new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Nov 5

Growing Visual Generative Capacity for Pre-Trained MLLMs

Multimodal large language models (MLLMs) extend the success of language models to visual understanding, and recent efforts have sought to build unified MLLMs that support both understanding and generation. However, constructing such models remains challenging: hybrid approaches combine continuous embeddings with diffusion or flow-based objectives, producing high-quality images but breaking the autoregressive paradigm, while pure autoregressive approaches unify text and image prediction over discrete visual tokens but often face trade-offs between semantic alignment and pixel-level fidelity. In this work, we present Bridge, a pure autoregressive unified MLLM that augments pre-trained visual understanding models with generative ability through a Mixture-of-Transformers architecture, enabling both image understanding and generation within a single next-token prediction framework. To further improve visual generation fidelity, we propose a semantic-to-pixel discrete representation that integrates compact semantic tokens with fine-grained pixel tokens, achieving strong language alignment and precise description of visual details with only a 7.9% increase in sequence length. Extensive experiments across diverse multimodal benchmarks demonstrate that Bridge achieves competitive or superior results in both understanding and generation benchmarks, while requiring less training data and reduced training time compared to prior unified MLLMs.

  • 9 authors
·
Oct 1

RegionBLIP: A Unified Multi-modal Pre-training Framework for Holistic and Regional Comprehension

In this work, we investigate extending the comprehension of Multi-modal Large Language Models (MLLMs) to regional objects. To this end, we propose to extract features corresponding to regional objects as soft prompts for LLM, which provides a straightforward and scalable approach and eliminates the need for LLM fine-tuning. To effectively extract regional features from regular image features and irregular point cloud features, we present a novel and unified position-assisted feature extraction module. Furthermore, training an MLLM from scratch is highly time-consuming. Thus, we propose incrementally extending existing pre-trained MLLMs to comprehend more modalities and the regional objects of those modalities. Specifically, we freeze the Q-Former from BLIP-2, an impressive MLLM, and optimize the modality-specific Lora parameters in Q-Former and LLM for each newly introduced modality. The freezing of the Q-Former eliminates the need for extensive pre-training on massive image-text data. The freezed Q-Former pre-trained from massive image-text data is also beneficial for the pre-training on image-region-text data. We name our framework RegionBLIP. We pre-train RegionBLIP on image-region-text, point-cloud-text, and point-cloud-region-text data. Experimental results verify that can preserve the image comprehension capability of BILP-2 and further gain a comprehension of the newly introduced point cloud modality and regional objects. The Data, Code, and Pre-trained models will be available at https://github.com/mightyzau/RegionBLIP.

  • 6 authors
·
Aug 3, 2023

MLLM-as-a-Judge for Image Safety without Human Labeling

Image content safety has become a significant challenge with the rise of visual media on online platforms. Meanwhile, in the age of AI-generated content (AIGC), many image generation models are capable of producing harmful content, such as images containing sexual or violent material. Thus, it becomes crucial to identify such unsafe images based on established safety rules. Pre-trained Multimodal Large Language Models (MLLMs) offer potential in this regard, given their strong pattern recognition abilities. Existing approaches typically fine-tune MLLMs with human-labeled datasets, which however brings a series of drawbacks. First, relying on human annotators to label data following intricate and detailed guidelines is both expensive and labor-intensive. Furthermore, users of safety judgment systems may need to frequently update safety rules, making fine-tuning on human-based annotation more challenging. This raises the research question: Can we detect unsafe images by querying MLLMs in a zero-shot setting using a predefined safety constitution (a set of safety rules)? Our research showed that simply querying pre-trained MLLMs does not yield satisfactory results. This lack of effectiveness stems from factors such as the subjectivity of safety rules, the complexity of lengthy constitutions, and the inherent biases in the models. To address these challenges, we propose a MLLM-based method includes objectifying safety rules, assessing the relevance between rules and images, making quick judgments based on debiased token probabilities with logically complete yet simplified precondition chains for safety rules, and conducting more in-depth reasoning with cascaded chain-of-thought processes if necessary. Experiment results demonstrate that our method is highly effective for zero-shot image safety judgment tasks.

