--- language: "en" license: "apache-2.0" datasets: - "silentone0725/ai-human-text-detection-v1" metrics: - "accuracy" - "f1" model-index: - name: "Text Detector Model v2" results: - task: type: "text-classification" name: "Human vs AI Text Detection" dataset: name: "AI vs Human Combined Dataset" type: "silentone0725/ai-human-text-detection-v1" metrics: - name: "Accuracy" type: "accuracy" value: 0.9967 - name: "F1" type: "f1" value: 0.9967 tags: - "ai-detection" - "text-classification" - "distilbert" - "human-vs-ai" - "nlp" - "huggingface" --- # ๐Ÿง  Text Detector Model v2 โ€” Fine-Tuned AI vs Human Text Classifier This model (`silentone0725/text-detector-model-v2`) is a **fine-tuned text classifier** that distinguishes between **human-written** and **AI-generated** text in English. It is trained on a large combined dataset of diverse genres and writing styles, built to generalize well on modern large language model (LLM) outputs. --- ## ๐Ÿงฉ Model Lineage | Stage | Model | Description | |--------|--------|-------------| | **v2** | `silentone0725/text-detector-model-v2` | Fine-tuned with stronger regularization, early stopping, and expanded dataset. | | **Base** | `silentone0725/text-detector-model` | Your prior fine-tuned model on GPT-4 & human text dataset. | | **Backbone** | `distilbert-base-uncased` | Original pretrained transformer from Hugging Face. | --- ## ๐Ÿ“Š Model Details | Property | Description | |-----------|-------------| | **Task** | Binary Classification โ€” *Human (0)* vs *AI (1)* | | **Languages** | English | | **Dataset** | [`silentone0725/ai-human-text-detection-v1`](https://huggingface.co/datasets/silentone0725/ai-human-text-detection-v1) | | **Split Ratio** | 70% Train / 15% Validation / 15% Test | | **Regularization** | Dropout = 0.3, Weight Decay = 0.2, Early Stopping = 2 | | **Precision** | Mixed FP16 | | **Optimizer** | AdamW | --- ## ๐Ÿงช Evaluation Metrics | Metric | Validation | Test | |:--|:--:|:--:| | Accuracy | 99.67% | 99.67% | | F1-Score | 0.9967 | 0.9967 | | Eval Loss | 0.0156 | 0.0156 | --- ## ๐Ÿง  Training Configuration | Hyperparameter | Value | |----------------|--------| | Learning Rate | 2e-5 | | Batch Size | 8 | | Epochs | 6 | | Weight Decay | 0.2 | | Warmup Ratio | 0.1 | | Dropout | 0.3 | | Max Grad Norm | 1.0 | | Gradient Accumulation | 2 | | Early Stopping Patience | 2 | | Mixed Precision | FP16 | --- ## ๐Ÿš€ Usage Example ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch model_name = "silentone0725/text-detector-model-v2" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) text = "This paragraph was likely written by a machine learning model." inputs = tokenizer(text, return_tensors="pt") outputs = model(**inputs) pred = torch.argmax(outputs.logits, dim=1).item() print("๐Ÿง Human" if pred == 0 else "๐Ÿค– AI") ``` --- ## ๐Ÿ“ˆ W&B Experiment Tracking Training metrics were logged using **Weights & Biases (W&B)**. ๐Ÿ“Š [View Training Dashboard โ†’](https://wandb.ai/silentone0725-manipal/huggingface) --- ## ๐Ÿ“š Citation If you use this model, please cite it as: ``` @misc{silentone0725_text_detector_v2_2025, author = {Thakuria, Daksh}, title = {Text Detector Model v2 โ€” Fine-Tuned DistilBERT for AI vs Human Text Detection}, year = {2025}, howpublished = {\url{https://huggingface.co/silentone0725/text-detector-model-v2}}, } ``` --- ## โš ๏ธ Limitations - Trained only on **English** data. - May overestimate AI probability on mixed or partially edited text. - Should not be used for moderation or legal decisions without human verification. --- ## โค๏ธ Credits - **Developer:** Daksh Thakuria (`@silentone0725`) - **Base Model:** [`silentone0725/text-detector-model`](https://huggingface.co/silentone0725/text-detector-model) - **Backbone:** [`distilbert-base-uncased`](https://huggingface.co/distilbert-base-uncased) - **Frameworks:** ๐Ÿค— Transformers, PyTorch, W&B --- > ๐Ÿ“ฆ *Last updated:* November 2025 > ๐Ÿš€ *Developed and fine-tuned in Google Colab with W&B tracking*