File size: 6,718 Bytes
cdee5aa 4cee86c cdee5aa 4cee86c cdee5aa 8807103 cdee5aa 517d30a 4cee86c cdee5aa 517d30a 8807103 cdee5aa 8807103 cdee5aa 4cee86c 4b1f53c 517d30a 4b1f53c 517d30a 4b1f53c cdee5aa 8807103 64e473e 8807103 517d30a 8807103 64e473e 9b89e2b 64e473e 8807103 64e473e 517d30a 8807103 517d30a 8807103 517d30a 8807103 64e473e 517d30a 4cee86c 517d30a 4cee86c 517d30a 4cee86c 517d30a 8807103 4cee86c 517d30a 4cee86c 64e473e 517d30a 8807103 517d30a 8807103 517d30a 4cee86c 4b1f53c 4cee86c 4b1f53c 4cee86c 8807103 4cee86c 8807103 cdee5aa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
import gradio as gr
from huggingface_hub import InferenceClient
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
def create_system_prompt(agent_type, personality, expertise_level, language):
base_prompt = f"""You are a {agent_type} movie recommendation agent with the following characteristics:
- Personality: {personality}
- Expertise Level: {expertise_level}
- Language: {language}
Your role is to:
1. Understand user preferences and mood
2. Provide personalized movie recommendations
3. Explain why you're recommending specific movies
4. Maintain a {personality} tone throughout the conversation
5. Consider the user's expertise level ({expertise_level}) when explaining
Please respond in {language}."""
return base_prompt
def respond(
message,
history: list[tuple[str, str]],
agent_type,
personality,
expertise_level,
language,
max_tokens,
temperature,
top_p,
genre,
mood,
):
# Create system prompt
system_message = create_system_prompt(agent_type, personality, expertise_level, language)
messages = [{"role": "system", "content": system_message}]
# Add genre and mood information to user input
enhanced_message = f"Genre: {genre}\nMood: {mood}\nUser request: {message}"
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": enhanced_message})
response = ""
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
response += token
yield response
def reset_chat():
return None
def show_settings_changed_info(agent_type, personality, expertise_level, language):
return f"""
New Agent Settings:
- Type: {agent_type}
- Personality: {personality}
- Expertise Level: {expertise_level}
- Response Language: {language}
Chat has been reset. Please start a new conversation with the updated settings.
"""
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
with gr.Blocks() as demo:
gr.Markdown("""
# π¬ Personalized Movie Recommender
Welcome to your personalized movie recommendation system!
Tell us your preferred genres and current mood, and we'll recommend the perfect movies for you.
""")
with gr.Row():
with gr.Column(scale=2):
chatbot = gr.Chatbot(
height=600,
show_copy_button=True,
avatar_images=("π€", "π¬"),
bubble_full_width=False
)
with gr.Row():
msg = gr.Textbox(
placeholder="What kind of movie are you looking for?",
show_label=False,
container=False
)
with gr.Row():
submit = gr.Button("Get Recommendations", variant="primary", size="sm")
clear = gr.Button("Clear Chat", size="sm")
with gr.Column(scale=1):
with gr.Group():
gr.Markdown("### π― Recommendation Settings")
genre = gr.Dropdown(
choices=["Action", "Comedy", "Drama", "Romance", "Thriller", "Sci-Fi", "Fantasy", "Animation"],
label="Preferred Genres",
multiselect=True
)
mood = gr.Dropdown(
choices=["Exciting", "Emotional", "Suspenseful", "Relaxing", "Mysterious"],
label="Current Mood",
multiselect=True
)
with gr.Group():
gr.Markdown("### π€ Agent Settings")
agent_type = gr.Dropdown(
choices=["Expert", "Friend", "Film Critic", "Curator"],
label="Agent Type",
value="Expert"
)
personality = gr.Dropdown(
choices=["Friendly", "Professional", "Humorous", "Emotional", "Objective"],
label="Personality",
value="Friendly"
)
expertise_level = gr.Dropdown(
choices=["Beginner", "Intermediate", "Expert"],
label="Explanation Level",
value="Intermediate"
)
language = gr.Dropdown(
choices=["English", "Korean", "Japanese"],
label="Response Language",
value="English"
)
with gr.Group():
gr.Markdown("### βοΈ Advanced Settings")
max_tokens = gr.Slider(
minimum=1,
maximum=2048,
value=512,
step=1,
label="Max Tokens"
)
temperature = gr.Slider(
minimum=0.1,
maximum=4.0,
value=0.7,
step=0.1,
label="Temperature"
)
top_p = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p"
)
# Reset chat and show notification when settings change
for component in [agent_type, personality, expertise_level, language]:
component.change(
fn=show_settings_changed_info,
inputs=[agent_type, personality, expertise_level, language],
outputs=gr.Info()
).then(
fn=reset_chat,
outputs=chatbot
)
submit.click(
respond,
inputs=[
msg,
chatbot,
agent_type,
personality,
expertise_level,
language,
max_tokens,
temperature,
top_p,
genre,
mood,
],
outputs=chatbot,
).then(
lambda: "",
None,
msg,
queue=False
)
clear.click(lambda: None, None, chatbot, queue=False)
if __name__ == "__main__":
demo.launch()
|