Spaces:
Sleeping
Sleeping
feat: Add dynamic weather system to Evolution Aurora
Browse files- Lightning strikes on major fitness improvements (>0.005)
- Rain effect when evolution plateaus (<0.002 improvement)
- Rainbow appears when reaching 95% fitness milestone
- Integrated with existing particle and neural network systems
- Weather renders as background layer for proper visual hierarchy
app.py
CHANGED
|
@@ -61,7 +61,7 @@ AURORA_HTML = """
|
|
| 61 |
Watch AI Learn to Code in Real-Time
|
| 62 |
</p>
|
| 63 |
<p id="welcome-msg" style="color: #00AAFF; font-size: 20px; margin-top: 20px; opacity: 0; animation: fadeIn 2s ease-in 2s forwards;">
|
| 64 |
-
|
| 65 |
</p>
|
| 66 |
</div>
|
| 67 |
</div>
|
|
@@ -91,6 +91,13 @@ AURORA_HTML = """
|
|
| 91 |
const canvas = document.getElementById('aurora-canvas');
|
| 92 |
const ctx = canvas.getContext('2d');
|
| 93 |
let particles = [];
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
|
| 95 |
function resizeCanvas() {
|
| 96 |
canvas.width = canvas.offsetWidth;
|
|
@@ -337,11 +344,152 @@ canvas.addEventListener('click', (e) => {
|
|
| 337 |
}
|
| 338 |
});
|
| 339 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 340 |
function animate() {
|
| 341 |
ctx.fillStyle = 'rgba(0, 0, 0, 0.1)';
|
| 342 |
ctx.fillRect(0, 0, canvas.width, canvas.height);
|
| 343 |
|
| 344 |
-
// Draw
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 345 |
drawBoss();
|
| 346 |
|
| 347 |
// Mouse glow effect
|
|
@@ -352,6 +500,7 @@ function animate() {
|
|
| 352 |
ctx.fillStyle = gradient;
|
| 353 |
ctx.fillRect(mouseX - 100, mouseY - 100, 200, 200);
|
| 354 |
|
|
|
|
| 355 |
particles = particles.filter(p => {
|
| 356 |
p.update();
|
| 357 |
p.draw();
|
|
@@ -486,12 +635,57 @@ const watchQuantum = new MutationObserver((mutations) => {
|
|
| 486 |
triggerGlitch();
|
| 487 |
speak("Victory! You have achieved perfection! 100 percent fitness!", 1.2, 1.2);
|
| 488 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 489 |
});
|
| 490 |
});
|
| 491 |
|
| 492 |
setTimeout(() => {
|
| 493 |
const eventLog = document.querySelector('[id*="event_log"]');
|
| 494 |
if (eventLog) watchQuantum.observe(eventLog, { childList: true, subtree: true });
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 495 |
}, 2000);
|
| 496 |
|
| 497 |
// Epic initial burst sequence
|
|
@@ -503,6 +697,359 @@ setTimeout(() => {
|
|
| 503 |
setTimeout(() => createBurst(3), 1500);
|
| 504 |
setTimeout(() => createBurst(4), 2500);
|
| 505 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 506 |
// Mouse interaction
|
| 507 |
let mouseX = canvas.width / 2;
|
| 508 |
let mouseY = canvas.height / 2;
|
|
@@ -1043,7 +1590,7 @@ with gr.Blocks(
|
|
| 1043 |
gr.Markdown("""
|
| 1044 |
# π Evolution Aurora - AI Learning to Code
|
| 1045 |
|
| 1046 |
-
Watch as AI evolves code in real-time
|
| 1047 |
""")
|
| 1048 |
gr.HTML('''
|
| 1049 |
<div style="text-align: right; padding: 10px;">
|
|
|
|
| 61 |
Watch AI Learn to Code in Real-Time
|
| 62 |
</p>
|
| 63 |
<p id="welcome-msg" style="color: #00AAFF; font-size: 20px; margin-top: 20px; opacity: 0; animation: fadeIn 2s ease-in 2s forwards;">
|
| 64 |
+