  • 15 authors
·
Dec 30, 2024 2

$\textit{X}^2$-DFD: A framework for e${X}$plainable and e${X}$tendable Deepfake Detection

Detecting deepfakes has become an important task. Most existing detection methods provide only real/fake predictions without offering human-comprehensible explanations. Recent studies leveraging MLLMs for deepfake detection have shown improvements in explainability. However, the performance of pre-trained MLLMs (e.g., LLaVA) remains limited due to a lack of understanding of their capabilities for this task and strategies to enhance them. In this work, we empirically assess the strengths and weaknesses of MLLMs specifically in deepfake detection via forgery features analysis. Building on these assessments, we propose a novel framework called {X}^2-DFD, consisting of three core modules. The first module, Model Feature Assessment (MFA), measures the detection capabilities of forgery features intrinsic to MLLMs, and gives a descending ranking of these features. The second module, Strong Feature Strengthening (SFS), enhances the detection and explanation capabilities by fine-tuning the MLLM on a dataset constructed based on the top-ranked features. The third module, Weak Feature Supplementing (WFS), improves the fine-tuned MLLM's capabilities on lower-ranked features by integrating external dedicated deepfake detectors. To verify the effectiveness of this framework, we further present a practical implementation, where an automated forgery features generation, evaluation, and ranking procedure is designed for MFA module; an automated generation procedure of the fine-tuning dataset containing real and fake images with explanations based on top-ranked features is developed for SFS model; an external conventional deepfake detector focusing on blending artifact, which corresponds to a low detection capability in the pre-trained MLLM, is integrated for WFS module. Experiments show that our approach enhances both detection and explanation performance.

  • 4 authors
·
Oct 8, 2024

TC-LLaVA: Rethinking the Transfer from Image to Video Understanding with Temporal Considerations

Multimodal Large Language Models (MLLMs) have significantly improved performance across various image-language applications. Recently, there has been a growing interest in adapting image pre-trained MLLMs for video-related tasks. However, most efforts concentrate on enhancing the vision encoder and projector components, while the core part, Large Language Models (LLMs), remains comparatively under-explored. In this paper, we propose two strategies to enhance the model's capability in video understanding tasks by improving inter-layer attention computation in LLMs. Specifically, the first approach focuses on the enhancement of Rotary Position Embedding (RoPE) with Temporal-Aware Dual RoPE, which introduces temporal position information to strengthen the MLLM's temporal modeling capabilities while preserving the relative position relationships of both visual and text tokens. The second approach involves enhancing the Attention Mask with the Frame-wise Block Causal Attention Mask, a simple yet effective method that broadens visual token interactions within and across video frames while maintaining the causal inference mechanism. Based on these proposed methods, we adapt LLaVA for video understanding tasks, naming it Temporal-Considered LLaVA (TC-LLaVA). Our TC-LLaVA achieves new state-of-the-art performance across various video understanding benchmarks with only supervised fine-tuning (SFT) on video-related datasets.

  • 8 authors
·
Sep 4, 2024

MERIT: Multilingual Semantic Retrieval with Interleaved Multi-Condition Query

Semantic retrieval is crucial for modern applications yet remains underexplored in current research. Existing datasets are limited to single languages, single images, or singular retrieval conditions, often failing to fully exploit the expressive capacity of visual information as evidenced by maintained performance when images are replaced with captions. However, practical retrieval scenarios frequently involve interleaved multi-condition queries with multiple images. Hence, this paper introduces MERIT, the first multilingual dataset for interleaved multi-condition semantic retrieval, comprising 320,000 queries with 135,000 products in 5 languages, covering 7 distinct product categories. Extensive experiments on MERIT identify existing models's limitation: focusing solely on global semantic information while neglecting specific conditional elements in queries. Consequently, we propose Coral, a novel fine-tuning framework that adapts pre-trained MLLMs by integrating embedding reconstruction to preserve fine-grained conditional elements and contrastive learning to extract comprehensive global semantics. Experiments demonstrate that Coral achieves a 45.9% performance improvement over conventional approaches on MERIT, with strong generalization capabilities validated across 8 established retrieval benchmarks. Collectively, our contributions - a novel dataset, identification of critical limitations in existing approaches, and an innovative fine-tuning framework - establish a foundation for future research in interleaved multi-condition semantic retrieval.

