--- library_name: transformers license: cc-by-nc-sa-4.0 language: - en base_model: - ryota-komatsu/bigvgan --- # Model Card for Model ID ## Model Details ### Model Description - **Model type:** Flow matching-based Diffusion Transformer with a BigVGAN vocoder ### Model Sources - **Repository:** [Code](https://github.com/ryota-komatsu/speaker_disentangled_hubert) - **Demo:** [Project page](https://ryota-komatsu.github.io/speaker_disentangled_hubert) ## How to Get Started with the Model Use the code below to get started with the model. ```sh git clone https://github.com/ryota-komatsu/speaker_disentangled_hubert.git cd speaker_disentangled_hubert sudo apt install git-lfs # for UTMOS conda create -y -n py310 -c pytorch -c nvidia -c conda-forge python=3.10.18 pip=24.0 faiss-gpu=1.11.0 conda activate py310 pip install -r requirements/requirements.txt sh scripts/setup.sh ``` ```python import torchaudio from src.flow_matching import FlowMatchingWithBigVGan from src.s5hubert import S5HubertForSyllableDiscovery wav_path = "/path/to/wav" # download pretrained models from hugging face hub encoder = S5HubertForSyllableDiscovery.from_pretrained("ryota-komatsu/s5-hubert", device_map="cuda") decoder = FlowMatchingWithBigVGan.from_pretrained("ryota-komatsu/s5-hubert-decoder", device_map="cuda") # load a waveform waveform, sr = torchaudio.load(wav_path) waveform = torchaudio.functional.resample(waveform, sr, 16000) # encode a waveform into syllabic units outputs = encoder(waveform.to(encoder.device)) # syllabic units units = outputs[0]["units"] # [3950, 67, ..., 503] units = units.unsqueeze(0) # unit-to-speech synthesis audio_values = decoder(units) ``` ## Training Hyperparameters - **Training regime:** fp16 mixed precision