π§ Neural Network Visualization | π Synapses Fire with Each Improvement
|
| 65 |
</p>
|
| 66 |
</div>
|
| 67 |
</div>
|
|
|
|
| 91 |
const canvas = document.getElementById('aurora-canvas');
|
| 92 |
const ctx = canvas.getContext('2d');
|
| 93 |
let particles = [];
|
| 94 |
+
let weatherSystem = {
|
| 95 |
+
raindrops: [],
|
| 96 |
+
lightning: false,
|
| 97 |
+
lightningTimer: 0,
|
| 98 |
+
rainbow: false,
|
| 99 |
+
rainbowOpacity: 0
|
| 100 |
+
};
|
| 101 |
|
| 102 |
function resizeCanvas() {
|
| 103 |
canvas.width = canvas.offsetWidth;
|
|
|
|
| 344 |
}
|
| 345 |
});
|
| 346 |
|
| 347 |
+
// Track current fitness for neural network
|
| 348 |
+
let currentFitness = 0.9333;
|
| 349 |
+
|
| 350 |
+
// Weather System
|
| 351 |
+
class Raindrop {
|
| 352 |
+
constructor() {
|
| 353 |
+
this.x = Math.random() * canvas.width;
|
| 354 |
+
this.y = -10;
|
| 355 |
+
this.speed = Math.random() * 5 + 10;
|
| 356 |
+
this.length = Math.random() * 20 + 10;
|
| 357 |
+
this.opacity = Math.random() * 0.5 + 0.3;
|
| 358 |
+
}
|
| 359 |
+
|
| 360 |
+
update() {
|
| 361 |
+
this.y += this.speed;
|
| 362 |
+
if (this.y > canvas.height) {
|
| 363 |
+
this.y = -10;
|
| 364 |
+
this.x = Math.random() * canvas.width;
|
| 365 |
+
}
|
| 366 |
+
}
|
| 367 |
+
|
| 368 |
+
draw() {
|
| 369 |
+
ctx.save();
|
| 370 |
+
ctx.strokeStyle = `rgba(100, 150, 255, ${this.opacity})`;
|
| 371 |
+
ctx.lineWidth = 1;
|
| 372 |
+
ctx.beginPath();
|
| 373 |
+
ctx.moveTo(this.x, this.y);
|
| 374 |
+
ctx.lineTo(this.x, this.y + this.length);
|
| 375 |
+
ctx.stroke();
|
| 376 |
+
ctx.restore();
|
| 377 |
+
}
|
| 378 |
+
}
|
| 379 |
+
|
| 380 |
+
function drawWeather() {
|
| 381 |
+
// Rain effect
|
| 382 |
+
weatherSystem.raindrops.forEach(drop => {
|
| 383 |
+
drop.update();
|
| 384 |
+
drop.draw();
|
| 385 |
+
});
|
| 386 |
+
|
| 387 |
+
// Lightning effect
|
| 388 |
+
if (weatherSystem.lightning && weatherSystem.lightningTimer > 0) {
|
| 389 |
+
ctx.save();
|
| 390 |
+
ctx.fillStyle = `rgba(255, 255, 255, ${weatherSystem.lightningTimer / 10})`;
|
| 391 |
+
ctx.fillRect(0, 0, canvas.width, canvas.height);
|
| 392 |
+
|
| 393 |
+
// Draw lightning bolt
|
| 394 |
+
if (weatherSystem.lightningTimer > 5) {
|
| 395 |
+
ctx.strokeStyle = '#FFFFFF';
|
| 396 |
+
ctx.lineWidth = 3;
|
| 397 |
+
ctx.shadowBlur = 20;
|
| 398 |
+
ctx.shadowColor = '#00AAFF';
|
| 399 |
+
|
| 400 |
+
const startX = Math.random() * canvas.width;
|
| 401 |
+
const segments = 5;
|
| 402 |
+
let x = startX;
|
| 403 |
+
let y = 0;
|
| 404 |
+
|
| 405 |
+
ctx.beginPath();
|
| 406 |
+
ctx.moveTo(x, y);
|
| 407 |
+
|
| 408 |
+
for (let i = 0; i < segments; i++) {
|
| 409 |
+
x += (Math.random() - 0.5) * 100;
|
| 410 |
+
y += canvas.height / segments;
|
| 411 |
+
ctx.lineTo(x, y);
|
| 412 |
+
}
|
| 413 |
+
|
| 414 |
+
ctx.stroke();
|
| 415 |
+
}
|
| 416 |
+
|
| 417 |
+
ctx.restore();
|
| 418 |
+
weatherSystem.lightningTimer--;
|
| 419 |
+
}
|
| 420 |
+
|
| 421 |
+
// Rainbow effect
|
| 422 |
+
if (weatherSystem.rainbow && weatherSystem.rainbowOpacity > 0) {
|
| 423 |
+
ctx.save();
|
| 424 |
+
const gradient = ctx.createLinearGradient(0, 0, canvas.width, canvas.height / 2);
|
| 425 |
+
const colors = ['#FF0000', '#FF7F00', '#FFFF00', '#00FF00', '#0000FF', '#4B0082', '#9400D3'];
