Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
|
@@ -1,202 +1,307 @@
|
|
| 1 |
---
|
| 2 |
-
library_name:
|
|
|
|
| 3 |
tags:
|
| 4 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
---
|
| 6 |
|
| 7 |
-
#
|
| 8 |
|
| 9 |
-
|
| 10 |
|
|
|
|
| 11 |
|
|
|
|
| 12 |
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
### Model Description
|
| 16 |
|
| 17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
- **Developed by:** [More Information Needed]
|
| 22 |
-
- **Funded by [optional]:** [More Information Needed]
|
| 23 |
-
- **Shared by [optional]:** [More Information Needed]
|
| 24 |
-
- **Model type:** [More Information Needed]
|
| 25 |
-
- **Language(s) (NLP):** [More Information Needed]
|
| 26 |
-
- **License:** [More Information Needed]
|
| 27 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
| 28 |
|
| 29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
-
|
| 32 |
|
| 33 |
-
- **
|
| 34 |
-
- **
|
| 35 |
-
- **
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
## Uses
|
| 38 |
|
| 39 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
| 40 |
-
|
| 41 |
### Direct Use
|
| 42 |
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
## How to Get Started
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
|
| 77 |
## Training Details
|
| 78 |
|
| 79 |
### Training Data
|
| 80 |
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
[More Information Needed]
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
#### Training Hyperparameters
|
| 95 |
-
|
| 96 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
| 97 |
|
| 98 |
-
|
| 99 |
|
| 100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
|
| 102 |
-
|
| 103 |
|
| 104 |
-
|
|
|
|
|
|
|
| 105 |
|
| 106 |
-
|
| 107 |
|
| 108 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 109 |
|
| 110 |
-
|
| 111 |
|
| 112 |
-
|
| 113 |
|
| 114 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 115 |
|
| 116 |
-
|
|
|
|
|
|
|
|
|
|
| 117 |
|
| 118 |
-
|
| 119 |
|
| 120 |
-
|
| 121 |
|
| 122 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
[More Information Needed]
|
| 127 |
-
|
| 128 |
-
### Results
|
| 129 |
-
|
| 130 |
-
[More Information Needed]
|
| 131 |
-
|
| 132 |
-
#### Summary
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
## Model Examination [optional]
|
| 137 |
-
|
| 138 |
-
<!-- Relevant interpretability work for the model goes here -->
|
| 139 |
|
| 140 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 141 |
|
| 142 |
## Environmental Impact
|
| 143 |
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
Carbon
|
| 147 |
-
|
| 148 |
-
- **Hardware Type:** [More Information Needed]
|
| 149 |
-
- **Hours used:** [More Information Needed]
|
| 150 |
-
- **Cloud Provider:** [More Information Needed]
|
| 151 |
-
- **Compute Region:** [More Information Needed]
|
| 152 |
-
- **Carbon Emitted:** [More Information Needed]
|
| 153 |
-
|
| 154 |
-
## Technical Specifications [optional]
|
| 155 |
-
|
| 156 |
-
### Model Architecture and Objective
|
| 157 |
-
|
| 158 |
-
[More Information Needed]
|
| 159 |
-
|
| 160 |
-
### Compute Infrastructure
|
| 161 |
|
| 162 |
-
|
| 163 |
|
| 164 |
-
|
| 165 |
|
| 166 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 167 |
|
| 168 |
-
|
| 169 |
|
| 170 |
-
|
|
|
|
|
|
|
| 171 |
|
| 172 |
-
##
|
| 173 |
-
|
| 174 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 175 |
-
|
| 176 |
-
**BibTeX:**
|
| 177 |
-
|
| 178 |
-
[More Information Needed]
|
| 179 |
-
|
| 180 |
-
**APA:**
|
| 181 |
-
|
| 182 |
-
[More Information Needed]
|
| 183 |
-
|
| 184 |
-
## Glossary [optional]
|
| 185 |
-
|
| 186 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 187 |
-
|
| 188 |
-
[More Information Needed]
|
| 189 |
-
|
| 190 |
-
## More Information [optional]
|
| 191 |
-
|
| 192 |
-
[More Information Needed]
|
| 193 |
-
|
| 194 |
-
## Model Card Authors [optional]
|
| 195 |
|
| 196 |
-
|
|
|
|
|
|
|
| 197 |
|
| 198 |
-
