Spaces:
Runtime error
Runtime error
Upload app.py
Browse files17-8-2024
v1.0
app.py
ADDED
|
@@ -0,0 +1,407 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
# Gradio Params Playground
|
| 3 |
+
|
| 4 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 5 |
+
import torch
|
| 6 |
+
import gradio as gr
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
# Load default model as GPT2
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")
|
| 13 |
+
model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2").to(torch_device)
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
# Define functions
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
global chosen_strategy
|
| 20 |
+
|
| 21 |
+
def generate(input_text, number_steps, number_beams, number_beam_groups, diversity_penalty, length_penalty, num_return_sequences, temperature, no_repeat_ngram_size, repetition_penalty, early_stopping, beam_temperature, top_p, top_k,penalty_alpha,top_p_box,top_k_box,strategy_selected,model_selected):
|
| 22 |
+
|
| 23 |
+
chosen_strategy = strategy_selected
|
| 24 |
+
inputs = tokenizer(input_text, return_tensors="pt").to(torch_device)
|
| 25 |
+
|
| 26 |
+
if chosen_strategy == "Sampling":
|
| 27 |
+
|
| 28 |
+
top_p_flag = top_p_box
|
| 29 |
+
top_k_flag = top_k_box
|
| 30 |
+
|
| 31 |
+
outputs = model.generate(
|
| 32 |
+
**inputs,
|
| 33 |
+
max_new_tokens=number_steps,
|
| 34 |
+
return_dict_in_generate=False,
|
| 35 |
+
temperature=temperature,
|
| 36 |
+
top_p=top_p if top_p_flag else None,
|
| 37 |
+
top_k=top_k if top_k_flag else None,
|
| 38 |
+
no_repeat_ngram_size = no_repeat_ngram_size,
|
| 39 |
+
repetition_penalty = repetition_penalty if (repetition_penalty > 0) else None,
|
| 40 |
+
output_scores=False,
|
| 41 |
+
do_sample=True
|
| 42 |
+
)
|
| 43 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 44 |
+
|
| 45 |
+
elif chosen_strategy == "Beam Search":
|
| 46 |
+
|
| 47 |
+
beam_temp_flag = beam_temperature
|
| 48 |
+
early_stop_flag = early_stopping
|
| 49 |
+
|
| 50 |
+
inputs = tokenizer(input_text, return_tensors="pt").to(torch_device)
|
| 51 |
+
outputs = model.generate(
|
| 52 |
+
|
| 53 |
+
**inputs,
|
| 54 |
+
max_new_tokens=number_steps,
|
| 55 |
+
num_beams=number_beams,
|
| 56 |
+
num_return_sequences=min(num_return_sequences, number_beams),
|
| 57 |
+
return_dict_in_generate=False,
|
| 58 |
+
length_penalty=length_penalty,
|
| 59 |
+
temperature=temperature if beam_temp_flag else None,
|
| 60 |
+
no_repeat_ngram_size = no_repeat_ngram_size,
|
| 61 |
+
repetition_penalty = repetition_penalty if (repetition_penalty > 0) else None,
|
| 62 |
+
early_stopping = True if early_stop_flag else False,
|
| 63 |
+
output_scores=False,
|
| 64 |
+
do_sample=True if beam_temp_flag else False
|
| 65 |
+
)
|
| 66 |
+
|
| 67 |
+
beam_options_list = []
|
| 68 |
+
for i, beam_output in enumerate(outputs):
|
| 69 |
+
beam_options_list.append (tokenizer.decode(beam_output, skip_special_tokens=True))
|
| 70 |
+
