update model card README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
base_model: google/mt5-small
|
| 4 |
+
tags:
|
| 5 |
+
- generated_from_trainer
|
| 6 |
+
metrics:
|
| 7 |
+
- rouge
|
| 8 |
+
- bleu
|
| 9 |
+
model-index:
|
| 10 |
+
- name: mt5-small_large_lr
|
| 11 |
+
results: []
|
| 12 |
+
---
|
| 13 |
+
|
| 14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
| 15 |
+
should probably proofread and complete it, then remove this comment. -->
|
| 16 |
+
|
| 17 |
+
# mt5-small_large_lr
|
| 18 |
+
|
| 19 |
+
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset.
|
| 20 |
+
It achieves the following results on the evaluation set:
|
| 21 |
+
- Loss: 0.9688
|
| 22 |
+
- Rouge1: 38.8633
|
| 23 |
+
- Rouge2: 33.0802
|
| 24 |
+
- Rougel: 37.6956
|
| 25 |
+
- Rougelsum: 37.7116
|
| 26 |
+
- Bleu: 26.6301
|
| 27 |
+
- Gen Len: 11.5566
|
| 28 |
+
- Meteor: 0.3519
|
| 29 |
+
- No ans accuracy: 22.99
|
| 30 |
+
- Av cosine sim: 0.6861
|
| 31 |
+
|
| 32 |
+
## Model description
|
| 33 |
+
|
| 34 |
+
More information needed
|
| 35 |
+
|
| 36 |
+
## Intended uses & limitations
|
| 37 |
+
|
| 38 |
+
More information needed
|
| 39 |
+
|
| 40 |
+
## Training and evaluation data
|
| 41 |
+
|
| 42 |
+
More information needed
|
| 43 |
+
|
| 44 |
+
## Training procedure
|
| 45 |
+
|
| 46 |
+
### Training hyperparameters
|
| 47 |
+
|
| 48 |
+
The following hyperparameters were used during training:
|
| 49 |
+
- learning_rate: 0.005
|
| 50 |
+
- train_batch_size: 16
|
| 51 |
+
- eval_batch_size: 16
|
| 52 |
+
- seed: 9
|
| 53 |
+
- gradient_accumulation_steps: 8
|
| 54 |
+
- total_train_batch_size: 128
|
| 55 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
| 56 |
+
- lr_scheduler_type: linear
|
| 57 |
+
- num_epochs: 20
|
| 58 |
+
|
| 59 |
+
### Training results
|
| 60 |
+
|
| 61 |
+
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Bleu | Gen Len | Meteor | No ans accuracy | Av cosine sim |
|
| 62 |
+
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|:-------:|:------:|:---------------:|:-------------:|
|
| 63 |
+
| 5.4434 | 1.0 | 175 | 2.1918 | 1.8449 | 1.2024 | 1.7039 | 1.7116 | 0.0 | 2.7672 | 0.0145 | 28.9700 | 0.1363 |
|
| 64 |
+
| 1.8436 | 1.99 | 350 | 1.1852 | 33.6062 | 26.8725 | 32.2258 | 32.241 | 20.3395 | 12.2528 | 0.2957 | 17.3800 | 0.636 |
|
| 65 |
+
| 1.2276 | 2.99 | 525 | 1.0630 | 33.186 | 27.4949 | 32.0715 | 32.0522 | 20.3232 | 11.0301 | 0.2957 | 21.18 | 0.6109 |
|
| 66 |
+
| 0.9589 | 3.98 | 700 | 1.0083 | 40.265 | 33.6652 | 38.9503 | 38.9661 | 28.0884 | 12.8545 | 0.3623 | 17.54 | 0.7157 |
|
| 67 |
+
| 0.7931 | 4.98 | 875 | 0.9682 | 37.9437 | 31.7611 | 36.7618 | 36.7671 | 25.7738 | 12.0286 | 0.3424 | 20.66 | 0.6825 |
|
| 68 |
+
| 0.6686 | 5.97 | 1050 | 0.9601 | 37.5742 | 31.9098 | 36.4225 | 36.4381 | 24.9584 | 11.4169 | 0.3398 | 22.56 | 0.6713 |
|
| 69 |
+
| 0.5686 | 6.97 | 1225 | 0.9620 | 43.1436 | 36.6363 | 41.7279 | 41.7571 | 32.4301 | 13.6142 | 0.3893 | 16.9400 | 0.757 |
|
| 70 |
+
| 0.4939 | 7.96 | 1400 | 0.9688 | 38.8633 | 33.0802 | 37.6956 | 37.7116 | 26.6301 | 11.5566 | 0.3519 | 22.99 | 0.6861 |
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
### Framework versions
|
| 74 |
+
|
| 75 |
+
- Transformers 4.31.0
|
| 76 |
+
- Pytorch 2.0.1+cu118
|
| 77 |
+
- Datasets 2.13.1
|
| 78 |
+
- Tokenizers 0.13.3
|