|
| 426 |
+
|
| 427 |
+
colors.forEach((color, i) => {
|
| 428 |
+
gradient.addColorStop(i / (colors.length - 1), color);
|
| 429 |
+
});
|
| 430 |
+
|
| 431 |
+
ctx.fillStyle = gradient;
|
| 432 |
+
ctx.globalAlpha = weatherSystem.rainbowOpacity;
|
| 433 |
+
ctx.beginPath();
|
| 434 |
+
ctx.arc(canvas.width / 2, canvas.height, canvas.width, 0, Math.PI, true);
|
| 435 |
+
ctx.fill();
|
| 436 |
+
ctx.restore();
|
| 437 |
+
}
|
| 438 |
+
}
|
| 439 |
+
|
| 440 |
+
function triggerLightning() {
|
| 441 |
+
weatherSystem.lightning = true;
|
| 442 |
+
weatherSystem.lightningTimer = 10;
|
| 443 |
+
|
| 444 |
+
// Create burst at lightning strike point
|
| 445 |
+
createBurst(3);
|
| 446 |
+
}
|
| 447 |
+
|
| 448 |
+
function startRain() {
|
| 449 |
+
// Create raindrops
|
| 450 |
+
for (let i = 0; i < 50; i++) {
|
| 451 |
+
weatherSystem.raindrops.push(new Raindrop());
|
| 452 |
+
}
|
| 453 |
+
}
|
| 454 |
+
|
| 455 |
+
function stopRain() {
|
| 456 |
+
weatherSystem.raindrops = [];
|
| 457 |
+
}
|
| 458 |
+
|
| 459 |
+
function showRainbow() {
|
| 460 |
+
weatherSystem.rainbow = true;
|
| 461 |
+
// Fade in
|
| 462 |
+
const fadeIn = setInterval(() => {
|
| 463 |
+
weatherSystem.rainbowOpacity += 0.02;
|
| 464 |
+
if (weatherSystem.rainbowOpacity >= 0.3) {
|
| 465 |
+
clearInterval(fadeIn);
|
| 466 |
+
// Fade out after 3 seconds
|
| 467 |
+
setTimeout(() => {
|
| 468 |
+
const fadeOut = setInterval(() => {
|
| 469 |
+
weatherSystem.rainbowOpacity -= 0.02;
|
| 470 |
+
if (weatherSystem.rainbowOpacity <= 0) {
|
| 471 |
+
weatherSystem.rainbow = false;
|
| 472 |
+
weatherSystem.rainbowOpacity = 0;
|
| 473 |
+
clearInterval(fadeOut);
|
| 474 |
+
}
|
| 475 |
+
}, 50);
|
| 476 |
+
}, 3000);
|
| 477 |
+
}
|
| 478 |
+
}, 50);
|
| 479 |
+
}
|
| 480 |
+
|
| 481 |
function animate() {
|
| 482 |
ctx.fillStyle = 'rgba(0, 0, 0, 0.1)';
|
| 483 |
ctx.fillRect(0, 0, canvas.width, canvas.height);
|
| 484 |
|
| 485 |
+
// Draw weather effects first (background)
|
| 486 |
+
drawWeather();
|
| 487 |
+
|
| 488 |
+
// Draw neural network (middle layer)
|
| 489 |
+
neuralNetwork.update(currentFitness);
|
| 490 |
+
neuralNetwork.draw(ctx);
|
| 491 |
+
|
| 492 |
+
// Draw boss (above neural network)
|
| 493 |
drawBoss();
|
| 494 |
|
| 495 |
// Mouse glow effect
|
|
|
|
| 500 |
ctx.fillStyle = gradient;
|
| 501 |
ctx.fillRect(mouseX - 100, mouseY - 100, 200, 200);
|
| 502 |
|
| 503 |
+
// Draw particles (foreground layer)
|
| 504 |
particles = particles.filter(p => {
|
| 505 |
p.update();
|
| 506 |
p.draw();
|
|
|
|
| 635 |
triggerGlitch();
|
| 636 |
speak("Victory! You have achieved perfection! 100 percent fitness!", 1.2, 1.2);
|
| 637 |
}
|
| 638 |
+
|
| 639 |
+
// Check for fitness updates
|
| 640 |
+
const fitnessMatch = text.match(/Fitness (\d+\.\d+)/);
|
| 641 |
+
if (fitnessMatch) {
|
| 642 |
+
const newFitness = parseFloat(fitnessMatch[1]);
|
| 643 |
+
if (newFitness > currentFitness) {
|
| 644 |
+
const improvement = newFitness - currentFitness;
|
| 645 |
+
currentFitness = newFitness;
|
| 646 |
+
// Trigger neural network firing
|
| 647 |
+
neuralNetwork.triggerFitnessImprovement(improvement);
|
