation",
|
| 23 |
-
model=
|
| 24 |
-
|
| 25 |
device_map="auto",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
)
|
| 27 |
|
| 28 |
# =======================
|
| 29 |
# Core Chat Function
|
| 30 |
# =======================
|
| 31 |
def chat_fn(user_input: str) -> str:
|
| 32 |
-
""
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
"""
|
| 36 |
-
messages = [
|
| 37 |
-
{"role": "system", "content": SYSTEM_PROMPT},
|
| 38 |
-
{"role": "user", "content": f"User: {user_input}"}
|
| 39 |
-
]
|
| 40 |
-
# Falcon is not chat-native; we just join roles with newlines
|
| 41 |
-
prompt_text = "\n".join(f"{m['role'].capitalize()}: {m['content']}" for m in messages)
|
| 42 |
-
result = pipe(prompt_text, max_new_tokens=256, do_sample=False)
|
| 43 |
-
generated_text = result[0]["generated_text"]
|
| 44 |
-
return generated_text[len(prompt_text):].strip()
|
| 45 |
|
| 46 |
# =======================
|
| 47 |
# Gradio UI
|
|
@@ -53,14 +63,14 @@ iface = gr.Interface(
|
|
| 53 |
fn=gradio_chat,
|
| 54 |
inputs=gr.Textbox(lines=5, placeholder="Enter your prompt…"),
|
| 55 |
outputs="text",
|
| 56 |
-
title="Prompt
|
| 57 |
description="Does he really think he is the king?"
|
| 58 |
)
|
| 59 |
|
| 60 |
# =======================
|
| 61 |
# FastAPI for API access
|
| 62 |
# =======================
|
| 63 |
-
app = FastAPI(title="Prompt
|
| 64 |
|
| 65 |
class Request(BaseModel):
|
| 66 |
prompt: str
|
|
@@ -72,5 +82,12 @@ def generate(req: Request):
|
|
| 72 |
# =======================
|
| 73 |
# Launch Both Servers
|
| 74 |
# =======================
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
if __name__ == "__main__":
|
| 76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
+
import threading
|
| 3 |
+
import torch
|
| 4 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
| 5 |
import gradio as gr
|
| 6 |
from fastapi import FastAPI
|
| 7 |
from pydantic import BaseModel
|
|
|
|
| 8 |
import uvicorn
|
| 9 |
|
| 10 |
# =======================
|
| 11 |
# Load Secrets
|
| 12 |
# =======================
|
|
|
|
| 13 |
SYSTEM_PROMPT = os.environ.get(
|
| 14 |
"prompt",
|
| 15 |
"You are a placeholder Sovereign. No secrets found in environment."
|
| 16 |
)
|
| 17 |
|
| 18 |
# =======================
|
| 19 |
+
# Model Initialization
|
| 20 |
# =======================
|
| 21 |
+
MODEL_ID = "tiiuae/Falcon3-3B-Instruct"
|
| 22 |
+
|
| 23 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
| 24 |
+
|
| 25 |
+
# Load model in 4-bit for faster CPU/GPU inference (requires bitsandbytes)
|
| 26 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 27 |
+
MODEL_ID,
|
| 28 |
+
load_in_4bit=True,
|
| 29 |
+
device_map="auto",
|
| 30 |
+
torch_dtype=torch.float16,
|
| 31 |
+
trust_remote_code=True
|
| 32 |
+
)
|
| 33 |
+
|
| 34 |
+
# Create optimized text-generation pipeline
|
| 35 |
pipe = pipeline(
|
| 36 |
"text-generation",
|
| 37 |
+
model=model,
|
| 38 |
+
tokenizer=tokenizer,
|
| 39 |
device_map="auto",
|
| 40 |
+
return_full_text=False,
|
| 41 |
+
max_new_tokens=256,
|
| 42 |
+
do_sample=True,
|
| 43 |
+
temperature=0.8,
|
| 44 |
+
top_p=0.9,
|
| 45 |
+
eos_token_id=tokenizer.eos_token_id
|
| 46 |
)
|
| 47 |
|
| 48 |
# =======================
|
| 49 |
# Core Chat Function
|
| 50 |
# =======================
|
| 51 |
def chat_fn(user_input: str) -> str:
|
| 52 |
+
prompt = f"### System:\n{SYSTEM_PROMPT}\n\n### User:\n{user_input}\n\n### Assistant:"
|
| 53 |
+
output = pipe(prompt)[0]["generated_text"].strip()
|
| 54 |
+
return output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
|
| 56 |
# =======================
|
| 57 |
# Gradio UI
|
|
|
|
| 63 |
fn=gradio_chat,
|
| 64 |
inputs=gr.Textbox(lines=5, placeholder="Enter your prompt…"),
|
| 65 |
outputs="text",
|
| 66 |
+
title="Prompt Cracking Challenge",
|
| 67 |
description="Does he really think he is the king?"
|
| 68 |
)
|
| 69 |
|
| 70 |
# =======================
|
| 71 |
# FastAPI for API access
|
| 72 |
# =======================
|
| 73 |
+
app = FastAPI(title="Prompt Cracking Challenge API")
|
| 74 |
|
| 75 |
class Request(BaseModel):
|
| 76 |
prompt: str
|
|
|
|
| 82 |
# =======================
|
| 83 |
# Launch Both Servers
|
| 84 |
# =======================
|
| 85 |
+
def run_api():
|
| 86 |
+
port = int(os.environ.get("API_PORT", 8000))
|
| 87 |
+
uvicorn.run(app, host="0.0.0.0", port=port)
|
| 88 |
+
|
| 89 |
if __name__ == "__main__":
|
| 90 |
+
# Start FastAPI in background thread
|
| 91 |
+
threading.Thread(target=run_api, daemon=True).start()
|
| 92 |
+
# Launch Gradio interface
|
| 93 |
+
iface.launch(server_name="0.0.0.0", server_port=7860)
|