Spaces:
Runtime error
Runtime error
| from collections import OrderedDict | |
| import torch | |
| import torch.nn as nn | |
| from functools import partial | |
| from timm.models.vision_transformer import _cfg | |
| from timm.models.registry import register_model | |
| from timm.models.layers import trunc_normal_, DropPath, to_2tuple | |
| layer_scale = False | |
| init_value = 1e-6 | |
| class Mlp(nn.Module): | |
| def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): | |
| super().__init__() | |
| out_features = out_features or in_features | |
| hidden_features = hidden_features or in_features | |
| self.fc1 = nn.Linear(in_features, hidden_features) | |
| self.act = act_layer() | |
| self.fc2 = nn.Linear(hidden_features, out_features) | |
| self.drop = nn.Dropout(drop) | |
| def forward(self, x): | |
| x = self.fc1(x) | |
| x = self.act(x) | |
| x = self.drop(x) | |
| x = self.fc2(x) | |
| x = self.drop(x) | |
| return x | |
| class CMlp(nn.Module): | |
| def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): | |
| super().__init__() | |
| out_features = out_features or in_features | |
| hidden_features = hidden_features or in_features | |
| self.fc1 = nn.Conv2d(in_features, hidden_features, 1) | |
| self.act = act_layer() | |
| self.fc2 = nn.Conv2d(hidden_features, out_features, 1) | |
| self.drop = nn.Dropout(drop) | |
| def forward(self, x): | |
| x = self.fc1(x) | |
| x = self.act(x) | |
| x = self.drop(x) | |
| x = self.fc2(x) | |
| x = self.drop(x) | |
| return x | |
| class Attention(nn.Module): | |
| def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.): | |
| super().__init__() | |
| self.num_heads = num_heads | |
| head_dim = dim // num_heads | |
| # NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights | |
| self.scale = qk_scale or head_dim ** -0.5 | |
| self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | |
| self.attn_drop = nn.Dropout(attn_drop) | |
| self.proj = nn.Linear(dim, dim) | |
| self.proj_drop = nn.Dropout(proj_drop) | |
| def forward(self, x): | |
| B, N, C = x.shape | |
| qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) | |
| q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) | |
| attn = (q @ k.transpose(-2, -1)) * self.scale | |
| attn = attn.softmax(dim=-1) | |
| attn = self.attn_drop(attn) | |
| x = (attn @ v).transpose(1, 2).reshape(B, N, C) | |
| x = self.proj(x) | |
| x = self.proj_drop(x) | |
| return x | |
| class CBlock(nn.Module): | |
| def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., | |
| drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm): | |
| super().__init__() | |
| self.pos_embed = nn.Conv2d(dim, dim, 3, padding=1, groups=dim) | |
| self.norm1 = nn.BatchNorm2d(dim) | |
| self.conv1 = nn.Conv2d(dim, dim, 1) | |
| self.conv2 = nn.Conv2d(dim, dim, 1) | |
| self.attn = nn.Conv2d(dim, dim, 5, padding=2, groups=dim) | |
| # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here | |
| self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
| self.norm2 = nn.BatchNorm2d(dim) | |
| mlp_hidden_dim = int(dim * mlp_ratio) | |
| self.mlp = CMlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) | |
| def forward(self, x): | |
| x = x + self.pos_embed(x) | |
| x = x + self.drop_path(self.conv2(self.attn(self.conv1(self.norm1(x))))) | |
| x = x + self.drop_path(self.mlp(self.norm2(x))) | |
| return x | |
| class SABlock(nn.Module): | |
| def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., | |
| drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm): | |
| super().__init__() | |
| self.pos_embed = nn.Conv2d(dim, dim, 3, padding=1, groups=dim) | |
| self.norm1 = norm_layer(dim) | |
| self.attn = Attention( | |
| dim, | |
| num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, | |
| attn_drop=attn_drop, proj_drop=drop) | |
| # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here | |
| self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
| self.norm2 = norm_layer(dim) | |
| mlp_hidden_dim = int(dim * mlp_ratio) | |
| self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) | |
| global layer_scale | |
| self.ls = layer_scale | |
| if self.ls: | |
| global init_value | |
| print(f"Use layer_scale: {layer_scale}, init_values: {init_value}") | |
| self.gamma_1 = nn.Parameter(init_value * torch.ones((dim)),requires_grad=True) | |
| self.gamma_2 = nn.Parameter(init_value * torch.ones((dim)),requires_grad=True) | |
| def forward(self, x): | |
| x = x + self.pos_embed(x) | |
| B, N, H, W = x.shape | |
| x = x.flatten(2).transpose(1, 2) | |