options = "\n\n - Option - \n".join(beam_options_list)
|
| 71 |
+
return ("Beam Search Generation" + "\n" + "-" * 10 + "\n" + options)
|
| 72 |
+
#print ("Option {}: {}\n".format(i, tokenizer.decode(beam_output, skip_special_tokens=True)))
|
| 73 |
+
|
| 74 |
+
elif chosen_strategy == "Diversity Beam Search":
|
| 75 |
+
|
| 76 |
+
early_stop_flag = early_stopping
|
| 77 |
+
|
| 78 |
+
if number_beam_groups == 1:
|
| 79 |
+
number_beam_groups = 2
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
if number_beam_groups > number_beams:
|
| 83 |
+
number_beams = number_beam_groups
|
| 84 |
+
|
| 85 |
+
inputs = tokenizer(input_text, return_tensors="pt").to(torch_device)
|
| 86 |
+
outputs = model.generate(
|
| 87 |
+
|
| 88 |
+
**inputs,
|
| 89 |
+
max_new_tokens=number_steps,
|
| 90 |
+
num_beams=number_beams,
|
| 91 |
+
num_beam_groups=number_beam_groups,
|
| 92 |
+
diversity_penalty=float(diversity_penalty),
|
| 93 |
+
num_return_sequences=min(num_return_sequences, number_beams),
|
| 94 |
+
return_dict_in_generate=False,
|
| 95 |
+
length_penalty=length_penalty,
|
| 96 |
+
no_repeat_ngram_size = no_repeat_ngram_size,
|
| 97 |
+
repetition_penalty = repetition_penalty if (repetition_penalty > 0) else None,
|
| 98 |
+
early_stopping = True if early_stop_flag else False,
|
| 99 |
+
output_scores=False,
|
| 100 |
+
)
|
| 101 |
+
|
| 102 |
+
beam_options_list = []
|
| 103 |
+
for i, beam_output in enumerate(outputs):
|
| 104 |
+
beam_options_list.append (tokenizer.decode(beam_output, skip_special_tokens=True))
|
| 105 |
+
options = "\n\n ------ Option ------- \n".join(beam_options_list)
|
| 106 |
+
return ("Diversity Beam Search Generation" + "\n" + "-" * 10 + "\n" + options)
|
| 107 |
+
|
| 108 |
+
elif chosen_strategy == "Contrastive":
|
| 109 |
+
|
| 110 |
+
top_k_flag = top_k_box
|
| 111 |
+
|
| 112 |
+
outputs = model.generate(
|
| 113 |
+
**inputs,
|
| 114 |
+
max_new_tokens=number_steps,
|
| 115 |
+
return_dict_in_generate=False,
|
| 116 |
+
temperature=temperature,
|
| 117 |
+
penalty_alpha=penalty_alpha,
|
| 118 |
+
top_k=top_k if top_k_flag else None,
|
| 119 |
+
no_repeat_ngram_size = no_repeat_ngram_size,
|
| 120 |
+
repetition_penalty = repetition_penalty if (repetition_penalty > 0) else None,
|
| 121 |
+
output_scores=False,
|
| 122 |
+
do_sample=True
|
| 123 |
+
)
|
| 124 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 125 |
+
|
| 126 |
+
|
| 127 |
+
#--------ON SELECTING MODEL------------------------
|
| 128 |
+
|
| 129 |
+
def load_model(model_selected):
|
| 130 |
+
|
| 131 |
+
if model_selected == "gpt2":
|
| 132 |
+
tokenizer = AutoTokenizer.from_pretrained("gpt2")
|
| 133 |
+
model = AutoModelForCausalLM.from_pretrained("gpt2", pad_token_id=tokenizer.eos_token_id).to(torch_device)
|
| 134 |
+
#print (model_selected + " loaded")
|
| 135 |
+
|
| 136 |
+
if model_selected == "Gemma 2":
|
| 137 |
+
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b")
|
| 138 |
+
model = AutoModelForCausalLM.from_pretrained("google/gemma-2b").to(torch_device)