| 648 |
+
|
| 649 |
+
// Weather effects based on improvement
|
| 650 |
+
if (improvement > 0.005) {
|
| 651 |
+
triggerLightning(); // Lightning for major improvements
|
| 652 |
+
}
|
| 653 |
+
|
| 654 |
+
// Rainbow at 95%
|
| 655 |
+
if (newFitness >= 0.95 && currentFitness < 0.96) {
|
| 656 |
+
showRainbow();
|
| 657 |
+
stopRain();
|
| 658 |
+
}
|
| 659 |
+
|
| 660 |
+
// Rain when plateauing
|
| 661 |
+
if (improvement < 0.002 && weatherSystem.raindrops.length === 0) {
|
| 662 |
+
startRain();
|
| 663 |
+
}
|
| 664 |
+
}
|
| 665 |
+
}
|
| 666 |
});
|
| 667 |
});
|
| 668 |
|
| 669 |
setTimeout(() => {
|
| 670 |
const eventLog = document.querySelector('[id*="event_log"]');
|
| 671 |
if (eventLog) watchQuantum.observe(eventLog, { childList: true, subtree: true });
|
| 672 |
+
|
| 673 |
+
// Also watch fitness display directly
|
| 674 |
+
const fitnessDisplay = document.querySelector('[id*="fitness_display"]');
|
| 675 |
+
if (fitnessDisplay) {
|
| 676 |
+
const fitnessObserver = new MutationObserver((mutations) => {
|
| 677 |
+
mutations.forEach((mutation) => {
|
| 678 |
+
const input = mutation.target.querySelector('input');
|
| 679 |
+
if (input && input.value) {
|
| 680 |
+
const newFitness = parseFloat(input.value);
|
| 681 |
+
if (!isNaN(newFitness) && newFitness !== currentFitness) {
|
| 682 |
+
currentFitness = newFitness;
|
| 683 |
+
}
|
| 684 |
+
}
|
| 685 |
+
});
|
| 686 |
+
});
|
| 687 |
+
fitnessObserver.observe(fitnessDisplay, { childList: true, subtree: true, attributes: true });
|
| 688 |
+
}
|
| 689 |
}, 2000);
|
| 690 |
|
| 691 |
// Epic initial burst sequence
|
|
|
|
| 697 |
setTimeout(() => createBurst(3), 1500);
|
| 698 |
setTimeout(() => createBurst(4), 2500);
|
| 699 |
|
| 700 |
+
// Neural Network Visualization
|
| 701 |
+
class NeuralNetwork {
|
| 702 |
+
constructor() {
|
| 703 |
+
this.neurons = [];
|
| 704 |
+
this.synapses = [];
|
| 705 |
+
this.layers = [5, 8, 6, 4, 1]; // Network architecture
|
| 706 |
+
this.setupNetwork();
|
| 707 |
+
this.pulsePhase = 0;
|
| 708 |
+
this.lastFitness = 0.9333;
|
| 709 |
+
this.firingNeurons = new Set();
|
| 710 |
+
this.brainWavePhase = 0;
|
| 711 |
+
}
|
| 712 |
+
|
| 713 |
+
setupNetwork() {
|
| 714 |
+
const centerX = canvas.width / 2;
|
| 715 |
+
const centerY = canvas.height / 2;
|
| 716 |
+
const networkWidth = 400;
|
| 717 |
+
const networkHeight = 300;
|
| 718 |
+
|
| 719 |
+
// Create neurons for each layer
|
| 720 |
+
for (let layer = 0; layer < this.layers.length; layer++) {
|
| 721 |
+
const layerNeurons = [];
|
| 722 |
+
const x = centerX - networkWidth/2 + (layer / (this.layers.length - 1)) * networkWidth;
|
| 723 |
+
|
| 724 |
+
for (let i = 0; i < this.layers[layer]; i++) {
|
| 725 |
+
const y = centerY - networkHeight/2 + ((i + 0.5) / this.layers[layer]) * networkHeight;
|
| 726 |
+
layerNeurons.push({
|
| 727 |
+
x: x,
|
| 728 |
+
y: y,
|
| 729 |
+
layer: layer,
|
| 730 |
+
index: i,
|
| 731 |
+
activation: Math.random() * 0.3,
|
| 732 |
+
pulseOffset: Math.random() * Math.PI * 2,
|
| 733 |
+
size: layer === this.layers.length - 1 ? 15 : 8 - layer // Output neuron is bigger
|
| 734 |
+
});
|
| 735 |
+
}
|
| 736 |
+
this.neurons.push(layerNeurons);