ByteDance ByteDance
·
Jun 3 2

Train a Unified Multimodal Data Quality Classifier with Synthetic Data

The Multimodal Large Language Models (MLLMs) are continually pre-trained on a mixture of image-text caption data and interleaved document data, while the high-quality data filtering towards image-text interleaved document data is under-explored. We propose to train an efficient MLLM as a Unified Mulitmodal Data Quality Classifier to Filter both high-quality image-text caption and interleaved data (UniFilter). To address the challenge of collecting diverse labeled multimodal data, we introduce a semi-synthetic approach that leverages readily available raw images and generates corresponding text across four quality levels. This method enables efficient creation of sample-score pairs for both caption and interleaved document data to train UniFilter. We apply UniFilter to curate high-quality caption data from DataComp caption dataset and interleaved data from the OBELICS image-text interleaved dataset. MLLMs pre-trained on the filtered data demonstrate significantly enhanced capabilities compared to those trained on baseline-filtered data, achieving stronger zero-shot reasoning and in-context learning capabilities. After visual supervised fine-tuning, these UniFilter-induced MLLMs achieve stronger performance on various benchmarks, highlighting the downstream benefits of high-quality multimodal pre-training. We release the synthetic training data used for training UniFilter, the UniFilter model checkpoints, and the high-quality interleaved document subset OBELICS-HQ, curated by UniFilter, to the community for reproduction and further development.

  • 10 authors
·
Oct 16 2

Multimodal Mamba: Decoder-only Multimodal State Space Model via Quadratic to Linear Distillation

Recent Multimodal Large Language Models (MLLMs) have achieved remarkable performance but face deployment challenges due to their quadratic computational complexity, growing Key-Value cache requirements, and reliance on separate vision encoders. We propose mmMamba, a framework for developing linear-complexity native multimodal state space models through progressive distillation from existing MLLMs using moderate academic computational resources. Our approach enables the direct conversion of trained decoder-only MLLMs to linear-complexity architectures without requiring pre-trained RNN-based LLM or vision encoders. We propose an seeding strategy to carve Mamba from trained Transformer and a three-stage distillation recipe, which can effectively transfer the knowledge from Transformer to Mamba while preserving multimodal capabilities. Our method also supports flexible hybrid architectures that combine Transformer and Mamba layers for customizable efficiency-performance trade-offs. Distilled from the Transformer-based decoder-only HoVLE, mmMamba-linear achieves competitive performance against existing linear and quadratic-complexity VLMs, while mmMamba-hybrid further improves performance significantly, approaching HoVLE's capabilities. At 103K tokens, mmMamba-linear demonstrates 20.6times speedup and 75.8% GPU memory reduction compared to HoVLE, while mmMamba-hybrid achieves 13.5times speedup and 60.2% memory savings. Code and models are released at https://github.com/hustvl/mmMamba

  • 8 authors
·
Feb 18 2

FUDOKI: Discrete Flow-based Unified Understanding and Generation via Kinetic-Optimal Velocities

The rapid progress of large language models (LLMs) has catalyzed the emergence of multimodal large language models (MLLMs) that unify visual understanding and image generation within a single framework. However, most existing MLLMs rely on autoregressive (AR) architectures, which impose inherent limitations on future development, such as the raster-scan order in image generation and restricted reasoning abilities in causal context modeling. In this work, we challenge the dominance of AR-based approaches by introducing FUDOKI, a unified multimodal model purely based on discrete flow matching, as an alternative to conventional AR paradigms. By leveraging metric-induced probability paths with kinetic optimal velocities, our framework goes beyond the previous masking-based corruption process, enabling iterative refinement with self-correction capability and richer bidirectional context integration during generation. To mitigate the high cost of training from scratch, we initialize FUDOKI from pre-trained AR-based MLLMs and adaptively transition to the discrete flow matching paradigm. Experimental results show that FUDOKI achieves performance comparable to state-of-the-art AR-based MLLMs across both visual understanding and image generation tasks, highlighting its potential as a foundation for next-generation unified multimodal models. Furthermore, we show that applying test-time scaling techniques to FUDOKI yields significant performance gains, further underscoring its promise for future enhancement through reinforcement learning.

  • 9 authors
·
May 26

Manager: Aggregating Insights from Unimodal Experts in Two-Tower VLMs and MLLMs

Two-Tower Vision--Language Models (VLMs) have demonstrated strong performance across various downstream VL tasks. While BridgeTower further enhances performance by building bridges between encoders, it (i) suffers from ineffective layer-by-layer utilization of unimodal representations, (ii) restricts the flexible exploitation of different levels of unimodal semantic knowledge, and (iii) is limited to the evaluation on traditional low-resolution datasets only with the Two-Tower VLM architecture. In this work, we propose Manager, a lightweight, efficient and effective plugin that adaptively aggregates insights from different levels of pre-trained unimodal experts to facilitate more comprehensive VL alignment and fusion. First, under the Two-Tower VLM architecture, we introduce ManagerTower, a novel VLM that introduces the manager in each cross-modal layer. Whether with or without VL pre-training, ManagerTower outperforms previous strong baselines and achieves superior performance on 4 downstream VL tasks. Moreover, we extend our exploration to the latest Multimodal Large Language Model (MLLM) architecture. We demonstrate that LLaVA-OV-Manager significantly boosts the zero-shot performance of LLaVA-OV across different categories of capabilities, images, and resolutions on 20 downstream datasets, whether the multi-grid algorithm is enabled or not. In-depth analysis reveals that both our manager and the multi-grid algorithm can be viewed as a plugin that improves the visual representation by capturing more diverse visual details from two orthogonal perspectives (depth and width). Their synergy can mitigate the semantic ambiguity caused by the multi-grid algorithm and further improve performance. Code and models are available at https://github.com/LooperXX/ManagerTower.

