ramblingpolymath commited on
Commit
8d55577
·
verified ·
1 Parent(s): 50a010c

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +326 -0
README.md ADDED
@@ -0,0 +1,326 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ pipeline_tag: text-generation
5
+ base_model: Qwen/Qwen3-30B-A3B-Instruct-2507
6
+ tags:
7
+ - quantized
8
+ - w4a16
9
+ - llm-compressor
10
+ ---
11
+ ```
12
+ ██╗ ██╗██╗ ██╗ █████╗ ██╗ ██████╗
13
+ ██║ ██║██║ ██║██╔══██╗███║██╔════╝
14
+ ██║ █╗ ██║███████║███████║╚██║███████╗
15
+ ██║███╗██║╚════██║██╔══██║ ██║██╔═══██╗
16
+ ╚███╔███╔╝ ██║██║ ██║ ██║╚██████╔╝
17
+ ╚══╝╚══╝ ╚═╝╚═╝ ╚═╝ ╚═╝ ╚═════╝
18
+ 🗜️ COMPRESSED & OPTIMIZED 🚀
19
+ ```
20
+
21
+ # Qwen3-30B-A3B-Instruct-2507 - W4A16 Quantized
22
+
23
+ W4A16 (4-bit weights, 16-bit activations) quantized version of Qwen/Qwen3-30B-A3B-Instruct-2507 using **LLM-Compressor**.
24
+
25
+ - 🗜️ **Memory**: ~75% reduction vs FP16
26
+ - 🚀 **Speed**: Faster inference on supported hardware
27
+ - 🔗 **Original model**: [Qwen/Qwen3-30B-A3B-Instruct-2507](https://huggingface.co/Qwen/Qwen3-30B-A3B-Instruct-2507)
28
+
29
+ <details>
30
+ <summary>Click to view compression code</summary>
31
+
32
+ ```python
33
+ from datasets import load_dataset
34
+ from llmcompressor.modifiers.quantization import GPTQModifier
35
+ from llmcompressor import oneshot
36
+ from transformers import AutoModelForCausalLM, AutoTokenizer
37
+
38
+ # Load model with memory management
39
+ model_stub = "Qwen/Qwen3-30B-A3B-Instruct-2507"
40
+ model_name = model_stub.split("/")[-1]
41
+
42
+ # Use conservative parameters
43
+ num_samples = 1024
44
+ max_seq_len = 8192
45
+
46
+ print(f"Loading model: {model_stub}")
47
+ model = AutoModelForCausalLM.from_pretrained(
48
+ model_stub,
49
+ torch_dtype="auto",
50
+ device_map="auto",
51
+ low_cpu_mem_usage=True,
52
+ max_memory={0: "44GB", "cpu": "55GB"},
53
+ )
54
+
55
+ print("Loading tokenizer...")
56
+ tokenizer = AutoTokenizer.from_pretrained(model_stub)
57
+
58
+ print("Loading calibration dataset...")
59
+ def preprocess_fn(example):
60
+ return {"text": tokenizer.apply_chat_template(
61
+ example["messages"],
62
+ add_generation_prompt=False,
63
+ tokenize=False
64
+ )}
65
+
66
+ # Load dataset and preprocess
67
+ ds = load_dataset("neuralmagic/LLM_compression_calibration", split=f"train[:{num_samples}]")
68
+ ds = ds.map(preprocess_fn)
69
+ ds = ds.shuffle(seed=42)
70
+
71
+ # Tokenize the dataset
72
+ def tokenize(sample):
73
+ return tokenizer(
74
+ sample["text"],
75
+ padding=False,
76
+ max_length=max_seq_len,
77
+ truncation=True,
78
+ add_special_tokens=False,
79
+ )
80
+
81
+ print("Tokenizing dataset...")
82
+ ds = ds.map(tokenize, remove_columns=ds.column_names)
83
+
84
+ # Configure GPTQ with proper Qwen3 MoE ignore patterns
85
+ print("Configuring quantization recipe...")
86
+ recipe = GPTQModifier(
87
+ targets="Linear",
88
+ scheme="W4A16",
89
+ ignore=["lm_head", "re:.*mlp.gate$"], # Qwen3 MoE pattern (no shared experts)
90
+ dampening_frac=0.01,
91
+ # Remove sequential_targets - let llmcompressor handle automatically
92
+ )
93
+
94
+ # Apply quantization
95
+ print("Starting quantization process...")