|
| 737 |
+
}
|
| 738 |
+
|
| 739 |
+
// Create synapses between layers
|
| 740 |
+
for (let layer = 0; layer < this.layers.length - 1; layer++) {
|
| 741 |
+
for (let i = 0; i < this.neurons[layer].length; i++) {
|
| 742 |
+
for (let j = 0; j < this.neurons[layer + 1].length; j++) {
|
| 743 |
+
this.synapses.push({
|
| 744 |
+
from: this.neurons[layer][i],
|
| 745 |
+
to: this.neurons[layer + 1][j],
|
| 746 |
+
weight: Math.random() * 0.5 + 0.1,
|
| 747 |
+
active: false,
|
| 748 |
+
pulseProgress: 0
|
| 749 |
+
});
|
| 750 |
+
}
|
| 751 |
+
}
|
| 752 |
+
}
|
| 753 |
+
}
|
| 754 |
+
|
| 755 |
+
update(currentFitness) {
|
| 756 |
+
this.pulsePhase += 0.02;
|
| 757 |
+
this.brainWavePhase += 0.015;
|
| 758 |
+
|
| 759 |
+
// Check if fitness improved
|
| 760 |
+
const fitnessImproved = currentFitness > this.lastFitness + 0.0001;
|
| 761 |
+
|
| 762 |
+
if (fitnessImproved) {
|
| 763 |
+
// Activate firing sequence
|
| 764 |
+
this.triggerFitnessImprovement(currentFitness - this.lastFitness);
|
| 765 |
+
}
|
| 766 |
+
|
| 767 |
+
this.lastFitness = currentFitness;
|
| 768 |
+
|
| 769 |
+
// Update neuron activations with brain wave effect
|
| 770 |
+
for (let layer of this.neurons) {
|
| 771 |
+
for (let neuron of layer) {
|
| 772 |
+
// Base pulsing
|
| 773 |
+
neuron.activation = 0.3 + 0.2 * Math.sin(this.pulsePhase + neuron.pulseOffset);
|
| 774 |
+
|
| 775 |
+
// Add brain wave effect
|
| 776 |
+
const waveInfluence = Math.sin(this.brainWavePhase + neuron.x * 0.01 + neuron.y * 0.01) * 0.2;
|
| 777 |
+
neuron.activation += waveInfluence;
|
| 778 |
+
|
| 779 |
+
// Firing neurons glow brighter
|
| 780 |
+
if (this.firingNeurons.has(neuron)) {
|
| 781 |
+
neuron.activation = Math.min(1, neuron.activation + 0.5);
|
| 782 |
+
}
|
| 783 |
+
}
|
| 784 |
+
}
|
| 785 |
+
|
| 786 |
+
// Update synapses
|
| 787 |
+
for (let synapse of this.synapses) {
|
| 788 |
+
if (synapse.active) {
|
| 789 |
+
synapse.pulseProgress += 0.05;
|
| 790 |
+
if (synapse.pulseProgress >= 1) {
|
| 791 |
+
synapse.active = false;
|
| 792 |
+
synapse.pulseProgress = 0;
|
| 793 |
+
// Activate the target neuron
|
| 794 |
+
this.firingNeurons.add(synapse.to);
|
| 795 |
+
setTimeout(() => this.firingNeurons.delete(synapse.to), 500);
|
| 796 |
+
}
|
| 797 |
+
}
|
| 798 |
+
}
|
| 799 |
+
}
|
| 800 |
+
|
| 801 |
+
triggerFitnessImprovement(improvement) {
|
| 802 |
+
// Fire neurons based on improvement magnitude
|
| 803 |
+
const fireCount = Math.min(20, Math.floor(improvement * 1000));
|
| 804 |
+
|
| 805 |
+
// Major milestone effects
|
| 806 |
+
if (this.lastFitness >= 0.95 && this.lastFitness < 0.95 + improvement) {
|
| 807 |
+
// 95% milestone - neural storm
|
| 808 |
+
this.triggerNeuralStorm();
|
| 809 |
+
}
|
| 810 |
+
if (this.lastFitness >= 0.99 && this.lastFitness < 0.99 + improvement) {
|
| 811 |
+
// 99% milestone - neural overload
|
| 812 |
+
this.triggerNeuralOverload();
|
| 813 |
+
}
|
| 814 |
+
|
| 815 |
+
// Start with random input neurons
|
| 816 |
+
for (let i = 0; i < fireCount; i++) {
|
| 817 |
+
const neuron = this.neurons[0][Math.floor(Math.random() * this.neurons[0].length)];
|
| 818 |
+
this.firingNeurons.add(neuron);