  • 4 authors
·
Jun 13

Ovis: Structural Embedding Alignment for Multimodal Large Language Model

Current Multimodal Large Language Models (MLLMs) typically integrate a pre-trained LLM with another pre-trained vision transformer through a connector, such as an MLP, endowing the LLM with visual capabilities. However, the misalignment between two embedding strategies in MLLMs -- the structural textual embeddings based on an embedding look-up table and the continuous embeddings generated directly by the vision encoder -- makes challenges for a more seamless fusion of visual and textual information. We propose Ovis, a novel MLLM architecture designed to structurally align visual and textual embeddings. Ovis integrates an additional learnable visual embedding table into the visual encoder's process. To capture rich visual semantics, each image patch indexes the visual embedding table multiple times, resulting in a final visual embedding that is a probabilistic combination of the indexed embeddings. This structural approach mirrors the method used for generating textual embeddings. Empirical evaluations on various multimodal benchmarks demonstrate that Ovis outperforms open-source MLLMs of similar parameter scales and even surpasses the proprietary model Qwen-VL-Plus overall. These results highlight the potential of Ovis' structured visual representation for advancing MLLM architectural design and promoting more effective multimodal learning. Both the source code and the training dataset of Ovis will be made publicly available.

  • 7 authors
·
May 31, 2024

TSPO: Temporal Sampling Policy Optimization for Long-form Video Language Understanding

Multimodal Large Language Models (MLLMs) have demonstrated significant progress in vision-language tasks, yet they still face challenges when processing long-duration video inputs. The limitation arises from MLLMs' context limit and training costs, necessitating sparse frame sampling before feeding videos into MLLMs. Existing video MLLMs adopt training-free uniform sampling or keyframe search, which may miss critical events or be constrained by the pre-trained models' event understanding capabilities. Meanwhile, building a training-based method remains challenging due to the unsupervised and non-differentiable nature of sparse frame sampling. To address these problems, we propose Temporal Sampling Policy Optimization (TSPO), advancing MLLMs' long-form video-language understanding via reinforcement learning. Specifically, we first propose a trainable event-aware temporal agent, which captures event-query correlation for performing probabilistic keyframe selection. Then, we propose the TSPO reinforcement learning paradigm, which models keyframe selection and language generation as a joint decision-making process, enabling end-to-end group relative optimization with efficient rule-based rewards. Furthermore, for the TSPO's training, we propose a long video training data construction pipeline with comprehensive temporal data and video Needle-in-a-Haystack data. Finally, we incorporate rule-based answering accuracy and temporal locating reward mechanisms to optimize the temporal sampling policy. Comprehensive experiments show that our TSPO achieves state-of-the-art performance across multiple long video understanding benchmarks, and shows transferable ability across different cutting-edge Video-MLLMs.

  • 9 authors
·
Aug 6

Libra: Leveraging Temporal Images for Biomedical Radiology Analysis

Radiology report generation (RRG) is a challenging task, as it requires a thorough understanding of medical images, integration of multiple temporal inputs, and accurate report generation. Effective interpretation of medical images, such as chest X-rays (CXRs), demands sophisticated visual-language reasoning to map visual findings to structured reports. Recent studies have shown that multimodal large language models (MLLMs) can acquire multimodal capabilities by aligning with pre-trained vision encoders. However, current approaches predominantly focus on single-image analysis or utilise rule-based symbolic processing to handle multiple images, thereby overlooking the essential temporal information derived from comparing current images with prior ones. To overcome this critical limitation, we introduce Libra, a temporal-aware MLLM tailored for CXR report generation using temporal images. Libra integrates a radiology-specific image encoder with a MLLM and utilises a novel Temporal Alignment Connector to capture and synthesise temporal information of images across different time points with unprecedented precision. Extensive experiments show that Libra achieves new state-of-the-art performance among the same parameter scale MLLMs for RRG tasks on the MIMIC-CXR. Specifically, Libra improves the RadCliQ metric by 12.9% and makes substantial gains across all lexical metrics compared to previous models.

