--- library_name: transformers license: mit base_model: microsoft/speecht5_tts tags: - generated_from_trainer model-index: - name: senga-nt-asr-inferred-force-aligned-speecht5-LUK results: [] --- # senga-nt-asr-inferred-force-aligned-speecht5-LUK This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5270 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 3407 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 300.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:--------:|:----:|:---------------:| | 0.5256 | 55.5797 | 1000 | 0.5491 | | 0.4805 | 111.1159 | 2000 | 0.5235 | | 0.4692 | 166.6957 | 3000 | 0.5226 | | 0.445 | 222.2319 | 4000 | 0.5257 | | 0.4348 | 277.8116 | 5000 | 0.5270 | ### Framework versions - Transformers 4.57.1 - Pytorch 2.8.0+cu128 - Datasets 4.2.0 - Tokenizers 0.22.1