- Learning invariant representations of time-homogeneous stochastic dynamical systems We consider the general class of time-homogeneous stochastic dynamical systems, both discrete and continuous, and study the problem of learning a representation of the state that faithfully captures its dynamics. This is instrumental to learning the transfer operator or the generator of the system, which in turn can be used for numerous tasks, such as forecasting and interpreting the system dynamics. We show that the search for a good representation can be cast as an optimization problem over neural networks. Our approach is supported by recent results in statistical learning theory, highlighting the role of approximation error and metric distortion in the learning problem. The objective function we propose is associated with projection operators from the representation space to the data space, overcomes metric distortion, and can be empirically estimated from data. In the discrete-time setting, we further derive a relaxed objective function that is differentiable and numerically well-conditioned. We compare our method against state-of-the-art approaches on different datasets, showing better performance across the board. 5 authors · Jul 19, 2023
- A Digital Twin for Diesel Engines: Operator-infused Physics-Informed Neural Networks with Transfer Learning for Engine Health Monitoring Improving diesel engine efficiency, reducing emissions, and enabling robust health monitoring have been critical research topics in engine modelling. While recent advancements in the use of neural networks for system monitoring have shown promising results, such methods often focus on component-level analysis, lack generalizability, and physical interpretability. In this study, we propose a novel hybrid framework that combines physics-informed neural networks (PINNs) with deep operator networks (DeepONet) to enable accurate and computationally efficient parameter identification in mean-value diesel engine models. Our method leverages physics-based system knowledge in combination with data-driven training of neural networks to enhance model applicability. Incorporating offline-trained DeepONets to predict actuator dynamics significantly lowers the online computation cost when compared to the existing PINN framework. To address the re-training burden typical of PINNs under varying input conditions, we propose two transfer learning (TL) strategies: (i) a multi-stage TL scheme offering better runtime efficiency than full online training of the PINN model and (ii) a few-shot TL scheme that freezes a shared multi-head network body and computes physics-based derivatives required for model training outside the training loop. The second strategy offers a computationally inexpensive and physics-based approach for predicting engine dynamics and parameter identification, offering computational efficiency over the existing PINN framework. Compared to existing health monitoring methods, our framework combines the interpretability of physics-based models with the flexibility of deep learning, offering substantial gains in generalization, accuracy, and deployment efficiency for diesel engine diagnostics. 4 authors · Dec 16, 2024
- Which Invariance Should We Transfer? A Causal Minimax Learning Approach A major barrier to deploying current machine learning models lies in their non-reliability to dataset shifts. To resolve this problem, most existing studies attempted to transfer stable information to unseen environments. Particularly, independent causal mechanisms-based methods proposed to remove mutable causal mechanisms via the do-operator. Compared to previous methods, the obtained stable predictors are more effective in identifying stable information. However, a key question remains: which subset of this whole stable information should the model transfer, in order to achieve optimal generalization ability? To answer this question, we present a comprehensive minimax analysis from a causal perspective. Specifically, we first provide a graphical condition for the whole stable set to be optimal. When this condition fails, we surprisingly find with an example that this whole stable set, although can fully exploit stable information, is not the optimal one to transfer. To identify the optimal subset under this case, we propose to estimate the worst-case risk with a novel optimization scheme over the intervention functions on mutable causal mechanisms. We then propose an efficient algorithm to search for the subset with minimal worst-case risk, based on a newly defined equivalence relation between stable subsets. Compared to the exponential cost of exhaustively searching over all subsets, our searching strategy enjoys a polynomial complexity. The effectiveness and efficiency of our methods are demonstrated on synthetic data and the diagnosis of Alzheimer's disease. 5 authors · Jul 5, 2021
- Reusing Pretrained Models by Multi-linear Operators for Efficient Training Training large models from scratch usually costs a substantial amount of resources. Towards this problem, recent studies such as bert2BERT and LiGO have reused small pretrained models to initialize a large model (termed the ``target model''), leading to a considerable acceleration in training. Despite the successes of these previous studies, they grew pretrained models by mapping partial weights only, ignoring potential correlations across the entire model. As we show in this paper, there are inter- and intra-interactions among the weights of both the pretrained and the target models. As a result, the partial mapping may not capture the complete information and lead to inadequate growth. In this paper, we propose a method that linearly correlates each weight of the target model to all the weights of the pretrained model to further enhance acceleration ability. We utilize multi-linear operators to reduce computational and spacial complexity, enabling acceptable resource requirements. Experiments demonstrate that our method can save 76\% computational costs on DeiT-base transferred from DeiT-small, which outperforms bert2BERT by +12.0\% and LiGO by +20.7\%, respectively. 7 authors · Oct 16, 2023