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
#--------ON SELECT NO. OF RETURN SEQUENCES----------
|
| 143 |
+
|
| 144 |
+
def change_num_return_sequences(n_beams, num_return_sequences):
|
| 145 |
+
|
| 146 |
+
if (num_return_sequences > n_beams):
|
| 147 |
+
return gr.Slider(
|
| 148 |
+
label="Number of sequences", minimum=1, maximum=n_beams, step=1, value=n_beams)
|
| 149 |
+
|
| 150 |
+
return gr.Slider (
|
| 151 |
+
label="Number of sequences", minimum=1, maximum=n_beams, step=1, value=num_return_sequences)
|
| 152 |
+
|
| 153 |
+
#--------ON CHANGING NO OF BEAMS------------------
|
| 154 |
+
|
| 155 |
+
def popualate_beam_groups (n_beams):
|
| 156 |
+
|
| 157 |
+
global chosen_strategy
|
| 158 |
+
no_of_beams = n_beams
|
| 159 |
+
No_beam_group_list = [] #list for beam group selection
|
| 160 |
+
for y in range (2, no_of_beams+1):
|
| 161 |
+
if no_of_beams % y == 0: #perfectly divisible
|
| 162 |
+
No_beam_group_list.append (y) #add to list, use as list for beam group selection
|
| 163 |
+
|
| 164 |
+
if chosen_strategy == "Diversity Beam Search":
|
| 165 |
+
return {beam_groups: gr.Dropdown(No_beam_group_list, value=max(No_beam_group_list), label="Beam groups", info="Divide beams into equal groups", visible=True),
|
| 166 |
+
num_return_sequences: gr.Slider(maximum=no_of_beams)
|
| 167 |
+
}
|
| 168 |
+
if chosen_strategy == "Beam Search":
|
| 169 |
+
return {beam_groups: gr.Dropdown(No_beam_group_list, value=max(No_beam_group_list), label="Beam groups", info="Divide beams into equal groups", visible=False),
|
| 170 |
+
num_return_sequences: gr.Slider(maximum=no_of_beams)
|
| 171 |
+
}
|
| 172 |
+
|
| 173 |
+
#-----------ON SELECTING TOP P / TOP K--------------
|
| 174 |
+
|
| 175 |
+
def top_p_switch(input_p_box):
|
| 176 |
+
value = input_p_box
|
| 177 |
+
if value:
|
| 178 |
+
return {top_p: gr.Slider(visible = True)}
|
| 179 |
+
else:
|
| 180 |
+
return {top_p: gr.Slider(visible = False)}
|
| 181 |
+
|
| 182 |
+
|
| 183 |
+
def top_k_switch(input_k_box):
|
| 184 |
+
value = input_k_box
|
| 185 |
+
if value:
|
| 186 |
+
return {top_k: gr.Slider(visible = True)}
|
| 187 |
+
else:
|
| 188 |
+
return {top_k: gr.Slider(visible = False)}
|
| 189 |
+
|
| 190 |
+
|
| 191 |
+
#-----------ON SELECTING BEAM TEMPERATURE--------------
|
| 192 |
+
|
| 193 |
+
def beam_temp_switch (input):
|
| 194 |
+
value = input
|
| 195 |
+
if value:
|
| 196 |
+
return {temperature: gr.Slider (visible=True)}
|
| 197 |
+
else:
|
| 198 |
+
return {temperature: gr.Slider (visible=False)}
|
| 199 |
+
|
| 200 |
+
|
| 201 |
+
#-----------ON COOOSING STRATEGY: HIDE/DISPLAY PARAMS -----------
|
| 202 |
+
|
| 203 |
+
def select_strategy(input_strategy):
|
| 204 |
+
|
| 205 |
+
global chosen_strategy
|
| 206 |
+
chosen_strategy = input_strategy
|
| 207 |
+
|
| 208 |
+
if chosen_strategy == "Beam Search":
|
| 209 |
+
return {n_beams: gr.Slider(visible=True),
|
| 210 |
+
num_return_sequences: gr.Slider(visible=True),
|