|
| 819 |
+
|
| 820 |
+
// Propagate through network
|
| 821 |
+
setTimeout(() => {
|
| 822 |
+
this.propagateActivation(neuron);
|
| 823 |
+
}, i * 50);
|
| 824 |
+
}
|
| 825 |
+
|
| 826 |
+
// Create synapse firing wave
|
| 827 |
+
const synapsesToFire = this.synapses.filter(s => Math.random() < improvement * 50);
|
| 828 |
+
synapsesToFire.forEach((synapse, i) => {
|
| 829 |
+
setTimeout(() => {
|
| 830 |
+
synapse.active = true;
|
| 831 |
+
synapse.pulseProgress = 0;
|
| 832 |
+
}, i * 20);
|
| 833 |
+
});
|
| 834 |
+
}
|
| 835 |
+
|
| 836 |
+
triggerNeuralStorm() {
|
| 837 |
+
// Fire all neurons in waves
|
| 838 |
+
for (let layer = 0; layer < this.neurons.length; layer++) {
|
| 839 |
+
setTimeout(() => {
|
| 840 |
+
this.neurons[layer].forEach(neuron => {
|
| 841 |
+
this.firingNeurons.add(neuron);
|
| 842 |
+
setTimeout(() => this.firingNeurons.delete(neuron), 1000);
|
| 843 |
+
});
|
| 844 |
+
}, layer * 200);
|
| 845 |
+
}
|
| 846 |
+
|
| 847 |
+
// Activate many synapses
|
| 848 |
+
this.synapses.forEach((synapse, i) => {
|
| 849 |
+
if (Math.random() < 0.7) {
|
| 850 |
+
setTimeout(() => {
|
| 851 |
+
synapse.active = true;
|
| 852 |
+
synapse.pulseProgress = 0;
|
| 853 |
+
}, Math.random() * 1000);
|
| 854 |
+
}
|
| 855 |
+
});
|
| 856 |
+
}
|
| 857 |
+
|
| 858 |
+
triggerNeuralOverload() {
|
| 859 |
+
// Extreme effect - all neurons and synapses fire rapidly
|
| 860 |
+
const overloadDuration = 3000;
|
| 861 |
+
const overloadInterval = setInterval(() => {
|
| 862 |
+
// Random neurons fire
|
| 863 |
+
for (let i = 0; i < 10; i++) {
|
| 864 |
+
const layer = Math.floor(Math.random() * this.neurons.length);
|
| 865 |
+
const index = Math.floor(Math.random() * this.neurons[layer].length);
|
| 866 |
+
const neuron = this.neurons[layer][index];
|
| 867 |
+
this.firingNeurons.add(neuron);
|
| 868 |
+
setTimeout(() => this.firingNeurons.delete(neuron), 200);
|
| 869 |
+
}
|
| 870 |
+
|
| 871 |
+
// Random synapses fire
|
| 872 |
+
for (let i = 0; i < 20; i++) {
|
| 873 |
+
const synapse = this.synapses[Math.floor(Math.random() * this.synapses.length)];
|
| 874 |
+
synapse.active = true;
|
| 875 |
+
synapse.pulseProgress = 0;
|
| 876 |
+
}
|
| 877 |
+
}, 100);
|
| 878 |
+
|
| 879 |
+
setTimeout(() => clearInterval(overloadInterval), overloadDuration);
|
| 880 |
+
}
|
| 881 |
+
|
| 882 |
+
propagateActivation(neuron) {
|
| 883 |
+
// Find synapses from this neuron
|
| 884 |
+
const outgoingSynapses = this.synapses.filter(s => s.from === neuron);
|
| 885 |
+
|
| 886 |
+
outgoingSynapses.forEach((synapse, i) => {
|
| 887 |
+
setTimeout(() => {
|
| 888 |
+
synapse.active = true;
|
| 889 |
+
synapse.pulseProgress = 0;
|
| 890 |
+
}, i * 100);
|
| 891 |
+
});
|
| 892 |
+
}
|
| 893 |
+
|
| 894 |
+
draw(ctx) {
|
| 895 |
+
ctx.save();
|
| 896 |
+
|
| 897 |
+
// Set overall neural network opacity
|
| 898 |
+
ctx.globalAlpha = 0.7;
|
| 899 |
+
|
| 900 |
+
// Draw brain scan background effect
|
| 901 |
+
this.drawBrainScan(ctx);
|
| 902 |
+
|
| 903 |
+
// Draw synapses
|
| 904 |
+
for (let synapse of this.synapses) {
|
| 905 |
+
ctx.save();
|
| 906 |
+
|
| 907 |
+
const baseAlpha = 0.2 + synapse.weight * 0.3;
|
| 908 |
+