96
+ oneshot(
97
+ model=model,
98
+ dataset=ds,
99
+ recipe=recipe,
100
+ max_seq_length=max_seq_len,
101
+ num_calibration_samples=num_samples,
102
+ )
103
+
104
+ # Save quantized model
105
+ save_path = model_name + "-gptq-w4a16"
106
+ print(f"Saving model to: {save_path}")
107
+ model.save_pretrained(save_path, save_compressed=True)
108
+ tokenizer.save_pretrained(save_path)
109
+
110
+ print("Quantization completed successfully!")
111
+ ```
112
+
113
+ </details>
114
+
115
+ ---
116
+
117
+ ## 📄 Original Model README
118
+
119
+ # Qwen3-30B-A3B-Instruct-2507
120
+ <a href="https://chat.qwen.ai/?model=Qwen3-30B-A3B-2507" target="_blank" style="margin: 2px;">
121
+ <img alt="Chat" src="https://img.shields.io/badge/%F0%9F%92%9C%EF%B8%8F%20Qwen%20Chat%20-536af5" style="display: inline-block; vertical-align: middle;"/>
122
+ </a>
123
+
124
+ ## Highlights
125
+
126
+ We introduce the updated version of the **Qwen3-30B-A3B non-thinking mode**, named **Qwen3-30B-A3B-Instruct-2507**, featuring the following key enhancements:
127
+
128
+ - **Significant improvements** in general capabilities, including **instruction following, logical reasoning, text comprehension, mathematics, science, coding and tool usage**.
129
+ - **Substantial gains** in long-tail knowledge coverage across **multiple languages**.
130
+ - **Markedly better alignment** with user preferences in **subjective and open-ended tasks**, enabling more helpful responses and higher-quality text generation.
131
+ - **Enhanced capabilities** in **256K long-context understanding**.
132
+
133
+ ![image/jpeg](https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen3-2507/Qwen3-30B-A3B-Instruct-2507.jpeg)
134
+
135
+ ## Model Overview
136
+
137
+ **Qwen3-30B-A3B-Instruct-2507** has the following features:
138
+ - Type: Causal Language Models
139
+ - Training Stage: Pretraining & Post-training
140
+ - Number of Parameters: 30.5B in total and 3.3B activated
141
+ - Number of Paramaters (Non-Embedding): 29.9B
142
+ - Number of Layers: 48
143
+ - Number of Attention Heads (GQA): 32 for Q and 4 for KV
144
+ - Number of Experts: 128
145
+ - Number of Activated Experts: 8
146
+ - Context Length: **262,144 natively**.
147
+
148
+ **NOTE: This model supports only non-thinking mode and does not generate ``<think></think>`` blocks in its output. Meanwhile, specifying `enable_thinking=False` is no longer required.**
149
+
150
+ For more details, including benchmark evaluation, hardware requirements, and inference performance, please refer to our [blog](https://qwenlm.github.io/blog/qwen3/), [GitHub](https://github.com/QwenLM/Qwen3), and [Documentation](https://qwen.readthedocs.io/en/latest/).