| 211 |
+
beam_temperature: gr.Checkbox(visible=True),
|
| 212 |
+
early_stopping: gr.Checkbox(visible=True),
|
| 213 |
+
length_penalty: gr.Slider(visible=True),
|
| 214 |
+
beam_groups: gr.Dropdown(visible=False),
|
| 215 |
+
diversity_penalty: gr.Slider(visible=False),
|
| 216 |
+
temperature: gr.Slider (visible=False),
|
| 217 |
+
top_k: gr.Slider(visible=False),
|
| 218 |
+
top_p: gr.Slider(visible=False),
|
| 219 |
+
top_k_box: gr.Checkbox(visible = False),
|
| 220 |
+
top_p_box: gr.Checkbox(visible = False),
|
| 221 |
+
penalty_alpha: gr.Slider (visible=False)
|
| 222 |
+
|
| 223 |
+
}
|
| 224 |
+
if chosen_strategy == "Sampling":
|
| 225 |
+
if top_k_box == True:
|
| 226 |
+
{top_k: gr.Slider(visible = True)}
|
| 227 |
+
if top_p_box == True:
|
| 228 |
+
{top_p: gr.Slider(visible = True)}
|
| 229 |
+
|
| 230 |
+
return {
|
| 231 |
+
temperature: gr.Slider (visible=True),
|
| 232 |
+
top_p: gr.Slider(visible=False),
|
| 233 |
+
top_k: gr.Slider(visible=False),
|
| 234 |
+
n_beams: gr.Slider(visible=False),
|
| 235 |
+
beam_groups: gr.Dropdown(visible=False),
|
| 236 |
+
diversity_penalty: gr.Slider(visible=False),
|
| 237 |
+
num_return_sequences: gr.Slider(visible=False),
|
| 238 |
+
beam_temperature: gr.Checkbox(visible=False),
|
| 239 |
+
early_stopping: gr.Checkbox(visible=False),
|
| 240 |
+
length_penalty: gr.Slider(visible=False),
|
| 241 |
+
top_p_box: gr.Checkbox(visible = True, value=False),
|
| 242 |
+
top_k_box: gr.Checkbox(visible = True, value=False),
|
| 243 |
+
penalty_alpha: gr.Slider (visible=False)
|
| 244 |
+
}
|
| 245 |
+
if chosen_strategy == "Diversity Beam Search":
|
| 246 |
+
|
| 247 |
+
return {n_beams: gr.Slider(visible=True),
|
| 248 |
+
beam_groups: gr.Dropdown(visible=True),
|
| 249 |
+
diversity_penalty: gr.Slider(visible=True),
|
| 250 |
+
num_return_sequences: gr.Slider(visible=True),
|
| 251 |
+
length_penalty: gr.Slider(visible=True),
|
| 252 |
+
beam_temperature: gr.Checkbox(visible=False),
|
| 253 |
+
early_stopping: gr.Checkbox(visible=True),
|
| 254 |
+
temperature: gr.Slider (visible=False),
|
| 255 |
+
top_k: gr.Slider(visible=False),
|
| 256 |
+
top_p: gr.Slider(visible=False),
|
| 257 |
+
top_k_box: gr.Checkbox(visible = False),
|
| 258 |
+
top_p_box: gr.Checkbox(visible = False),
|
| 259 |
+
penalty_alpha: gr.Slider (visible=False),
|
| 260 |
+
}
|
| 261 |
+
|
| 262 |
+
if chosen_strategy == "Contrastive":
|
| 263 |
+
if top_k_box:
|
| 264 |
+
{top_k: gr.Slider(visible = True)}
|
| 265 |
+
|
| 266 |
+
return {
|
| 267 |
+
temperature: gr.Slider (visible=True),
|
| 268 |
+
penalty_alpha: gr.Slider (visible=True),
|
| 269 |
+
top_p: gr.Slider(visible=False),
|
| 270 |
+
#top_k: gr.Slider(visible = True) if top_k_box
|
| 271 |
+
#top_k: gr.Slider(visible=False),
|
| 272 |
+
n_beams: gr.Slider(visible=False),
|
| 273 |
+
beam_groups: gr.Dropdown(visible=False),
|
| 274 |
+
diversity_penalty: gr.Slider(visible=False),
|
| 275 |
+
num_return_sequences: gr.Slider(visible=False),
|
| 276 |