  • 4 authors
·
Nov 28, 2024 1

Oryx MLLM: On-Demand Spatial-Temporal Understanding at Arbitrary Resolution

Visual data comes in various forms, ranging from small icons of just a few pixels to long videos spanning hours. Existing multi-modal LLMs usually standardize these diverse visual inputs to a fixed resolution for visual encoders and yield similar numbers of tokens for LLMs. This approach is non-optimal for multimodal understanding and inefficient for processing inputs with long and short visual contents. To solve the problem, we propose Oryx, a unified multimodal architecture for the spatial-temporal understanding of images, videos, and multi-view 3D scenes. Oryx offers an on-demand solution to seamlessly and efficiently process visual inputs with arbitrary spatial sizes and temporal lengths through two core innovations: 1) a pre-trained OryxViT model that can encode images at any resolution into LLM-friendly visual representations; 2) a dynamic compressor module that supports 1x to 16x compression on visual tokens by request. These design features enable Oryx to accommodate extremely long visual contexts, such as videos, with lower resolution and high compression while maintaining high recognition precision for tasks like document understanding with native resolution and no compression. Beyond the architectural improvements, enhanced data curation and specialized training on long-context retrieval and spatial-aware data help Oryx achieve strong capabilities in image, video, and 3D multimodal understanding simultaneously. Our work is open-sourced at https://github.com/Oryx-mllm/Oryx.

  • 6 authors
·
Sep 19, 2024 2

DreamLIP: Language-Image Pre-training with Long Captions

Language-image pre-training largely relies on how precisely and thoroughly a text describes its paired image. In practice, however, the contents of an image can be so rich that well describing them requires lengthy captions (e.g., with 10 sentences), which are usually missing in existing datasets. Consequently, there are currently no clear evidences on whether and how language-image pre-training could benefit from long captions. To figure this out, we first re-caption 30M images with detailed descriptions using a pre-trained Multi-modality Large Language Model (MLLM), and then study the usage of the resulting captions under a contrastive learning framework. We observe that, each sentence within a long caption is very likely to describe the image partially (e.g., an object). Motivated by this, we propose to dynamically sample sub-captions from the text label to construct multiple positive pairs, and introduce a grouping loss to match the embeddings of each sub-caption with its corresponding local image patches in a self-supervised manner. Experimental results on a wide rage of downstream tasks demonstrate the consistent superiority of our method, termed DreamLIP, over previous alternatives, highlighting its fine-grained representational capacity. It is noteworthy that, on the tasks of image-text retrieval and semantic segmentation, our model trained with 30M image-text pairs achieves on par or even better performance than CLIP trained with 400M pairs. Project page is available at https://zyf0619sjtu.github.io/dream-lip.

  • 8 authors
·
Mar 25, 2024

Mono-InternVL: Pushing the Boundaries of Monolithic Multimodal Large Language Models with Endogenous Visual Pre-training

The rapid advancement of Large Language Models (LLMs) has led to an influx of efforts to extend their capabilities to multimodal tasks. Among them, growing attention has been focused on monolithic Multimodal Large Language Models (MLLMs) that integrate visual encoding and language decoding into a single LLM. Despite the structural simplicity and deployment-friendliness, training a monolithic MLLM with promising performance still remains challenging. In particular, the popular approaches adopt continuous pre-training to extend a pre-trained LLM to a monolithic MLLM, which suffers from catastrophic forgetting and leads to performance degeneration. In this paper, we aim to overcome this limitation from the perspective of delta tuning. Specifically, our core idea is to embed visual parameters into a pre-trained LLM, thereby incrementally learning visual knowledge from massive data via delta tuning, i.e., freezing the LLM when optimizing the visual parameters. Based on this principle, we present Mono-InternVL, a novel monolithic MLLM that seamlessly integrates a set of visual experts via a multimodal mixture-of-experts structure. Moreover, we propose an innovative pre-training strategy to maximize the visual capability of Mono-InternVL, namely Endogenous Visual Pre-training (EViP). In particular, EViP is designed as a progressive learning process for visual experts, which aims to fully exploit the visual knowledge from noisy data to high-quality data. To validate our approach, we conduct extensive experiments on 16 benchmarks. Experimental results not only validate the superior performance of Mono-InternVL compared to the state-of-the-art MLLM on 6 multimodal benchmarks, e.g., +113 points over InternVL-1.5 on OCRBench, but also confirm its better deployment efficiency, with first token latency reduced by up to 67%.