##
|
| 199 |
|
| 200 |
-
|
|
|
|
|
|
|
|
|
|
| 201 |
|
|
|
|
| 202 |
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
library_name: peft
|
| 3 |
+
base_model: mistralai/Mistral-7B-Instruct-v0.1
|
| 4 |
tags:
|
| 5 |
+
- legal
|
| 6 |
+
- legal-text
|
| 7 |
+
- passive-to-active
|
| 8 |
+
- voice-transformation
|
| 9 |
+
- legal-nlp
|
| 10 |
+
- text-simplification
|
| 11 |
+
- legal-documents
|
| 12 |
+
- sentence-transformation
|
| 13 |
+
- lora
|
| 14 |
+
- qlora
|
| 15 |
+
- peft
|
| 16 |
+
- mistral
|
| 17 |
+
- natural-language-processing
|
| 18 |
+
- legal-language
|
| 19 |
+
license: apache-2.0
|
| 20 |
+
language:
|
| 21 |
+
- en
|
| 22 |
+
pipeline_tag: text-generation
|
| 23 |
---
|
| 24 |
|
| 25 |
+
# legal-passive-to-active-mistral-7b
|
| 26 |
|
| 27 |
+
**RECOMMENDED MODEL** - An advanced LoRA fine-tuned model for transforming legal text from passive voice to active voice, built on Mistral-7B-Instruct. This model demonstrates superior performance in simplifying complex legal language while maintaining semantic accuracy and legal precision.
|
| 28 |
|
| 29 |
+
## Model Description
|
| 30 |
|
| 31 |
+
This is the **enhanced model** for legal passive-to-active transformation. Built on Mistral-7B-Instruct-v0.1, it outperforms comparable models on legal voice transformation tasks. The model was fine-tuned on a curated dataset of 319 legal sentences from authoritative sources including UN documents, GDPR, Fair Work Act, and insurance regulations.
|
| 32 |
|
| 33 |
+
### Key Features
|
|
|
|
|
|
|
| 34 |
|
| 35 |
+
- **Superior Performance**: ~15% improvement over base model in human evaluation
|
| 36 |
+
- **Legal Text Simplification**: Converts passive voice to active voice in legal documents
|
| 37 |
+
- **Domain-Specific**: Fine-tuned on authentic legal text from multiple jurisdictions
|
| 38 |
+
- **Efficient Training**: Uses QLoRA for memory-efficient fine-tuning
|
| 39 |
+
- **Semantic Preservation**: Maintains legal meaning while simplifying sentence structure
|
| 40 |
+
- **Accessibility**: Makes legal documents more readable and accessible
|
| 41 |
|
| 42 |
+
## Model Details
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
|
| 44 |
+
- **Developed by**: Rafi Al Attrach
|
| 45 |
+
- **Model type**: LoRA fine-tuned Mistral (Enhanced)
|
| 46 |
+
- **Language(s)**: English
|
| 47 |
+
- **License**: Apache 2.0
|
| 48 |
+
- **Finetuned from**: [mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1)
|
| 49 |
+
- **Training method**: QLoRA (4-bit quantization + LoRA)
|
| 50 |
+
- **Research Focus**: Legal text simplification and accessibility (2024)
|
| 51 |
|
| 52 |
+
### Technical Specifications
|
| 53 |
|
| 54 |
+
- **Base Model**: Mistral-7B-Instruct-v0.1
|
| 55 |
+
- **LoRA Rank**: 64
|
| 56 |
+
- **Training Samples**: 319 legal sentences
|
| 57 |
+
- **Data Sources**: UN legal documents, GDPR, Fair Work Act, Insurance regulations
|
| 58 |
+
- **Evaluation**: BERTScore metrics and human evaluation
|
| 59 |
+
- **Performance**: ~15% improvement over base model in human evaluation
|
| 60 |
|
| 61 |
## Uses
|
| 62 |
|
|
|
|
|
|
|
| 63 |
### Direct Use
|
| 64 |
|
| 65 |
+
This model is designed for:
|
| 66 |
+
- **Legal document simplification**: Converting passive legal text to active voice
|
| 67 |
+
- **Accessibility improvement**: Making legal documents more readable
|
| 68 |
+
- **Legal writing assistance**: Helping legal professionals write clearer documents
|
| 69 |
+
- **Educational purposes**: Teaching legal language transformation
|
| 70 |
+
- **Document processing**: Batch processing of legal texts
|
| 71 |
+
- **Regulatory compliance**: Simplifying complex regulatory language
|
| 72 |
+
|
| 73 |
+
### Example Use Cases
|
| 74 |
+
|
| 75 |
+
```python
|
| 76 |
+
# Transform a legal passive sentence to active voice
|
| 77 |
+
passive_sentence = "The contract shall be executed by both parties within 30 days."
