Spaces:
Sleeping
Sleeping
File size: 7,841 Bytes
d07aba7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
tools=[{
"name": "analyze_symptoms_from_text_ai",
"description": "Analyzes text to extract medical symptoms and returns them in CSV format.",
"api": {
"name": "analyze_symptoms_from_text_ai",
"parameters": {
"type": "object",
"properties": {
"text_input": {
"type": "string",
"description": "Raw text description of health condition"
}
},
"required": ["text_input"]
}
}
},
{
"name": "full_treatment_answer_ai",
"description": "Generates complete plant-based treatment plans for given symptoms, including dosage, preparation methods, and safety information.",
"api": {
"name": "full_treatment_answer_ai",
"parameters": {
"type": "object",
"properties": {
"user_input": {
"type": "string",
"description": "User's description of symptoms or health condition"
}
},
"required": ["user_input"]
}
}
}
]
import os
from typing import List, Dict, Any
from openai import OpenAI
def analyze_symptoms_from_text_ai(text_input: str) -> str:
"""
Analyze user-provided text to extract medical symptoms in CSV format.
Args:
text_input: Raw text description of health condition
Returns:
str: Comma-separated list of symptoms in CSV format
Example:
>>> analyze_symptoms_from_text_ai("I have headache and nausea")
'headache,nausea'
"""
client = OpenAI(
base_url="https://api.studio.nebius.com/v1/",
api_key=os.environ.get("NEBIUS_API_KEY")
)
try:
response = client.chat.completions.create(
model="google/gemma-2-2b-it",
max_tokens=512,
temperature=0.5,
top_p=0.9,
extra_body={"top_k": 50},
messages=[
{
"role": "system",
"content": """You are a medical symptom extractor.
Analyze the text and return ONLY a comma-separated list of symptoms in CSV format.
Example input: "I have headache and feel nauseous"
Example output: headache,nausea"""
},
{
"role": "user",
"content": f"Analyze this text for symptoms and list them in CSV format: {text_input}"
}
]
)
# Extract and clean the response
symptoms_csv = response.choices.message.content.strip()
return symptoms_csv
except Exception as e:
print(f"Error analyzing symptoms: {str(e)}")
return ""
#usage:
#symptoms = analyze_symptoms_from_text_ai("I've been experiencing insomnia and occasional dizziness")
#///////////////////////////////////////////////////////////////////////////////////////////////////////////////////
#///////////////////////////////////////////////////////////////////////////////////////////////////////////////////
#///////////////////////////////////////////////////////////////////////////////////////////////////////////////////
import os
from typing import List, Dict, Any
from openai import OpenAI
def full_treatment_answer_ai(user_input: str) -> str:
"""
Searches for plant treatments based on user symptoms using Nebius API.
Args:
user_input: User's symptom description
Returns:
str: Complete treatment plan with plant recommendations and details
"""
# Initialize Nebius client
client = OpenAI(
base_url="https://api.studio.nebius.com/v1/",
api_key=os.environ.get("NEBIUS_API_KEY")
)
# Step 1: Extract symptoms from user input
text_symptoms = analyze_symptoms_from_text_ai(user_input)
symptoms_list = text_symptoms.split(",")
symptoms = get_unique_symptoms(symptoms_list)
if not symptoms:
return "Could not identify any specific symptoms. Please describe your condition in more detail."
# Step 2: Find relevant plants for each symptom
all_related_plants = []
for symptom in symptoms:
related_plants = lookup_symptom_and_plants(symptom)
all_related_plants.extend(related_plants)
# Step 3: Prepare the prompt for Nebius API
plants_info = ""
if all_related_plants:
plants_info = "Here are some plants that might be relevant:\n"
for plant in all_related_plants[:6]: # Limit to top 6 plants
plants_info += f"""\nPlant: {plant['name']}
{plant['description']}
Cures: {plant['treatable_conditions']}
Dosage: {plant['dosage']}\n"""
else:
plants_info = "I dont know specific plants for these symptoms. please get useful plants from anywhere or any other sources"
prompt = f"""I have these symptoms: {", ".join(symptoms)}.
{plants_info}
Please analyze my symptoms and recommend the most appropriate plant remedy.
Consider the symptoms, when to use each plant, dosage, and how to use it.
Provide your recommendation in this format:
**Recommended Plant**: [plant name]
**Reason**: [why this plant is good for these symptoms]
**Dosage**: [recommended dosage]
**Instructions**: [how to use it]
**Image**: [mention if image is available]
If multiple plants could work well, you may recommend up to 3 options."""
# Step 4: Call Nebius API for treatment recommendation
try:
response = client.chat.completions.create(
model="deepseek-ai/DeepSeek-V3-0324-fast",
max_tokens=1024, # Increased for detailed responses
temperature=0.3,
top_p=0.95,
messages=[
{
"role": "system",
"content": """You are a professional botanist assistant specializing in medicinal plants.
Provide accurate, science-backed recommendations for plant-based treatments.
Include dosage, preparation methods, and safety considerations."""
},
{
"role": "user",
"content": prompt
}
]
)
final_result = response.choices.message.content
# Step 5: Append detailed plant information if available
if all_related_plants:
final_result += "\n---\nMore Details for Recommended Plants:\n"
for plant in all_related_plants[:3]: # Show details for top 3 plants
final_result += f"""
**Plant Name**: {plant['name']}
**Scientific Name**: {plant['scientific_name']}
**Other Names**: {plant['alternate_names']}
**Description**: {plant['description']}
**Treatable Conditions**: {plant['treatable_conditions']}
**Preparation**: {plant['preparation_methods']}
**Dosage**: {plant['dosage']}
**Side Effects**: {plant['side_effects']}
**Contraindications**: {plant['contraindications']}
**Sources**: {plant['sources']}
"""
return final_result
except Exception as e:
print(f"Error generating treatment plan: {str(e)}")
return "Sorry, I couldn't generate a treatment plan at this time. Please try again later."
#usage:
#treatment = full_treatment_answer_ai("I have headaches and occasional nausea") #todo remove the dependancy on the other function
#print(treatment)
|