  • 7 authors
·
Oct 10, 2024

MAPS: Advancing Multi-Modal Reasoning in Expert-Level Physical Science

Pre-trained on extensive text and image corpora, current Multi-Modal Large Language Models (MLLM) have shown strong capabilities in general visual reasoning tasks. However, their performance is still lacking in physical domains that require understanding diagrams with complex physical structures and quantitative analysis based on multi-modal information. To address this, we develop a new framework, named Multi-Modal Scientific Reasoning with Physics Perception and Simulation (MAPS) based on an MLLM. MAPS decomposes expert-level multi-modal reasoning task into physical diagram understanding via a Physical Perception Model (PPM) and reasoning with physical knowledge via a simulator. The PPM module is obtained by fine-tuning a visual language model using carefully designed synthetic data with paired physical diagrams and corresponding simulation language descriptions. At the inference stage, MAPS integrates the simulation language description of the input diagram provided by PPM and results obtained through a Chain-of-Simulation process with MLLM to derive the underlying rationale and the final answer. Validated using our collected college-level circuit analysis problems, MAPS significantly improves reasoning accuracy of MLLM and outperforms all existing models. The results confirm MAPS offers a promising direction for enhancing multi-modal scientific reasoning ability of MLLMs. We will release our code, model and dataset used for our experiments upon publishing of this paper.

  • 8 authors
·
Jan 18

A Simple Aerial Detection Baseline of Multimodal Language Models

The multimodal language models (MLMs) based on generative pre-trained Transformer are considered powerful candidates for unifying various domains and tasks. MLMs developed for remote sensing (RS) have demonstrated outstanding performance in multiple tasks, such as visual question answering and visual grounding. In addition to visual grounding that detects specific objects corresponded to given instruction, aerial detection, which detects all objects of multiple categories, is also a valuable and challenging task for RS foundation models. However, aerial detection has not been explored by existing RS MLMs because the autoregressive prediction mechanism of MLMs differs significantly from the detection outputs. In this paper, we present a simple baseline for applying MLMs to aerial detection for the first time, named LMMRotate. Specifically, we first introduce a normalization method to transform detection outputs into textual outputs to be compatible with the MLM framework. Then, we propose a evaluation method, which ensures a fair comparison between MLMs and conventional object detection models. We construct the baseline by fine-tuning open-source general-purpose MLMs and achieve impressive detection performance comparable to conventional detector. We hope that this baseline will serve as a reference for future MLM development, enabling more comprehensive capabilities for understanding RS images. Code is available at https://github.com/Li-Qingyun/mllm-mmrotate.

  • 7 authors
·
Jan 16

Leveraging Hallucinations to Reduce Manual Prompt Dependency in Promptable Segmentation

Promptable segmentation typically requires instance-specific manual prompts to guide the segmentation of each desired object. To minimize such a need, task-generic promptable segmentation has been introduced, which employs a single task-generic prompt to segment various images of different objects in the same task. Current methods use Multimodal Large Language Models (MLLMs) to reason detailed instance-specific prompts from a task-generic prompt for improving segmentation accuracy. The effectiveness of this segmentation heavily depends on the precision of these derived prompts. However, MLLMs often suffer hallucinations during reasoning, resulting in inaccurate prompting. While existing methods focus on eliminating hallucinations to improve a model, we argue that MLLM hallucinations can reveal valuable contextual insights when leveraged correctly, as they represent pre-trained large-scale knowledge beyond individual images. In this paper, we utilize hallucinations to mine task-related information from images and verify its accuracy for enhancing precision of the generated prompts. Specifically, we introduce an iterative Prompt-Mask Cycle generation framework (ProMaC) with a prompt generator and a mask generator.The prompt generator uses a multi-scale chain of thought prompting, initially exploring hallucinations for extracting extended contextual knowledge on a test image.These hallucinations are then reduced to formulate precise instance-specific prompts, directing the mask generator to produce masks that are consistent with task semantics by mask semantic alignment. The generated masks iteratively induce the prompt generator to focus more on task-relevant image areas and reduce irrelevant hallucinations, resulting jointly in better prompts and masks. Experiments on 5 benchmarks demonstrate the effectiveness of ProMaC. Code given in https://lwpyh.github.io/ProMaC/.

