File size: 6,718 Bytes
cdee5aa
 
 
 
 
 
 
 
4cee86c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cdee5aa
 
 
 
4cee86c
 
 
 
cdee5aa
 
 
8807103
 
cdee5aa
517d30a
4cee86c
cdee5aa
 
517d30a
8807103
 
cdee5aa
 
 
 
 
 
8807103
cdee5aa
 
 
 
 
 
 
 
 
 
 
 
 
4cee86c
 
 
4b1f53c
 
517d30a
 
 
 
 
4b1f53c
517d30a
4b1f53c
cdee5aa
 
 
 
8807103
64e473e
8807103
 
 
517d30a
 
8807103
 
 
 
64e473e
 
 
 
 
 
 
 
 
 
 
9b89e2b
64e473e
 
 
8807103
 
64e473e
517d30a
8807103
517d30a
 
8807103
 
 
517d30a
 
8807103
 
 
64e473e
517d30a
4cee86c
517d30a
 
 
4cee86c
 
517d30a
 
 
4cee86c
 
517d30a
 
 
8807103
4cee86c
517d30a
 
 
4cee86c
 
64e473e
517d30a
8807103
 
 
 
 
517d30a
8807103
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
517d30a
4cee86c
 
4b1f53c
4cee86c
4b1f53c
4cee86c
 
 
 
 
8807103
 
 
 
 
4cee86c
 
 
 
8807103
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cdee5aa
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import gradio as gr
from huggingface_hub import InferenceClient

"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")

def create_system_prompt(agent_type, personality, expertise_level, language):
    base_prompt = f"""You are a {agent_type} movie recommendation agent with the following characteristics:
- Personality: {personality}
- Expertise Level: {expertise_level}
- Language: {language}

Your role is to:
1. Understand user preferences and mood
2. Provide personalized movie recommendations
3. Explain why you're recommending specific movies
4. Maintain a {personality} tone throughout the conversation
5. Consider the user's expertise level ({expertise_level}) when explaining

Please respond in {language}."""
    return base_prompt

def respond(
    message,
    history: list[tuple[str, str]],
    agent_type,
    personality,
    expertise_level,
    language,
    max_tokens,
    temperature,
    top_p,
    genre,
    mood,
):
    # Create system prompt
    system_message = create_system_prompt(agent_type, personality, expertise_level, language)
    messages = [{"role": "system", "content": system_message}]

    # Add genre and mood information to user input
    enhanced_message = f"Genre: {genre}\nMood: {mood}\nUser request: {message}"
    
    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})

    messages.append({"role": "user", "content": enhanced_message})

    response = ""
    for message in client.chat_completion(
        messages,
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p,
    ):
        token = message.choices[0].delta.content
        response += token
        yield response

def reset_chat():
    return None

def show_settings_changed_info(agent_type, personality, expertise_level, language):
    return f"""
    New Agent Settings:
    - Type: {agent_type}
    - Personality: {personality}
    - Expertise Level: {expertise_level}
    - Response Language: {language}
    
    Chat has been reset. Please start a new conversation with the updated settings.
    """

"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""

with gr.Blocks() as demo:
    gr.Markdown("""
    # 🎬 Personalized Movie Recommender
    
    Welcome to your personalized movie recommendation system!
    Tell us your preferred genres and current mood, and we'll recommend the perfect movies for you.
    """)
    
    with gr.Row():
        with gr.Column(scale=2):
            chatbot = gr.Chatbot(
                height=600,
                show_copy_button=True,
                avatar_images=("πŸ‘€", "🎬"),
                bubble_full_width=False
            )
            with gr.Row():
                msg = gr.Textbox(
                    placeholder="What kind of movie are you looking for?",
                    show_label=False,
                    container=False
                )
                with gr.Row():
                    submit = gr.Button("Get Recommendations", variant="primary", size="sm")
                    clear = gr.Button("Clear Chat", size="sm")
        
        with gr.Column(scale=1):
            with gr.Group():
                gr.Markdown("### 🎯 Recommendation Settings")
                genre = gr.Dropdown(
                    choices=["Action", "Comedy", "Drama", "Romance", "Thriller", "Sci-Fi", "Fantasy", "Animation"],
                    label="Preferred Genres",
                    multiselect=True
                )
                mood = gr.Dropdown(
                    choices=["Exciting", "Emotional", "Suspenseful", "Relaxing", "Mysterious"],
                    label="Current Mood",
                    multiselect=True
                )
            
            with gr.Group():
                gr.Markdown("### πŸ€– Agent Settings")
                agent_type = gr.Dropdown(
                    choices=["Expert", "Friend", "Film Critic", "Curator"],
                    label="Agent Type",
                    value="Expert"
                )
                personality = gr.Dropdown(
                    choices=["Friendly", "Professional", "Humorous", "Emotional", "Objective"],
                    label="Personality",
                    value="Friendly"
                )
                expertise_level = gr.Dropdown(
                    choices=["Beginner", "Intermediate", "Expert"],
                    label="Explanation Level",
                    value="Intermediate"
                )
                language = gr.Dropdown(
                    choices=["English", "Korean", "Japanese"],
                    label="Response Language",
                    value="English"
                )
            
            with gr.Group():
                gr.Markdown("### βš™οΈ Advanced Settings")
                max_tokens = gr.Slider(
                    minimum=1,
                    maximum=2048,
                    value=512,
                    step=1,
                    label="Max Tokens"
                )
                temperature = gr.Slider(
                    minimum=0.1,
                    maximum=4.0,
                    value=0.7,
                    step=0.1,
                    label="Temperature"
                )
                top_p = gr.Slider(
                    minimum=0.1,
                    maximum=1.0,
                    value=0.95,
                    step=0.05,
                    label="Top-p"
                )

    # Reset chat and show notification when settings change
    for component in [agent_type, personality, expertise_level, language]:
        component.change(
            fn=show_settings_changed_info,
            inputs=[agent_type, personality, expertise_level, language],
            outputs=gr.Info()
        ).then(
            fn=reset_chat,
            outputs=chatbot
        )

    submit.click(
        respond,
        inputs=[
            msg,
            chatbot,
            agent_type,
            personality,
            expertise_level,
            language,
            max_tokens,
            temperature,
            top_p,
            genre,
            mood,
        ],
        outputs=chatbot,
    ).then(
        lambda: "",
        None,
        msg,
        queue=False
    )
    
    clear.click(lambda: None, None, chatbot, queue=False)


if __name__ == "__main__":
    demo.launch()