+
beam_temperature: gr.Checkbox(visible=False),
|
| 277 |
+
early_stopping: gr.Checkbox(visible=False),
|
| 278 |
+
length_penalty: gr.Slider(visible=False),
|
| 279 |
+
top_p_box: gr.Checkbox(visible = False),
|
| 280 |
+
top_k_box: gr.Checkbox(visible = True)
|
| 281 |
+
}
|
| 282 |
+
|
| 283 |
+
def clear():
|
| 284 |
+
print ("")
|
| 285 |
+
|
| 286 |
+
|
| 287 |
+
#------------------MAIN BLOCKS DISPLAY---------------
|
| 288 |
+
|
| 289 |
+
with gr.Blocks() as demo:
|
| 290 |
+
|
| 291 |
+
No_beam_group_list = [2]
|
| 292 |
+
text = gr.Textbox(
|
| 293 |
+
label="Prompt",
|
| 294 |
+
value="It's a rainy day today",
|
| 295 |
+
)
|
| 296 |
+
|
| 297 |
+
tokenizer = AutoTokenizer.from_pretrained("gpt2")
|
| 298 |
+
model = AutoModelForCausalLM.from_pretrained("gpt2", pad_token_id=tokenizer.eos_token_id, cache_dir=cache_dir).to(torch_device)
|
| 299 |
+
|
| 300 |
+
|
| 301 |
+
with gr.Row():
|
| 302 |
+
|
| 303 |
+
with gr.Column (scale=0, min_width=200) as Models_Strategy:
|
| 304 |
+
|
| 305 |
+
model_selected = gr.Radio (["gpt2", "Gemma 2"], label="ML Model", value="gpt2")
|
| 306 |
+
strategy_selected = gr.Radio (["Sampling", "Beam Search", "Diversity Beam Search","Contrastive"], label="Search strategy", value = "Sampling", interactive=True)
|
| 307 |
+
|
| 308 |
+
|
| 309 |
+
with gr.Column (scale=0, min_width=250) as Beam_Params:
|
| 310 |
+
n_steps = gr.Slider(
|
| 311 |
+
label="Number of steps/tokens", minimum=1, maximum=100, step=1, value=20
|
| 312 |
+
)
|
| 313 |
+
n_beams = gr.Slider(
|
| 314 |
+
label="Number of beams", minimum=2, maximum=100, step=1, value=4, visible=False
|
| 315 |
+
)
|
| 316 |
+
|
| 317 |
+
#----------------Dropdown-----------------
|
| 318 |
+
|
| 319 |
+
beam_groups = gr.Dropdown(No_beam_group_list, value=2, label="Beam groups", info="Divide beams into equal groups", visible=False
|
| 320 |
+
)
|
| 321 |
+
|
| 322 |
+
diversity_penalty = gr.Slider(
|
| 323 |
+
label="Group diversity penalty", minimum=0.1, maximum=2, step=0.1, value=0.8, visible=False
|
| 324 |
+
)
|
| 325 |
+
|
| 326 |
+
num_return_sequences = gr.Slider(
|
| 327 |
+
label="Number of return sequences", minimum=1, maximum=3, step=1, value=2, visible=False
|
| 328 |
+
)
|
| 329 |
+
temperature = gr.Slider(
|
| 330 |
+
label="Temperature", minimum=0.1, maximum=3, step=0.1, value=0.6, visible = True
|
| 331 |
+
)
|
| 332 |
+
|
| 333 |
+
top_k = gr.Slider(
|
| 334 |
+
label="Top_K", minimum=1, maximum=50, step=1, value=5, visible = False
|
| 335 |
+
)
|
| 336 |
+
top_p = gr.Slider(
|
| 337 |
+
label="Top_P", minimum=0.1, maximum=3, step=0.1, value=0.3, visible = False
|
| 338 |
+
)
|
| 339 |
+
|
| 340 |
+
penalty_alpha = gr.Slider(
|
| 341 |
+
label="Contrastive penalty α", minimum=0.1, maximum=2, step=0.1, value=0.6, visible=False
|
| 342 |
+
)
|
| 343 |
+
|
| 344 |
+
top_p_box = gr.Checkbox(label="Top P", info="Turn on Top P", visible = True, interactive=True)
|
| 345 |
+
top_k_box = gr.Checkbox(label="Top K", info="Turn on Top K", visible = True, interactive=True)