  • 4 authors
·
Aug 27, 2024

MoVA: Adapting Mixture of Vision Experts to Multimodal Context

As the key component in multimodal large language models (MLLMs), the ability of the visual encoder greatly affects MLLM's understanding on diverse image content. Although some large-scale pretrained vision encoders such as vision encoders in CLIP and DINOv2 have brought promising performance, we found that there is still no single vision encoder that can dominate various image content understanding, e.g., the CLIP vision encoder leads to outstanding results on general image understanding but poor performance on document or chart content. To alleviate the bias of CLIP vision encoder, we first delve into the inherent behavior of different pre-trained vision encoders and then propose the MoVA, a powerful and novel MLLM, adaptively routing and fusing task-specific vision experts with a coarse-to-fine mechanism. In the coarse-grained stage, we design a context-aware expert routing strategy to dynamically select the most suitable vision experts according to the user instruction, input image, and expertise of vision experts. This benefits from the powerful model function understanding ability of the large language model (LLM) equipped with expert-routing low-rank adaptation (LoRA). In the fine-grained stage, we elaborately conduct the mixture-of-vision-expert adapter (MoV-Adapter) to extract and fuse task-specific knowledge from various experts. This coarse-to-fine paradigm effectively leverages representations from experts based on multimodal context and model expertise, further enhancing the generalization ability. We conduct extensive experiments to evaluate the effectiveness of the proposed approach. Without any bells and whistles, MoVA can achieve significant performance gains over current state-of-the-art methods in a wide range of challenging multimodal benchmarks. Codes and models will be available at https://github.com/TempleX98/MoVA.

  • 8 authors
·
Apr 19, 2024

SparkUI-Parser: Enhancing GUI Perception with Robust Grounding and Parsing

The existing Multimodal Large Language Models (MLLMs) for GUI perception have made great progress. However, the following challenges still exist in prior methods: 1) They model discrete coordinates based on text autoregressive mechanism, which results in lower grounding accuracy and slower inference speed. 2) They can only locate predefined sets of elements and are not capable of parsing the entire interface, which hampers the broad application and support for downstream tasks. To address the above issues, we propose SparkUI-Parser, a novel end-to-end framework where higher localization precision and fine-grained parsing capability of the entire interface are simultaneously achieved. Specifically, instead of using probability-based discrete modeling, we perform continuous modeling of coordinates based on a pre-trained Multimodal Large Language Model (MLLM) with an additional token router and coordinate decoder. This effectively mitigates the limitations inherent in the discrete output characteristics and the token-by-token generation process of MLLMs, consequently boosting both the accuracy and the inference speed. To further enhance robustness, a rejection mechanism based on a modified Hungarian matching algorithm is introduced, which empowers the model to identify and reject non-existent elements, thereby reducing false positives. Moreover, we present ScreenParse, a rigorously constructed benchmark to systematically assess structural perception capabilities of GUI models across diverse scenarios. Extensive experiments demonstrate that our approach consistently outperforms SOTA methods on ScreenSpot, ScreenSpot-v2, CAGUI-Grounding and ScreenParse benchmarks. The resources are available at https://github.com/antgroup/SparkUI-Parser.

  • 12 authors
·
Sep 5

When Do We Not Need Larger Vision Models?

Scaling up the size of vision models has been the de facto standard to obtain more powerful visual representations. In this work, we discuss the point beyond which larger vision models are not necessary. First, we demonstrate the power of Scaling on Scales (S^2), whereby a pre-trained and frozen smaller vision model (e.g., ViT-B or ViT-L), run over multiple image scales, can outperform larger models (e.g., ViT-H or ViT-G) on classification, segmentation, depth estimation, Multimodal LLM (MLLM) benchmarks, and robotic manipulation. Notably, S^2 achieves state-of-the-art performance in detailed understanding of MLLM on the V* benchmark, surpassing models such as GPT-4V. We examine the conditions under which S^2 is a preferred scaling approach compared to scaling on model size. While larger models have the advantage of better generalization on hard examples, we show that features of larger vision models can be well approximated by those of multi-scale smaller models. This suggests most, if not all, of the representations learned by current large pre-trained models can also be obtained from multi-scale smaller models. Our results show that a multi-scale smaller model has comparable learning capacity to a larger model, and pre-training smaller models with S^2 can match or even exceed the advantage of larger models. We release a Python package that can apply S^2 on any vision model with one line of code: https://github.com/bfshi/scaling_on_scales.

