--- license: apache-2.0 base_model: othrif/wav2vec2-large-xlsr-arabic tags: - generated_from_trainer metrics: - accuracy - precision - f1 model-index: - name: sentiment_analysis_model results: [] --- # sentiment_analysis_model This model is a fine-tuned version of [othrif/wav2vec2-large-xlsr-arabic](https://huggingface.co/othrif/wav2vec2-large-xlsr-arabic) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3312 - Accuracy: 0.7107 - Precision: 0.1777 - F1: 0.2077 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:| | No log | 1.0 | 4 | 1.3312 | 0.7107 | 0.1777 | 0.2077 | | No log | 2.0 | 8 | 1.2993 | 0.7107 | 0.1777 | 0.2077 | | 1.3368 | 3.0 | 12 | 1.2879 | 0.7107 | 0.1777 | 0.2077 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu118 - Datasets 2.14.5 - Tokenizers 0.15.2