--- library_name: pytorch license: apache-2.0 tags: - android pipeline_tag: image-to-text --- ![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/easyocr/web-assets/model_demo.png) # EasyOCR: Optimized for Mobile Deployment ## Ready-to-use OCR with 80+ supported languages and all popular writing scripts EasyOCR is a machine learning model that can recognize text in images. It supports 80+ supported languages and all popular writing scripts. This model is an implementation of EasyOCR found [here](https://github.com/JaidedAI/EasyOCR). This repository provides scripts to run EasyOCR on Qualcomm® devices. More details on model performance across various devices, can be found [here](https://aihub.qualcomm.com/models/easyocr). ### Model Details - **Model Type:** Image to text - **Model Stats:** - Model checkpoint: easyocr-small-stage1 - Input resolution: 384x384 - Number of parameters (EasyOCRDetector): 20.8M - Model size (EasyOCRDetector): 79.2 MB - Number of parameters (EasyOCRRecognizer): 3.84M - Model size (EasyOCRRecognizer): 14.7 MB | Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model |---|---|---|---|---|---|---|---|---| | EasyOCRDetector | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 41.189 ms | 0 - 136 MB | FP16 | NPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRDetector.tflite) | | EasyOCRDetector | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 39.017 ms | 6 - 9 MB | FP16 | NPU | [EasyOCR.so](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRDetector.so) | | EasyOCRDetector | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 40.015 ms | 34 - 181 MB | FP16 | NPU | [EasyOCR.onnx](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRDetector.onnx) | | EasyOCRDetector | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 30.181 ms | 14 - 45 MB | FP16 | NPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRDetector.tflite) | | EasyOCRDetector | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 29.323 ms | 6 - 25 MB | FP16 | NPU | [EasyOCR.so](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRDetector.so) | | EasyOCRDetector | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 29.584 ms | 38 - 75 MB | FP16 | NPU | [EasyOCR.onnx](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRDetector.onnx) | | EasyOCRDetector | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 28.753 ms | 15 - 45 MB | FP16 | NPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRDetector.tflite) | | EasyOCRDetector | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 24.26 ms | 6 - 36 MB | FP16 | NPU | Use Export Script | | EasyOCRDetector | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 28.097 ms | 43 - 78 MB | FP16 | NPU | [EasyOCR.onnx](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRDetector.onnx) | | EasyOCRDetector | SA7255P ADP | SA7255P | TFLITE | 2113.678 ms | 3 - 28 MB | FP16 | NPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRDetector.tflite) | | EasyOCRDetector | SA7255P ADP | SA7255P | QNN | 2111.684 ms | 0 - 8 MB | FP16 | NPU | Use Export Script | | EasyOCRDetector | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 41.731 ms | 0 - 97 MB | FP16 | NPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRDetector.tflite) | | EasyOCRDetector | SA8255 (Proxy) | SA8255P Proxy | QNN | 38.998 ms | 6 - 8 MB | FP16 | NPU | Use Export Script | | EasyOCRDetector | SA8295P ADP | SA8295P | TFLITE | 78.45 ms | 16 - 42 MB | FP16 | NPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRDetector.tflite) | | EasyOCRDetector | SA8295P ADP | SA8295P | QNN | 76.549 ms | 0 - 11 MB | FP16 | NPU | Use Export Script | | EasyOCRDetector | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 42.824 ms | 0 - 145 MB | FP16 | NPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRDetector.tflite) | | EasyOCRDetector | SA8650 (Proxy) | SA8650P Proxy | QNN | 40.764 ms | 6 - 8 MB | FP16 | NPU | Use Export Script | | EasyOCRDetector | SA8775P ADP | SA8775P | TFLITE | 88.536 ms | 16 - 41 MB | FP16 | NPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRDetector.tflite) | | EasyOCRDetector | SA8775P ADP | SA8775P | QNN | 86.522 ms | 1 - 9 MB | FP16 | NPU | Use Export Script | | EasyOCRDetector | QCS8275 (Proxy) | QCS8275 Proxy | TFLITE | 2113.678 ms | 3 - 28 MB | FP16 | NPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRDetector.tflite) | | EasyOCRDetector | QCS8275 (Proxy) | QCS8275 Proxy | QNN | 2111.684 ms | 0 - 8 MB | FP16 | NPU | Use Export Script | | EasyOCRDetector | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 41.678 ms | 0 - 126 MB | FP16 | NPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRDetector.tflite) | | EasyOCRDetector | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 39.278 ms | 6 - 8 MB | FP16 | NPU | Use Export Script | | EasyOCRDetector | QCS9075 (Proxy) | QCS9075 Proxy | TFLITE | 88.536 ms | 16 - 41 MB | FP16 | NPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRDetector.tflite) | | EasyOCRDetector | QCS9075 (Proxy) | QCS9075 Proxy | QNN | 86.522 ms | 1 - 9 MB | FP16 | NPU | Use Export Script | | EasyOCRDetector | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 80.295 ms | 16 - 48 MB | FP16 | NPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRDetector.tflite) | | EasyOCRDetector | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 69.9 ms | 6 - 37 MB | FP16 | NPU | Use Export Script | | EasyOCRDetector | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 39.87 ms | 6 - 6 MB | FP16 | NPU | Use Export Script | | EasyOCRDetector | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 41.319 ms | 66 - 66 MB | FP16 | NPU | [EasyOCR.onnx](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRDetector.onnx) | | EasyOCRRecognizer | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 109.812 ms | 6 - 8 MB | FP32 | CPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRRecognizer.tflite) | | EasyOCRRecognizer | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 20.483 ms | 0 - 3 MB | FP16 | NPU | [EasyOCR.so](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRRecognizer.so) | | EasyOCRRecognizer | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 21.731 ms | 0 - 24 MB | FP16 | NPU | [EasyOCR.onnx](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRRecognizer.onnx) | | EasyOCRRecognizer | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 108.852 ms | 2 - 20 MB | FP32 | CPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRRecognizer.tflite) | | EasyOCRRecognizer | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 14.237 ms | 0 - 16 MB | FP16 | NPU | [EasyOCR.so](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRRecognizer.so) | | EasyOCRRecognizer | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 16.212 ms | 1 - 24 MB | FP16 | NPU | [EasyOCR.onnx](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRRecognizer.onnx) | | EasyOCRRecognizer | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 107.149 ms | 14 - 30 MB | FP32 | CPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRRecognizer.tflite) | | EasyOCRRecognizer | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 20.63 ms | 0 - 346 MB | FP16 | NPU | Use Export Script | | EasyOCRRecognizer | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 17.677 ms | 0 - 18 MB | FP16 | NPU | [EasyOCR.onnx](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRRecognizer.onnx) | | EasyOCRRecognizer | SA7255P ADP | SA7255P | TFLITE | 565.404 ms | 9 - 17 MB | FP32 | CPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRRecognizer.tflite) | | EasyOCRRecognizer | SA7255P ADP | SA7255P | QNN | 285.155 ms | 0 - 8 MB | FP16 | NPU | Use Export Script | | EasyOCRRecognizer | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 124.344 ms | 9 - 11 MB | FP32 | CPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRRecognizer.tflite) | | EasyOCRRecognizer | SA8255 (Proxy) | SA8255P Proxy | QNN | 20.321 ms | 0 - 3 MB | FP16 | NPU | Use Export Script | | EasyOCRRecognizer | SA8295P ADP | SA8295P | TFLITE | 214.709 ms | 8 - 18 MB | FP32 | CPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRRecognizer.tflite) | | EasyOCRRecognizer | SA8295P ADP | SA8295P | QNN | 30.834 ms | 0 - 12 MB | FP16 | NPU | Use Export Script | | EasyOCRRecognizer | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 101.784 ms | 7 - 11 MB | FP32 | CPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRRecognizer.tflite) | | EasyOCRRecognizer | SA8650 (Proxy) | SA8650P Proxy | QNN | 20.407 ms | 0 - 3 MB | FP16 | NPU | Use Export Script | | EasyOCRRecognizer | SA8775P ADP | SA8775P | TFLITE | 415.153 ms | 6 - 14 MB | FP32 | CPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRRecognizer.tflite) | | EasyOCRRecognizer | SA8775P ADP | SA8775P | QNN | 29.021 ms | 0 - 7 MB | FP16 | NPU | Use Export Script | | EasyOCRRecognizer | QCS8275 (Proxy) | QCS8275 Proxy | TFLITE | 565.404 ms | 9 - 17 MB | FP32 | CPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRRecognizer.tflite) | | EasyOCRRecognizer | QCS8275 (Proxy) | QCS8275 Proxy | QNN | 285.155 ms | 0 - 8 MB | FP16 | NPU | Use Export Script | | EasyOCRRecognizer | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 108.193 ms | 7 - 10 MB | FP32 | CPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRRecognizer.tflite) | | EasyOCRRecognizer | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 20.315 ms | 0 - 3 MB | FP16 | NPU | Use Export Script | | EasyOCRRecognizer | QCS9075 (Proxy) | QCS9075 Proxy | TFLITE | 415.153 ms | 6 - 14 MB | FP32 | CPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRRecognizer.tflite) | | EasyOCRRecognizer | QCS9075 (Proxy) | QCS9075 Proxy | QNN | 29.021 ms | 0 - 7 MB | FP16 | NPU | Use Export Script | | EasyOCRRecognizer | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 210.333 ms | 9 - 25 MB | FP32 | CPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRRecognizer.tflite) | | EasyOCRRecognizer | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 34.309 ms | 0 - 151 MB | FP16 | NPU | Use Export Script | | EasyOCRRecognizer | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 21.364 ms | 0 - 0 MB | FP16 | NPU | Use Export Script | | EasyOCRRecognizer | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 19.37 ms | 0 - 0 MB | FP16 | NPU | [EasyOCR.onnx](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRRecognizer.onnx) | ## Installation Install the package via pip: ```bash pip install "qai-hub-models[easyocr]" ``` ## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`. With this API token, you can configure your client to run models on the cloud hosted devices. ```bash qai-hub configure --api_token API_TOKEN ``` Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information. ## Demo off target The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input. ```bash python -m qai_hub_models.models.easyocr.demo ``` The above demo runs a reference implementation of pre-processing, model inference, and post processing. **NOTE**: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above). ``` %run -m qai_hub_models.models.easyocr.demo ``` ### Run model on a cloud-hosted device In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following: * Performance check on-device on a cloud-hosted device * Downloads compiled assets that can be deployed on-device for Android. * Accuracy check between PyTorch and on-device outputs. ```bash python -m qai_hub_models.models.easyocr.export ``` ``` Profiling Results ------------------------------------------------------------ EasyOCRDetector Device : Samsung Galaxy S23 (13) Runtime : TFLITE Estimated inference time (ms) : 41.2 Estimated peak memory usage (MB): [0, 136] Total # Ops : 42 Compute Unit(s) : NPU (42 ops) ------------------------------------------------------------ EasyOCRRecognizer Device : Samsung Galaxy S23 (13) Runtime : TFLITE Estimated inference time (ms) : 109.8 Estimated peak memory usage (MB): [6, 8] Total # Ops : 136 Compute Unit(s) : CPU (136 ops) ``` ## How does this work? This [export script](https://aihub.qualcomm.com/models/easyocr/qai_hub_models/models/EasyOCR/export.py) leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model on-device. Lets go through each step below in detail: Step 1: **Compile model for on-device deployment** To compile a PyTorch model for on-device deployment, we first trace the model in memory using the `jit.trace` and then call the `submit_compile_job` API. ```python import torch import qai_hub as hub from qai_hub_models.models.easyocr import Model # Load the model model = Model.from_pretrained() detector_model = model.detector recognizer_model = model.recognizer # Device device = hub.Device("Samsung Galaxy S23") # Trace model detector_input_shape = detector_model.get_input_spec() detector_sample_inputs = detector_model.sample_inputs() traced_detector_model = torch.jit.trace(detector_model, [torch.tensor(data[0]) for _, data in detector_sample_inputs.items()]) # Compile model on a specific device detector_compile_job = hub.submit_compile_job( model=traced_detector_model , device=device, input_specs=detector_model.get_input_spec(), ) # Get target model to run on-device detector_target_model = detector_compile_job.get_target_model() # Trace model recognizer_input_shape = recognizer_model.get_input_spec() recognizer_sample_inputs = recognizer_model.sample_inputs() traced_recognizer_model = torch.jit.trace(recognizer_model, [torch.tensor(data[0]) for _, data in recognizer_sample_inputs.items()]) # Compile model on a specific device recognizer_compile_job = hub.submit_compile_job( model=traced_recognizer_model , device=device, input_specs=recognizer_model.get_input_spec(), ) # Get target model to run on-device recognizer_target_model = recognizer_compile_job.get_target_model() ``` Step 2: **Performance profiling on cloud-hosted device** After compiling models from step 1. Models can be profiled model on-device using the `target_model`. Note that this scripts runs the model on a device automatically provisioned in the cloud. Once the job is submitted, you can navigate to a provided job URL to view a variety of on-device performance metrics. ```python detector_profile_job = hub.submit_profile_job( model=detector_target_model, device=device, ) recognizer_profile_job = hub.submit_profile_job( model=recognizer_target_model, device=device, ) ``` Step 3: **Verify on-device accuracy** To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device. ```python detector_input_data = detector_model.sample_inputs() detector_inference_job = hub.submit_inference_job( model=detector_target_model, device=device, inputs=detector_input_data, ) detector_inference_job.download_output_data() recognizer_input_data = recognizer_model.sample_inputs() recognizer_inference_job = hub.submit_inference_job( model=recognizer_target_model, device=device, inputs=recognizer_input_data, ) recognizer_inference_job.download_output_data() ``` With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output. **Note**: This on-device profiling and inference requires access to Qualcomm® AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup). ## Deploying compiled model to Android The models can be deployed using multiple runtimes: - TensorFlow Lite (`.tflite` export): [This tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a guide to deploy the .tflite model in an Android application. - QNN (`.so` export ): This [sample app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html) provides instructions on how to use the `.so` shared library in an Android application. ## View on Qualcomm® AI Hub Get more details on EasyOCR's performance across various devices [here](https://aihub.qualcomm.com/models/easyocr). Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/) ## License * The license for the original implementation of EasyOCR can be found [here](https://github.com/JaidedAI/EasyOCR/blob/master/LICENSE). * The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf) ## References * [None](None) * [Source Model Implementation](https://github.com/JaidedAI/EasyOCR) ## Community * Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI. * For questions or feedback please [reach out to us](mailto:ai-hub-support@qti.qualcomm.com).