ctx.globalAlpha = synapse.active ? Math.min(1, baseAlpha + 0.6) : baseAlpha;
|
| 909 |
+
|
| 910 |
+
// Draw synapse line
|
| 911 |
+
ctx.beginPath();
|
| 912 |
+
ctx.moveTo(synapse.from.x, synapse.from.y);
|
| 913 |
+
ctx.lineTo(synapse.to.x, synapse.to.y);
|
| 914 |
+
|
| 915 |
+
const gradient = ctx.createLinearGradient(
|
| 916 |
+
synapse.from.x, synapse.from.y,
|
| 917 |
+
synapse.to.x, synapse.to.y
|
| 918 |
+
);
|
| 919 |
+
|
| 920 |
+
if (synapse.active) {
|
| 921 |
+
// Firing synapse - animated pulse
|
| 922 |
+
const pulsePos = synapse.pulseProgress;
|
| 923 |
+
gradient.addColorStop(0, 'rgba(0, 255, 136, 0.1)');
|
| 924 |
+
gradient.addColorStop(Math.max(0, pulsePos - 0.1), 'rgba(0, 255, 136, 0.1)');
|
| 925 |
+
gradient.addColorStop(pulsePos, 'rgba(255, 255, 255, 1)');
|
| 926 |
+
gradient.addColorStop(Math.min(1, pulsePos + 0.1), 'rgba(0, 255, 136, 0.1)');
|
| 927 |
+
gradient.addColorStop(1, 'rgba(123, 63, 242, 0.1)');
|
| 928 |
+
|
| 929 |
+
ctx.lineWidth = 3;
|
| 930 |
+
ctx.shadowBlur = 20;
|
| 931 |
+
ctx.shadowColor = '#00FF88';
|
| 932 |
+
} else {
|
| 933 |
+
gradient.addColorStop(0, 'rgba(0, 170, 255, 0.2)');
|
| 934 |
+
gradient.addColorStop(1, 'rgba(123, 63, 242, 0.2)');
|
| 935 |
+
ctx.lineWidth = 1;
|
| 936 |
+
}
|
| 937 |
+
|
| 938 |
+
ctx.strokeStyle = gradient;
|
| 939 |
+
ctx.stroke();
|
| 940 |
+
ctx.restore();
|
| 941 |
+
}
|
| 942 |
+
|
| 943 |
+
// Draw neurons
|
| 944 |
+
for (let layer of this.neurons) {
|
| 945 |
+
for (let neuron of layer) {
|
| 946 |
+
ctx.save();
|
| 947 |
+
|
| 948 |
+
const isFiring = this.firingNeurons.has(neuron);
|
| 949 |
+
const isOutput = neuron.layer === this.layers.length - 1;
|
| 950 |
+
|
| 951 |
+
// Neuron glow
|
| 952 |
+
if (isFiring || isOutput) {
|
| 953 |
+
const glowGradient = ctx.createRadialGradient(
|
| 954 |
+
neuron.x, neuron.y, 0,
|
| 955 |
+
neuron.x, neuron.y, neuron.size * 3
|
| 956 |
+
);
|
| 957 |
+
glowGradient.addColorStop(0, isFiring ? 'rgba(255, 255, 255, 0.5)' : 'rgba(255, 215, 0, 0.3)');
|
| 958 |
+
glowGradient.addColorStop(0.5, isFiring ? 'rgba(0, 255, 136, 0.3)' : 'rgba(255, 215, 0, 0.1)');
|
| 959 |
+
glowGradient.addColorStop(1, 'rgba(0, 0, 0, 0)');
|
| 960 |
+
|
| 961 |
+
ctx.fillStyle = glowGradient;
|
| 962 |
+
ctx.fillRect(neuron.x - neuron.size * 3, neuron.y - neuron.size * 3,
|
| 963 |
+
neuron.size * 6, neuron.size * 6);
|
| 964 |
+
}
|
| 965 |
+
|
| 966 |
+
// Neuron body
|
| 967 |
+
ctx.beginPath();
|
| 968 |
+
ctx.arc(neuron.x, neuron.y, neuron.size, 0, Math.PI * 2);
|
| 969 |
+
|
| 970 |
+
const neuronGradient = ctx.createRadialGradient(
|
| 971 |
+
neuron.x - neuron.size/3, neuron.y - neuron.size/3, 0,
|
| 972 |
+
neuron.x, neuron.y, neuron.size
|
| 973 |
+
);
|
| 974 |
+
|
| 975 |
+
if (isOutput) {
|
| 976 |
+
// Output neuron - golden
|
| 977 |
+
neuronGradient.addColorStop(0, '#FFD700');
|
| 978 |
+
neuronGradient.addColorStop(1, '#FFA500');
|
| 979 |
+
} else if (isFiring) {
|
| 980 |
+
// Firing neuron - bright white/green
|
| 981 |
+
neuronGradient.addColorStop(0, '#FFFFFF');
|
| 982 |
+
neuronGradient.addColorStop(1, '#00FF88');
|
| 983 |
+
} else {
|
| 984 |
+
// Normal neuron - blue/purple gradient
|