151
+
152
+
153
+ ## Performance
154
+
155
+ | | Deepseek-V3-0324 | GPT-4o-0327 | Gemini-2.5-Flash Non-Thinking | Qwen3-235B-A22B Non-Thinking | Qwen3-30B-A3B Non-Thinking | Qwen3-30B-A3B-Instruct-2507 |
156
+ |--- | --- | --- | --- | --- | --- | --- |
157
+ | **Knowledge** | | | | | | |
158
+ | MMLU-Pro | **81.2** | 79.8 | 81.1 | 75.2 | 69.1 | 78.4 |
159
+ | MMLU-Redux | 90.4 | **91.3** | 90.6 | 89.2 | 84.1 | 89.3 |
160
+ | GPQA | 68.4 | 66.9 | **78.3** | 62.9 | 54.8 | 70.4 |
161
+ | SuperGPQA | **57.3** | 51.0 | 54.6 | 48.2 | 42.2 | 53.4 |
162
+ | **Reasoning** | | | | | | |
163
+ | AIME25 | 46.6 | 26.7 | **61.6** | 24.7 | 21.6 | 61.3 |
164
+ | HMMT25 | 27.5 | 7.9 | **45.8** | 10.0 | 12.0 | 43.0 |
165
+ | ZebraLogic | 83.4 | 52.6 | 57.9 | 37.7 | 33.2 | **90.0** |
166
+ | LiveBench 20241125 | 66.9 | 63.7 | **69.1** | 62.5 | 59.4 | 69.0 |
167
+ | **Coding** | | | | | | |
168
+ | LiveCodeBench v6 (25.02-25.05) | **45.2** | 35.8 | 40.1 | 32.9 | 29.0 | 43.2 |
169
+ | MultiPL-E | 82.2 | 82.7 | 77.7 | 79.3 | 74.6 | **83.8** |
170
+ | Aider-Polyglot | 55.1 | 45.3 | 44.0 | **59.6** | 24.4 | 35.6 |
171
+ | **Alignment** | | | | | | |
172
+ | IFEval | 82.3 | 83.9 | 84.3 | 83.2 | 83.7 | **84.7** |
173
+ | Arena-Hard v2* | 45.6 | 61.9 | 58.3 | 52.0 | 24.8 | **69.0** |
174
+ | Creative Writing v3 | 81.6 | 84.9 | 84.6 | 80.4 | 68.1 | **86.0** |
175
+ | WritingBench | 74.5 | 75.5 | 80.5 | 77.0 | 72.2 | **85.5** |
176
+ | **Agent** | | | | | | |
177
+ | BFCL-v3 | 64.7 | 66.5 | 66.1 | **68.0** | 58.6 | 65.1 |
178
+ | TAU1-Retail | 49.6 | 60.3# | **65.2** | 65.2 | 38.3 | 59.1 |
179
+ | TAU1-Airline | 32.0 | 42.8# | **48.0** | 32.0 | 18.0 | 40.0 |
180
+ | TAU2-Retail | **71.1** | 66.7# | 64.3 | 64.9 | 31.6 | 57.0 |
181
+ | TAU2-Airline | 36.0 | 42.0# | **42.5** | 36.0 | 18.0 | 38.0 |
182
+ | TAU2-Telecom | **34.0** | 29.8# | 16.9 | 24.6 | 18.4 | 12.3 |
183
+ | **Multilingualism** | | | | | | |
184
+ | MultiIF | 66.5 | 70.4 | 69.4 | 70.2 | **70.8** | 67.9 |
185
+ | MMLU-ProX | 75.8 | 76.2 | **78.3** | 73.2 | 65.1 | 72.0 |
186
+ | INCLUDE | 80.1 | 82.1 | **83.8** | 75.6 | 67.8 | 71.9 |
187
+ | PolyMATH | 32.2 | 25.5 | 41.9 | 27.0 | 23.3 | **43.1** |
188
+
189
+ *: For reproducibility, we report the win rates evaluated by GPT-4.1.
190
+
191
+ \#: Results were generated using GPT-4o-20241120, as access to the native function calling API of GPT-4o-0327 was unavailable.
192
+
193
+
194
+ ## Quickstart
195
+
196
+ The code of Qwen3-MoE has been in the latest Hugging Face `transformers` and we advise you to use the latest version of `transformers`.
197
+
198
+ With `transformers<4.51.0`, you will encounter the following error:
199
+ ```
200
+ KeyError: 'qwen3_moe'
201
+ ```
202
+
203
+ The following contains a code snippet illustrating how to use the model generate content based on given inputs.
204
+ ```python
205
+ from transformers import AutoModelForCausalLM, AutoTokenizer
206
+
207
+ model_name = "Qwen/Qwen3-30B-A3B-Instruct-2507"
208
+
209
+ # load the tokenizer and the model
210
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
211
+ model = AutoModelForCausalLM.from_pretrained(
212
+ model_name,
213
+ torch_dtype="auto",
214
+ device_map="auto"
215
+ )
216
+
217
+ # prepare the model input
218
+ prompt = "Give me a short introduction to large language model."
