# app.py from transformers import AutoModelForCausalLM, AutoTokenizer from PIL import Image import torch MODEL_ID = "unsloth/qwen2.5-vl-7b-instruct" tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained( MODEL_ID, torch_dtype=torch.float16, device_map="auto", trust_remote_code=True ) def infer(request): messages = request.get("messages", []) images = request.get("images", []) inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to(model.device) outputs = model.generate(**inputs, max_new_tokens=512) return {"text": tokenizer.decode(outputs[0])}