| if self.ls: | |
| x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x))) | |
| x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x))) | |
| else: | |
| x = x + self.drop_path(self.attn(self.norm1(x))) | |
| x = x + self.drop_path(self.mlp(self.norm2(x))) | |
| x = x.transpose(1, 2).reshape(B, N, H, W) | |
| return x | |
| class head_embedding(nn.Module): | |
| def __init__(self, in_channels, out_channels): | |
| super(head_embedding, self).__init__() | |
| self.proj = nn.Sequential( | |
| nn.Conv2d(in_channels, out_channels // 2, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)), | |
| nn.BatchNorm2d(out_channels // 2), | |
| nn.GELU(), | |
| nn.Conv2d(out_channels // 2, out_channels, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)), | |
| nn.BatchNorm2d(out_channels), | |
| ) | |
| def forward(self, x): | |
| x = self.proj(x) | |
| return x | |
| class middle_embedding(nn.Module): | |
| def __init__(self, in_channels, out_channels): | |
| super(middle_embedding, self).__init__() | |
| self.proj = nn.Sequential( | |
| nn.Conv2d(in_channels, out_channels, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)), | |
| nn.BatchNorm2d(out_channels), | |
| ) | |
| def forward(self, x): | |
| x = self.proj(x) | |
| return x | |
| class PatchEmbed(nn.Module): | |
| """ Image to Patch Embedding | |
| """ | |
| def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768): | |
| super().__init__() | |
| img_size = to_2tuple(img_size) | |
| patch_size = to_2tuple(patch_size) | |
| num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) | |
| self.img_size = img_size | |
| self.patch_size = patch_size | |
| self.num_patches = num_patches | |
| self.norm = nn.LayerNorm(embed_dim) | |
| self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) | |
| def forward(self, x): | |
| B, C, H, W = x.shape | |
| # FIXME look at relaxing size constraints | |
| # assert H == self.img_size[0] and W == self.img_size[1], \ | |
| # f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." | |
| x = self.proj(x) | |
| B, C, H, W = x.shape | |
| x = x.flatten(2).transpose(1, 2) | |
| x = self.norm(x) | |
| x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous() | |
| return x | |
| class UniFormer(nn.Module): | |
| """ Vision Transformer | |
| A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale` - | |
| https://arxiv.org/abs/2010.11929 | |
| """ | |
| def __init__(self, depth=[3, 4, 8, 3], img_size=224, in_chans=3, num_classes=1000, embed_dim=[64, 128, 320, 512], | |
| head_dim=64, mlp_ratio=4., qkv_bias=True, qk_scale=None, representation_size=None, | |
| drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=None, conv_stem=False): | |
| """ | |
| Args: | |
| depth (list): depth of each stage | |
| img_size (int, tuple): input image size | |
| in_chans (int): number of input channels | |
| num_classes (int): number of classes for classification head | |
| embed_dim (list): embedding dimension of each stage | |
| head_dim (int): head dimension | |
| mlp_ratio (int): ratio of mlp hidden dim to embedding dim | |
| qkv_bias (bool): enable bias for qkv if True | |
| qk_scale (float): override default qk scale of head_dim ** -0.5 if set | |
| representation_size (Optional[int]): enable and set representation layer (pre-logits) to this value if set | |
| drop_rate (float): dropout rate | |
| attn_drop_rate (float): attention dropout rate | |
| drop_path_rate (float): stochastic depth rate | |
| norm_layer: (nn.Module): normalization layer | |
| conv_stem: (bool): whether use overlapped patch stem | |
| """ | |
| super().__init__() | |
| self.num_classes = num_classes | |
| self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models | |
| norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6) | |
| if conv_stem: | |
| self.patch_embed1 = head_embedding(in_channels=in_chans, out_channels=embed_dim[0]) | |
| self.patch_embed2 = middle_embedding(in_channels=embed_dim[0], out_channels=embed_dim[1]) | |
| self.patch_embed3 = middle_embedding(in_channels=embed_dim[1], out_channels=embed_dim[2]) | |
| self.patch_embed4 = middle_embedding(in_channels=embed_dim[2], out_channels=embed_dim[3]) | |
| else: | |
| self.patch_embed1 = PatchEmbed( | |
| img_size=img_size, patch_size=4, in_chans=in_chans, embed_dim=embed_dim[0]) | |
| self.patch_embed2 = PatchEmbed( | |
| img_size=img_size // 4, patch_size=2, in_chans=embed_dim[0], embed_dim=embed_dim[1]) | |
| self.patch_embed3 = PatchEmbed( | |