|
| 78 |
+
# Model output: "Both parties shall execute the contract within 30 days."
|
| 79 |
+
```
|
| 80 |
+
|
| 81 |
+
```python
|
| 82 |
+
# Simplify GDPR text
|
| 83 |
+
passive_sentence = "Personal data may be processed by the controller for legitimate interests."
|
| 84 |
+
# Model output: "The controller may process personal data for legitimate interests."
|
| 85 |
+
```
|
| 86 |
+
|
| 87 |
+
```python
|
| 88 |
+
# Transform UN legal text
|
| 89 |
+
passive_sentence = "All necessary measures shall be taken by Member States to ensure compliance."
|
| 90 |
+
# Model output: "Member States shall take all necessary measures to ensure compliance."
|
| 91 |
+
```
|
| 92 |
+
|
| 93 |
+
## How to Get Started
|
| 94 |
+
|
| 95 |
+
### Installation
|
| 96 |
+
|
| 97 |
+
```bash
|
| 98 |
+
pip install transformers torch peft accelerate bitsandbytes
|
| 99 |
+
```
|
| 100 |
+
|
| 101 |
+
### Loading the Model
|
| 102 |
+
|
| 103 |
+
#### GPU Usage (Recommended)
|
| 104 |
+
```python
|
| 105 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 106 |
+
from peft import PeftModel
|
| 107 |
+
import torch
|
| 108 |
+
|
| 109 |
+
# Load base model with 4-bit quantization
|
| 110 |
+
base_model = "mistralai/Mistral-7B-Instruct-v0.1"
|
| 111 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 112 |
+
base_model,
|
| 113 |
+
load_in_4bit=True,
|
| 114 |
+
torch_dtype=torch.float16,
|
| 115 |
+
device_map="auto"
|
| 116 |
+
)
|
| 117 |
+
|
| 118 |
+
# Load LoRA adapter
|
| 119 |
+
model = PeftModel.from_pretrained(model, "rafiaa/legal-passive-to-active-mistral-7b")
|
| 120 |
+
tokenizer = AutoTokenizer.from_pretrained(base_model)
|
| 121 |
+
|
| 122 |
+
# Set pad token
|
| 123 |
+
if tokenizer.pad_token is None:
|
| 124 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 125 |
+
```
|
| 126 |
+
|
| 127 |
+
#### CPU Usage (Alternative)
|
| 128 |
+
```python
|
| 129 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 130 |
+
from peft import PeftModel
|
| 131 |
+
import torch
|
| 132 |
+
|
| 133 |
+
# Load base model (CPU compatible)
|
| 134 |
+
base_model = "mistralai/Mistral-7B-Instruct-v0.1"
|
| 135 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 136 |
+
base_model,
|
| 137 |
+
torch_dtype=torch.float32,
|
| 138 |
+
device_map="cpu"
|
| 139 |
+
)
|
| 140 |
+
|
| 141 |
+
# Load LoRA adapter
|
| 142 |
+
model = PeftModel.from_pretrained(model, "rafiaa/legal-passive-to-active-mistral-7b")
|
| 143 |
+
tokenizer = AutoTokenizer.from_pretrained(base_model)
|
| 144 |
+
|
| 145 |
+
# Set pad token
|
| 146 |
+
if tokenizer.pad_token is None:
|
| 147 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 148 |
+
```
|
| 149 |
+
|
| 150 |
+
### Usage Example
|
| 151 |
+
|
| 152 |
+
```python
|
| 153 |
+
def transform_passive_to_active(passive_sentence, max_length=512):
|
| 154 |
+
# Create instruction prompt
|
| 155 |
+
instruction = """You are a legal text transformation expert. Your task is to convert passive voice sentences to active voice while maintaining the exact legal meaning and terminology.
|
| 156 |
+
|
| 157 |
+
Input: Transform the following legal sentence from passive to active voice.
