Kim Juwon commited on
Commit
e687f2e
·
1 Parent(s): 64e473e

update UI/UX

Browse files
Files changed (1) hide show
  1. app.py +35 -19
app.py CHANGED
@@ -1,10 +1,12 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
 
 
3
 
4
  """
5
  For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
  """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
9
  def create_system_prompt(agent_type, personality, expertise_level, language):
10
  base_prompt = f"""You are a {agent_type} movie recommendation agent with the following characteristics:
@@ -37,30 +39,44 @@ def respond(
37
  ):
38
  # Create system prompt
39
  system_message = create_system_prompt(agent_type, personality, expertise_level, language)
 
 
40
  messages = [{"role": "system", "content": system_message}]
41
-
42
- # Add genre and mood information to user input
43
- enhanced_message = f"Genre: {genre}\nMood: {mood}\nUser request: {message}"
44
 
 
45
  for val in history:
46
  if val[0]:
47
  messages.append({"role": "user", "content": val[0]})
48
  if val[1]:
49
  messages.append({"role": "assistant", "content": val[1]})
50
-
 
 
51
  messages.append({"role": "user", "content": enhanced_message})
52
-
53
- response = ""
54
- for message in client.chat_completion(
55
- messages,
56
- max_tokens=max_tokens,
57
- stream=True,
58
- temperature=temperature,
59
- top_p=top_p,
60
- ):
61
- token = message.choices[0].delta.content
62
- response += token
63
- yield response
 
 
 
 
 
 
 
 
 
 
 
 
64
 
65
  def reset_chat():
66
  return None
@@ -103,7 +119,7 @@ with gr.Blocks() as demo:
103
  container=False
104
  )
105
  with gr.Row():
106
- submit = gr.Button("Get Recommendations", variant="primary", size="sm")
107
  clear = gr.Button("Clear Chat", size="sm")
108
 
109
  with gr.Column(scale=1):
 
1
  import gradio as gr
2
+ import requests
3
+ import json
4
+
5
+ MODAL_ENDPOINT = "https://kim-ju-won--llama3-70b-chat.modal.run/llama3_chat_endpoint"
6
 
7
  """
8
  For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
9
  """
 
10
 
11
  def create_system_prompt(agent_type, personality, expertise_level, language):
12
  base_prompt = f"""You are a {agent_type} movie recommendation agent with the following characteristics:
 
39
  ):
40
  # Create system prompt
41
  system_message = create_system_prompt(agent_type, personality, expertise_level, language)
42
+
43
+ # Prepare messages for the API
44
  messages = [{"role": "system", "content": system_message}]
 
 
 
45
 
46
+ # Add conversation history
47
  for val in history:
48
  if val[0]:
49
  messages.append({"role": "user", "content": val[0]})
50
  if val[1]:
51
  messages.append({"role": "assistant", "content": val[1]})
52
+
53
+ # Add current message with genre and mood
54
+ enhanced_message = f"Genre: {genre}\nMood: {mood}\nUser request: {message}"
55
  messages.append({"role": "user", "content": enhanced_message})
56
+
57
+ # Prepare request payload
58
+ payload = {
59
+ "messages": messages,
60
+ "max_tokens": max_tokens,
61
+ "temperature": temperature,
62
+ "top_p": top_p
63
+ }
64
+
65
+ try:
66
+ # Send request to Modal endpoint
67
+ response = requests.post(
68
+ MODAL_ENDPOINT,
69
+ json=payload,
70
+ headers={"Content-Type": "application/json"}
71
+ )
72
+ response.raise_for_status()
73
+
74
+ # Get response from Modal
75
+ result = response.json()
76
+ return result.get("response", "Sorry, I couldn't process your request.")
77
+
78
+ except Exception as e:
79
+ return f"Error: {str(e)}"
80
 
81
  def reset_chat():
82
  return None
 
119
  container=False
120
  )
121
  with gr.Row():
122
+ submit = gr.Button("Send Chat", variant="primary", size="sm")
123
  clear = gr.Button("Clear Chat", size="sm")
124
 
125
  with gr.Column(scale=1):