219
+ messages = [
220
+ {"role": "user", "content": prompt}
221
+ ]
222
+ text = tokenizer.apply_chat_template(
223
+ messages,
224
+ tokenize=False,
225
+ add_generation_prompt=True,
226
+ )
227
+ model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
228
+
229
+ # conduct text completion
230
+ generated_ids = model.generate(
231
+ **model_inputs,
232
+ max_new_tokens=16384
233
+ )
234
+ output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
235
+
236
+ content = tokenizer.decode(output_ids, skip_special_tokens=True)
237
+
238
+ print("content:", content)
239
+ ```
240
+
241
+ For deployment, you can use `sglang>=0.4.6.post1` or `vllm>=0.8.5` or to create an OpenAI-compatible API endpoint:
242
+ - SGLang:
243
+ ```shell
244
+ python -m sglang.launch_server --model-path Qwen/Qwen3-30B-A3B-Instruct-2507 --context-length 262144
245
+ ```
246
+ - vLLM:
247
+ ```shell
248
+ vllm serve Qwen/Qwen3-30B-A3B-Instruct-2507 --max-model-len 262144
249
+ ```
250
+
251
+ **Note: If you encounter out-of-memory (OOM) issues, consider reducing the context length to a shorter value, such as `32,768`.**
252
+
253
+ For local use, applications such as Ollama, LMStudio, MLX-LM, llama.cpp, and KTransformers have also supported Qwen3.
254
+
255
+ ## Agentic Use
256
+
257
+ Qwen3 excels in tool calling capabilities. We recommend using [Qwen-Agent](https://github.com/QwenLM/Qwen-Agent) to make the best use of agentic ability of Qwen3. Qwen-Agent encapsulates tool-calling templates and tool-calling parsers internally, greatly reducing coding complexity.
258
+
259
+ To define the available tools, you can use the MCP configuration file, use the integrated tool of Qwen-Agent, or integrate other tools by yourself.
260
+ ```python
261
+ from qwen_agent.agents import Assistant
262
+
263
+ # Define LLM
264
+ llm_cfg = {
265
+ 'model': 'Qwen3-30B-A3B-Instruct-2507',
266
+
267
+ # Use a custom endpoint compatible with OpenAI API:
268
+ 'model_server': 'http://localhost:8000/v1', # api_base
269
+ 'api_key': 'EMPTY',
270
+ }
271
+
272
+ # Define Tools
273
+ tools = [
274
+ {'mcpServers': { # You can specify the MCP configuration file
275
+ 'time': {
276
+ 'command': 'uvx',
277
+ 'args': ['mcp-server-time', '--local-timezone=Asia/Shanghai']
278
+ },
279
+ "fetch": {
280
+ "command": "uvx",
281
+ "args": ["mcp-server-fetch"]
282
+ }
283
+ }
284
+ },
285
+ 'code_interpreter', # Built-in tools
286
+ ]
287
+
288
+ # Define Agent
289
+ bot = Assistant(llm=llm_cfg, function_list=tools)
290
+
291
+ # Streaming generation
292
+ messages = [{'role': 'user', 'content': 'https://qwenlm.github.io/blog/ Introduce the latest developments of Qwen'}]
293
+ for responses in bot.run(messages=messages):
294
+ pass
295
+ print(responses)
296
+ ```
297
+
298
+ ## Best Practices
299
+
300
+ To achieve optimal performance, we recommend the following settings:
301
+
302
+ 1. **Sampling Parameters**:
303
+ - We suggest using `Temperature=0.7`, `TopP=0.8`, `TopK=20`, and `MinP=0`.
304
+ - For supported frameworks, you can adjust the `presence_penalty` parameter between 0 and 2 to reduce endless repetitions. However, using a higher value may occasionally result in language mixing and a slight decrease in model performance.
305
+
306
+ 2. **Adequate Output Length**: We recommend using an output length of 16,384 tokens for most queries, which is adequate for instruct models.
307
+
308
+ 3. **Standardize Output Format**: We recommend using prompts to standardize model outputs when benchmarking.
309
+ - **Math Problems**: Include "Please reason step by step, and put your final answer within \boxed{}." in the prompt.
310
+ - **Multiple-Choice Questions**: Add the following JSON structure to the prompt to standardize responses: "Please show your choice in the `answer` field with only the choice letter, e.g., `"answer": "C"`."
311
+
312
+ ### Citation
313
+
314
+ If you find our work helpful, feel free to give us a cite.
315
+
316
+ ```
317
+ @misc{qwen3technicalreport,
318
+ title={Qwen3 Technical Report},
319
+ author={Qwen Team},
320
+ year={2025},
321
+ eprint={2505.09388},
322
+ archivePrefix={arXiv},
323
+ primaryClass={cs.CL},
324
+ url={https://arxiv.org/abs/2505.09388},
325
+ }
326
+ ```