| 985 |
+
const brightness = neuron.activation;
|
| 986 |
+
neuronGradient.addColorStop(0, `rgba(0, 170, 255, ${brightness})`);
|
| 987 |
+
neuronGradient.addColorStop(1, `rgba(123, 63, 242, ${brightness * 0.7})`);
|
| 988 |
+
}
|
| 989 |
+
|
| 990 |
+
ctx.fillStyle = neuronGradient;
|
| 991 |
+
ctx.fill();
|
| 992 |
+
|
| 993 |
+
// Neuron outline
|
| 994 |
+
ctx.strokeStyle = isFiring ? '#FFFFFF' : 'rgba(255, 255, 255, 0.2)';
|
| 995 |
+
ctx.lineWidth = isFiring ? 2 : 1;
|
| 996 |
+
ctx.stroke();
|
| 997 |
+
|
| 998 |
+
ctx.restore();
|
| 999 |
+
}
|
| 1000 |
+
}
|
| 1001 |
+
|
| 1002 |
+
ctx.restore();
|
| 1003 |
+
}
|
| 1004 |
+
|
| 1005 |
+
drawBrainScan(ctx) {
|
| 1006 |
+
// Brain scan effect - concentric circles emanating from center
|
| 1007 |
+
const centerX = canvas.width / 2;
|
| 1008 |
+
const centerY = canvas.height / 2;
|
| 1009 |
+
|
| 1010 |
+
ctx.save();
|
| 1011 |
+
|
| 1012 |
+
// Draw multiple scan waves
|
| 1013 |
+
for (let i = 0; i < 5; i++) {
|
| 1014 |
+
const radius = (this.brainWavePhase * 100 + i * 100) % 500;
|
| 1015 |
+
const alpha = Math.max(0, 1 - radius / 500) * 0.3;
|
| 1016 |
+
|
| 1017 |
+
ctx.beginPath();
|
| 1018 |
+
ctx.arc(centerX, centerY, radius, 0, Math.PI * 2);
|
| 1019 |
+
|
| 1020 |
+
// Create gradient stroke
|
| 1021 |
+
const gradient = ctx.createRadialGradient(centerX, centerY, radius - 10, centerX, centerY, radius + 10);
|
| 1022 |
+
gradient.addColorStop(0, `rgba(0, 255, 136, 0)`);
|
| 1023 |
+
gradient.addColorStop(0.5, `rgba(0, 255, 136, ${alpha})`);
|
| 1024 |
+
gradient.addColorStop(1, `rgba(123, 63, 242, 0)`);
|
| 1025 |
+
|
| 1026 |
+
ctx.strokeStyle = gradient;
|
| 1027 |
+
ctx.lineWidth = 3;
|
| 1028 |
+
ctx.stroke();
|
| 1029 |
+
}
|
| 1030 |
+
|
| 1031 |
+
// Add "thinking" pulses randomly
|
| 1032 |
+
if (Math.random() < 0.05) {
|
| 1033 |
+
// Random thinking pulse
|
| 1034 |
+
const pulseX = centerX + (Math.random() - 0.5) * 300;
|
| 1035 |
+
const pulseY = centerY + (Math.random() - 0.5) * 200;
|
| 1036 |
+
|
| 1037 |
+
const pulseGradient = ctx.createRadialGradient(pulseX, pulseY, 0, pulseX, pulseY, 50);
|
| 1038 |
+
pulseGradient.addColorStop(0, 'rgba(255, 255, 255, 0.4)');
|
| 1039 |
+
pulseGradient.addColorStop(0.5, 'rgba(0, 170, 255, 0.2)');
|
| 1040 |
+
pulseGradient.addColorStop(1, 'rgba(0, 0, 0, 0)');
|
| 1041 |
+
|
| 1042 |
+
ctx.fillStyle = pulseGradient;
|
| 1043 |
+
ctx.fillRect(pulseX - 50, pulseY - 50, 100, 100);
|
| 1044 |
+
}
|
| 1045 |
+
|
| 1046 |
+
ctx.restore();
|
| 1047 |
+
}
|
| 1048 |
+
}
|
| 1049 |
+
|
| 1050 |
+
// Initialize neural network
|
| 1051 |
+
const neuralNetwork = new NeuralNetwork();
|
| 1052 |
+
|
| 1053 |
// Mouse interaction
|
| 1054 |
let mouseX = canvas.width / 2;
|
| 1055 |
let mouseY = canvas.height / 2;
|
|
|
|
| 1590 |
gr.Markdown("""
|
| 1591 |
# π Evolution Aurora - AI Learning to Code
|
| 1592 |
|
| 1593 |
+
Watch as AI evolves code in real-time with neural network visualization! See synapses fire and neurons activate as the AI discovers improvements. The neural network shows the AI's "thoughts" as it learns.
|
| 1594 |
""")
|
| 1595 |
gr.HTML('''
|
| 1596 |
<div style="text-align: right; padding: 10px;">
|