|
| 158 |
+
|
| 159 |
+
Legal Sentence: """
|
| 160 |
+
|
| 161 |
+
prompt = instruction + passive_sentence
|
| 162 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
| 163 |
+
|
| 164 |
+
with torch.no_grad():
|
| 165 |
+
outputs = model.generate(
|
| 166 |
+
**inputs,
|
| 167 |
+
max_length=max_length,
|
| 168 |
+
temperature=0.7,
|
| 169 |
+
do_sample=True,
|
| 170 |
+
pad_token_id=tokenizer.eos_token_id
|
| 171 |
+
)
|
| 172 |
+
|
| 173 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 174 |
+
|
| 175 |
+
# Example usage
|
| 176 |
+
passive = "The agreement shall be signed by the authorized representatives."
|
| 177 |
+
active = transform_passive_to_active(passive)
|
| 178 |
+
print(active)
|
| 179 |
+
```
|
| 180 |
+
|
| 181 |
+
### Advanced Usage
|
| 182 |
+
|
| 183 |
+
```python
|
| 184 |
+
# Batch processing multiple legal sentences
|
| 185 |
+
legal_sentences = [
|
| 186 |
+
"The policy was established by the board of directors.",
|
| 187 |
+
"All documents must be reviewed by legal counsel.",
|
| 188 |
+
"The regulations were enacted by Parliament."
|
| 189 |
+
]
|
| 190 |
+
|
| 191 |
+
for sentence in legal_sentences:
|
| 192 |
+
transformed = transform_passive_to_active(sentence)
|
| 193 |
+
print(f"Passive: {sentence}")
|
| 194 |
+
print(f"Active: {transformed}\n")
|
| 195 |
+
```
|
| 196 |
|
| 197 |
## Training Details
|
| 198 |
|
| 199 |
### Training Data
|
| 200 |
|
| 201 |
+
- **Dataset Size**: 319 legal sentences
|
| 202 |
+
- **Source Documents**:
|
| 203 |
+
- United Nations legal documents
|
| 204 |
+
- General Data Protection Regulation (GDPR)
|
| 205 |
+
- Fair Work Act (Australia)
|
| 206 |
+
- Insurance Council of Australia regulations
|
| 207 |
+
- **Data Split**: 85% training, 15% testing (with 15% of training for validation)
|
| 208 |
+
- **Domain**: Legal text across multiple jurisdictions
|
| 209 |
+
- **Format**: Alpaca format for instruction-based training
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 210 |
|
| 211 |
+
### Training Procedure
|
| 212 |
|
| 213 |
+
- **Method**: QLoRA (4-bit quantization + LoRA)
|
| 214 |
+
- **LoRA Configuration**: Rank 64, Alpha 16
|
| 215 |
+
- **Library**: unsloth (2.2x faster, 62% less VRAM for Mistral)
|
| 216 |
+
- **Hardware**: Tesla T4 GPU (Google Colab)
|
| 217 |
+
- **Training Loss**: Downward trending validation loss indicating excellent generalization
|
| 218 |
|
| 219 |
+
### Evaluation Metrics
|
| 220 |
|
| 221 |
+
- **BERTScore**: Semantic similarity evaluation (Precision, Recall, F1)
|
| 222 |
+
- **Human Evaluation**: Binary correctness assessment by legal evaluators
|
| 223 |
+
- **Performance Improvement**: ~15% increase over base Mistral model
|
| 224 |
|
| 225 |
+
## Performance Comparison
|
| 226 |
|
| 227 |
+
| Model | Human Eval Score | BERTScore F1 | Performance |
|
| 228 |
+
|-------|-----------------|--------------|-------------|
|
| 229 |
+
| Mistral-7B Base | Baseline | High | Good |
|
| 230 |
+
| **legal-passive-to-active-mistral-7b** | +15% | Higher | Excellent |
|
| 231 |
+
| legal-passive-to-active-llama2-7b | +6% | High | Good |
|
| 232 |
|
| 233 |
+
This model demonstrates the best performance among 7B parameter models for legal passive-to-active transformation.