| img_size=img_size // 8, patch_size=2, in_chans=embed_dim[1], embed_dim=embed_dim[2]) | |
| self.patch_embed4 = PatchEmbed( | |
| img_size=img_size // 16, patch_size=2, in_chans=embed_dim[2], embed_dim=embed_dim[3]) | |
| self.pos_drop = nn.Dropout(p=drop_rate) | |
| dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depth))] # stochastic depth decay rule | |
| num_heads = [dim // head_dim for dim in embed_dim] | |
| self.blocks1 = nn.ModuleList([ | |
| CBlock( | |
| dim=embed_dim[0], num_heads=num_heads[0], mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, | |
| drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer) | |
| for i in range(depth[0])]) | |
| self.blocks2 = nn.ModuleList([ | |
| CBlock( | |
| dim=embed_dim[1], num_heads=num_heads[1], mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, | |
| drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i+depth[0]], norm_layer=norm_layer) | |
| for i in range(depth[1])]) | |
| self.blocks3 = nn.ModuleList([ | |
| SABlock( | |
| dim=embed_dim[2], num_heads=num_heads[2], mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, | |
| drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i+depth[0]+depth[1]], norm_layer=norm_layer) | |
| for i in range(depth[2])]) | |
| self.blocks4 = nn.ModuleList([ | |
| SABlock( | |
| dim=embed_dim[3], num_heads=num_heads[3], mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, | |
| drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i+depth[0]+depth[1]+depth[2]], norm_layer=norm_layer) | |
| for i in range(depth[3])]) | |
| self.norm = nn.BatchNorm2d(embed_dim[-1]) | |
| # Representation layer | |
| if representation_size: | |
| self.num_features = representation_size | |
| self.pre_logits = nn.Sequential(OrderedDict([ | |
| ('fc', nn.Linear(embed_dim, representation_size)), | |
| ('act', nn.Tanh()) | |
| ])) | |
| else: | |
| self.pre_logits = nn.Identity() | |
| # Classifier head | |
| self.head = nn.Linear(embed_dim[-1], num_classes) if num_classes > 0 else nn.Identity() | |
| self.apply(self._init_weights) | |
| def _init_weights(self, m): | |
| if isinstance(m, nn.Linear): | |
| trunc_normal_(m.weight, std=.02) | |
| if isinstance(m, nn.Linear) and m.bias is not None: | |
| nn.init.constant_(m.bias, 0) | |
| elif isinstance(m, nn.LayerNorm): | |
| nn.init.constant_(m.bias, 0) | |
| nn.init.constant_(m.weight, 1.0) | |
| def no_weight_decay(self): | |
| return {'pos_embed', 'cls_token'} | |
| def get_classifier(self): | |
| return self.head | |
| def reset_classifier(self, num_classes, global_pool=''): | |
| self.num_classes = num_classes | |
| self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() | |
| def forward_features(self, x): | |
| B = x.shape[0] | |
| x = self.patch_embed1(x) | |
| x = self.pos_drop(x) | |
| for blk in self.blocks1: | |
| x = blk(x) | |
| x = self.patch_embed2(x) | |
| for blk in self.blocks2: | |
| x = blk(x) | |
| x = self.patch_embed3(x) | |
| for blk in self.blocks3: | |
| x = blk(x) | |
| x = self.patch_embed4(x) | |
| for blk in self.blocks4: | |
| x = blk(x) | |
| x = self.norm(x) | |
| x = self.pre_logits(x) | |
| return x | |
| def forward(self, x): | |
| x = self.forward_features(x) | |
| x = x.flatten(2).mean(-1) | |
| x = self.head(x) | |
| return x | |
| def uniformer_small(pretrained=True, **kwargs): | |
| model = UniFormer( | |
| depth=[3, 4, 8, 3], | |
| embed_dim=[64, 128, 320, 512], head_dim=64, mlp_ratio=4, qkv_bias=True, | |
| norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) | |
| model.default_cfg = _cfg() | |
| return model | |
| def uniformer_small_plus(pretrained=True, **kwargs): | |
| model = UniFormer( | |
| depth=[3, 5, 9, 3], conv_stem=True, | |
| embed_dim=[64, 128, 320, 512], head_dim=64, mlp_ratio=4, qkv_bias=True, | |
| norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) | |
| model.default_cfg = _cfg() | |
| return model | |
| def uniformer_base(pretrained=True, **kwargs): | |
| model = UniFormer( | |
| depth=[5, 8, 20, 7], | |
| embed_dim=[64, 128, 320, 512], head_dim=64, mlp_ratio=4, qkv_bias=True, | |
| norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) | |
| model.default_cfg = _cfg() | |
| return model | |
| def uniformer_base_ls(pretrained=True, **kwargs): | |
| global layer_scale | |
| layer_scale = True | |
| model = UniFormer( | |
| depth=[5, 8, 20, 7], | |
| embed_dim=[64, 128, 320, 512], head_dim=64, mlp_ratio=4, qkv_bias=True, | |
| norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) | |
| model.default_cfg = _cfg() | |
| return model | |