|
| 346 |
+
|
| 347 |
+
|
| 348 |
+
early_stopping = gr.Checkbox(label="Early stopping", info="Stop with heuristically chosen good result", visible = False, interactive=True)
|
| 349 |
+
beam_temperature = gr.Checkbox(label="Beam Temperature", info="Turn on sampling", visible = False, interactive=True)
|
| 350 |
+
|
| 351 |
+
with gr.Column(scale=0, min_width=200):
|
| 352 |
+
|
| 353 |
+
length_penalty = gr.Slider(
|
| 354 |
+
label="Length penalty", minimum=-3, maximum=3, step=0.5, value=0, info="'+' more, '-' less no. of words", visible = False, interactive=True
|
| 355 |
+
)
|
| 356 |
+
|
| 357 |
+
no_repeat_ngram_size = gr.Slider(
|
| 358 |
+
label="No repeat n-gram phrase size", minimum=0, maximum=8, step=1, value=4, info="Not to repeat 'n' words"
|
| 359 |
+
)
|
| 360 |
+
repetition_penalty = gr.Slider(
|
| 361 |
+
label="Repetition penalty", minimum=0, maximum=3, step=1, value=float(0), info="Prior context based penalty for unique text"
|
| 362 |
+
)
|
| 363 |
+
|
| 364 |
+
|
| 365 |
+
|
| 366 |
+
#----------ON SELECTING/CHANGING: RETURN SEEQUENCES/NO OF BEAMS/BEAM GROUPS/TEMPERATURE--------
|
| 367 |
+
|
| 368 |
+
model_selected.change(
|
| 369 |
+
fn=load_model, inputs=[model_selected], outputs=[]
|
| 370 |
+
)
|
| 371 |
+
|
| 372 |
+
#num_return_sequences.change(
|
| 373 |
+
#fn=change_num_return_sequences, inputs=[n_beams,num_return_sequences], outputs=num_return_sequences
|
| 374 |
+
#)
|
| 375 |
+
|
| 376 |
+
n_beams.change(
|
| 377 |
+
fn=popualate_beam_groups, inputs=[n_beams], outputs=[beam_groups,num_return_sequences]
|
| 378 |
+
)
|
| 379 |
+
|
| 380 |
+
strategy_selected.change(fn=select_strategy, inputs=strategy_selected, outputs=[n_beams,beam_groups,length_penalty,diversity_penalty,num_return_sequences,temperature,early_stopping,beam_temperature,penalty_alpha,top_p,top_k,top_p_box,top_k_box])
|
| 381 |
+
|
| 382 |
+
beam_temperature.change (fn=beam_temp_switch, inputs=beam_temperature, outputs=temperature)
|
| 383 |
+
|
| 384 |
+
top_p_box.change (fn=top_p_switch, inputs=top_p_box, outputs=top_p)
|
| 385 |
+
|
| 386 |
+
top_k_box.change (fn=top_k_switch, inputs=top_k_box, outputs=top_k)
|
| 387 |
+
|
| 388 |
+
|
| 389 |
+
#-------------GENERATE BUTTON-------------------
|
| 390 |
+
|
| 391 |
+
button = gr.Button("Generate")
|
| 392 |
+
out_markdown = gr.Textbox()
|
| 393 |
+
|
| 394 |
+
|
| 395 |
+
button.click(
|
| 396 |
+
fn = generate,
|
| 397 |
+
inputs=[text, n_steps, n_beams, beam_groups, diversity_penalty, length_penalty, num_return_sequences, temperature, no_repeat_ngram_size, repetition_penalty, early_stopping, beam_temperature, top_p, top_k,penalty_alpha,top_p_box,top_k_box,strategy_selected,model_selected],
|
| 398 |
+
outputs=[out_markdown]
|
| 399 |
+
)
|
| 400 |
+
|
| 401 |
+
cleared = gr.Button ("Clear")
|
| 402 |
+
cleared.click (fn=clear, inputs=[], outputs=[out_markdown])
|
| 403 |
+
|
| 404 |
+
|
| 405 |
+
|
| 406 |
+
demo.launch()
|
| 407 |
+
|