|
| 234 |
|
| 235 |
+
## Strengths and Characteristics
|
| 236 |
|
| 237 |
+
### Model Strengths
|
| 238 |
+
- **High accuracy** in passive-to-active transformations
|
| 239 |
+
- **Semantic preservation** - maintains legal meaning
|
| 240 |
+
- **Better generalization** compared to Llama-2 variants
|
| 241 |
+
- **Responsive to prompts** - adapts well to instruction modifications
|
| 242 |
+
- **Vocabulary diversity** - uses appropriate legal terminology
|
| 243 |
|
| 244 |
+
### Notable Behaviors
|
| 245 |
+
- Occasionally substitutes words with synonyms (trade-off for flexibility)
|
| 246 |
+
- Better precision compared to base model after fine-tuning
|
| 247 |
+
- Strong performance on complex legal constructions
|
| 248 |
|
| 249 |
+
## Limitations and Bias
|
| 250 |
|
| 251 |
+
### Known Limitations
|
| 252 |
|
| 253 |
+
- **Word Position Sensitivity**: Struggles with sentences where word position significantly alters meaning
|
| 254 |
+
- **Dataset Size**: Limited to 319 training samples
|
| 255 |
+
- **Non-Determinism**: LLM outputs may vary between runs
|
| 256 |
+
- **Domain Coverage**: Primarily trained on English common law and EU legal documents
|
| 257 |
+
- **Synonym Substitution**: May occasionally use synonyms instead of exact original words
|
| 258 |
|
| 259 |
+
### Recommendations
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 260 |
|
| 261 |
+
- Validate transformed sentences for legal accuracy before use
|
| 262 |
+
- Use human review for critical legal documents
|
| 263 |
+
- Consider context and jurisdiction when applying transformations
|
| 264 |
+
- Test with domain-specific legal texts for best results
|
| 265 |
+
- Review outputs for unintended synonym substitutions in critical documents
|
| 266 |
|
| 267 |
## Environmental Impact
|
| 268 |
|
| 269 |
+
- **Training Method**: QLoRA reduces computational requirements by 62% for Mistral
|
| 270 |
+
- **Hardware**: Efficient training using 4-bit quantization
|
| 271 |
+
- **Carbon Footprint**: Significantly reduced compared to full fine-tuning
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 272 |
|
| 273 |
+
## Citation
|
| 274 |
|
| 275 |
+
If you use this model in your research, please cite:
|
| 276 |
|
| 277 |
+
```bibtex
|
| 278 |
+
@misc{legal-passive-active-mistral,
|
| 279 |
+
title={legal-passive-to-active-mistral-7b: An Enhanced LoRA Fine-tuned Model for Legal Voice Transformation},
|
| 280 |
+
author={Rafi Al Attrach},
|
| 281 |
+
year={2024},
|
| 282 |
+
url={https://huggingface.co/rafiaa/legal-passive-to-active-mistral-7b}
|
| 283 |
+
}
|
| 284 |
+
```
|
| 285 |
|
| 286 |
+
## Related Models
|
| 287 |
|
| 288 |
+
- **Base Model**: [mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1)
|
| 289 |
+
- **Alternative**: [rafiaa/legal-passive-to-active-llama2-7b](https://huggingface.co/rafiaa/legal-passive-to-active-llama2-7b)
|
| 290 |
+
- **This Model**: [rafiaa/legal-passive-to-active-mistral-7b](https://huggingface.co/rafiaa/legal-passive-to-active-mistral-7b) (Recommended)
|
| 291 |
|
| 292 |
+
## Model Card Contact
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 293 |
|
| 294 |
+
- **Author**: Rafi Al Attrach
|
| 295 |
+
- **Model Repository**: [HuggingFace Model](https://huggingface.co/rafiaa/legal-passive-to-active-mistral-7b)
|
| 296 |
+
- **Issues**: Please report issues through the HuggingFace model page
|
| 297 |
|
| 298 |
+
## Acknowledgments
|
| 299 |
|
| 300 |
+
- **Research Project**: Legal text simplification and accessibility research (2024)
|
| 301 |
+
- **Training Data**: Public legal documents and regulations
|
| 302 |
+
- **Base Model**: Mistral AI's Mistral-7B-Instruct-v0.1
|
| 303 |
+
- **Training Method**: QLoRA for efficient fine-tuning
|
| 304 |
|
| 305 |
+
---
|
| 306 |
|
| 307 |
+
*This model represents advanced research in legal text simplification and accessibility, demonstrating superior performance in passive-to-active voice transformation for legal documents.*
|