- Multiple-Attribute Text Style Transfer The dominant approach to unsupervised "style transfer" in text is based on the idea of learning a latent representation, which is independent of the attributes specifying its "style". In this paper, we show that this condition is not necessary and is not always met in practice, even with domain adversarial training that explicitly aims at learning such disentangled representations. We thus propose a new model that controls several factors of variation in textual data where this condition on disentanglement is replaced with a simpler mechanism based on back-translation. Our method allows control over multiple attributes, like gender, sentiment, product type, etc., and a more fine-grained control on the trade-off between content preservation and change of style with a pooling operator in the latent space. Our experiments demonstrate that the fully entangled model produces better generations, even when tested on new and more challenging benchmarks comprising reviews with multiple sentences and multiple attributes. 6 authors · Nov 1, 2018 1
29 Optimal Scaling Needs Optimal Norm Despite recent progress in optimal hyperparameter transfer under model and dataset scaling, no unifying explanatory principle has been established. Using the Scion optimizer, we discover that joint optimal scaling across model and dataset sizes is governed by a single invariant: the operator norm of the output layer. Across models with up to 1.3B parameters trained on up to 138B tokens, the optimal learning rate/batch size pair (eta^{ast}, B^{ast}) consistently has the same operator norm value - a phenomenon we term norm transfer. This constant norm condition is necessary but not sufficient: while for each dataset size, multiple (eta, B) reach the optimal norm, only a unique (eta^{ast}, B^{ast}) achieves the best loss. As a sufficient condition, we provide the first measurement of (eta^{ast}, B^{ast}) scaling with dataset size for Scion, and find that the scaling rules are consistent with those of the Adam optimizer. Tuning per-layer-group learning rates also improves model performance, with the output layer being the most sensitive and hidden layers benefiting from lower learning rates. We provide practical insights on norm-guided optimal scaling and release our Distributed Scion (Disco) implementation with logs from over two thousand runs to support research on LLM training dynamics at scale. 4 authors · Oct 4 2
- ODS: A self-reporting system for radio telescopes to coexist with adaptive satellite constellations Low Earth orbit (LEO) satellite constellations bring broadband internet and cellular service to the most remote locations on the planet. Unfortunately, many of these locations also host some of the world's best optical and radio astronomy (RA) observatories. With the number of LEO satellites expected to increase by an order of magnitude in the upcoming decade, satellite downlink radio frequency interference (RFI) is a growing concern in protected radio-quiet areas like the United States National Radio Quiet Zone. When these satellites transmit in the spectrum near protected RA bands, undesired out-of-band emission can leak into these protected bands and impact scientific observations. In this paper, we present a self-reporting system - Operational Data Sharing (ODS) - which enables mutual awareness by publishing radio telescopes' operational information to a protected database that is available to satellite operators through a representational state transfer application programming interface (REST API). Satellite operators can use the ODS data to adapt their downlink tasking algorithms in real time to avoid overwhelming sensitive RA facilities, particularly, through the novel Telescope Boresight Avoidance (TBA) technique. Preliminary results from recent experiments between the NRAO and the SpaceX Starlink teams demonstrate the effectiveness of the ODS and TBA in reducing downlink RFI in the Karl G. Jansky Very Large Array's observations in the 1990-1995 MHz and 10.7-12.7 GHz bands. This automated ODS system is beginning to be implemented by other RA facilities and could be utilized by other satellite operators in the near future. 17 authors · Feb 20
- A logical-based corpus for cross-lingual evaluation At present, different deep learning models are presenting high accuracy on popular inference datasets such as SNLI, MNLI, and SciTail. However, there are different indicators that those datasets can be exploited by using some simple linguistic patterns. This fact poses difficulties to our understanding of the actual capacity of machine learning models to solve the complex task of textual inference. We propose a new set of syntactic tasks focused on contradiction detection that require specific capacities over linguistic logical forms such as: Boolean coordination, quantifiers, definite description, and counting operators. We evaluate two kinds of deep learning models that implicitly exploit language structure: recurrent models and the Transformer network BERT. We show that although BERT is clearly more efficient to generalize over most logical forms, there is space for improvement when dealing with counting operators. Since the syntactic tasks can be implemented in different languages, we show a successful case of cross-lingual transfer learning between English and Portuguese. 3 authors · May 10, 2019