  • 5 authors
·
Mar 19, 2024 2

Tiny language models

A prominent achievement of natural language processing (NLP) is its ability to understand and generate meaningful human language. This capability relies on complex feedforward transformer block architectures pre-trained on large language models (LLMs). However, LLM pre-training is currently feasible only for a few dominant companies due to the immense computational resources required, limiting broader research participation. This creates a critical need for more accessible alternatives. In this study, we explore whether tiny language models (TLMs) exhibit the same key qualitative features of LLMs. We demonstrate that TLMs exhibit a clear performance gap between pre-trained and non-pre-trained models across classification tasks, indicating the effectiveness of pre-training, even at a tiny scale. The performance gap increases with the size of the pre-training dataset and with greater overlap between tokens in the pre-training and classification datasets. Furthermore, the classification accuracy achieved by a pre-trained deep TLM architecture can be replicated through a soft committee of multiple, independently pre-trained shallow architectures, enabling low-latency TLMs without affecting classification accuracy. Our results are based on pre-training BERT-6 and variants of BERT-1 on subsets of the Wikipedia dataset and evaluating their performance on FewRel, AGNews, and DBPedia classification tasks. Future research on TLM is expected to further illuminate the mechanisms underlying NLP, especially given that its biologically inspired models suggest that TLMs may be sufficient for children or adolescents to develop language. The data and code that support the findings of this study are openly available on https://github.com/Rg32601/Tiny-Language-Models .

  • 5 authors
·
Jul 20

INGENIOUS: Using Informative Data Subsets for Efficient Pre-Training of Language Models

A salient characteristic of pre-trained language models (PTLMs) is a remarkable improvement in their generalization capability and emergence of new capabilities with increasing model capacity and pre-training dataset size. Consequently, we are witnessing the development of enormous models pushing the state-of-the-art. It is, however, imperative to realize that this inevitably leads to prohibitively long training times, extortionate computing costs, and a detrimental environmental impact. Significant efforts are underway to make PTLM training more efficient through innovations in model architectures, training pipelines, and loss function design, with scant attention being paid to optimizing the utility of training data. The key question that we ask is whether it is possible to train PTLMs by employing only highly informative subsets of the training data while maintaining downstream performance? Building upon the recent progress in informative data subset selection, we show how we can employ submodular optimization to select highly representative subsets of the training corpora and demonstrate that the proposed framework can be applied to efficiently train multiple PTLMs (BERT, BioBERT, GPT-2) using only a fraction of data. Further, we perform a rigorous empirical evaluation to show that the resulting models achieve up to sim99% of the performance of the fully-trained models. We made our framework publicly available at https://github.com/Efficient-AI/ingenious.

  • 7 authors
·
May 11, 2023

Unsupervised Post-Training for Multi-Modal LLM Reasoning via GRPO

Improving Multi-modal Large Language Models (MLLMs) in the post-training stage typically relies on supervised fine-tuning (SFT) or reinforcement learning (RL). However, these supervised methods require expensive and manually annotated multi-modal data--an ultimately unsustainable resource. While recent efforts have explored unsupervised post-training, their methods are complex and difficult to iterate. In this work, we are the first to investigate the use of GRPO, a stable and scalable online RL algorithm, for enabling continual self-improvement without any external supervision. We propose MM-UPT, a simple yet effective framework for unsupervised post-training of MLLMs. MM-UPT builds upon GRPO, replacing traditional reward signals with a self-rewarding mechanism based on majority voting over multiple sampled responses. Our experiments demonstrate that MM-UPT significantly improves the reasoning ability of Qwen2.5-VL-7B (e.g., 66.3 %rightarrow72.9 % on MathVista, 62.9 %rightarrow68.7 % on We-Math), using standard dataset without ground truth labels. MM-UPT also outperforms prior unsupervised baselines and even approaches the results of supervised GRPO. Furthermore, we show that incorporating synthetic questions, generated solely by MLLM itself, can boost performance as well, highlighting a promising approach for scalable self-improvement. Overall, MM-UPT offers a new paradigm for continual, autonomous enhancement of MLLMs in the absence of external supervision. Our code is available at https://github.com/waltonfuture/MM-UPT.

  • 7 authors
·
May 28 2

NoteLLM-2: Multimodal Large Representation Models for Recommendation

Large Language Models (LLMs) have demonstrated exceptional text understanding. Existing works explore their application in text embedding tasks. However, there are few works utilizing LLMs to assist multimodal representation tasks. In this work, we investigate the potential of LLMs to enhance multimodal representation in multimodal item-to-item (I2I) recommendations. One feasible method is the transfer of Multimodal Large Language Models (MLLMs) for representation tasks. However, pre-training MLLMs usually requires collecting high-quality, web-scale multimodal data, resulting in complex training procedures and high costs. This leads the community to rely heavily on open-source MLLMs, hindering customized training for representation scenarios. Therefore, we aim to design an end-to-end training method that customizes the integration of any existing LLMs and vision encoders to construct efficient multimodal representation models. Preliminary experiments show that fine-tuned LLMs in this end-to-end method tend to overlook image content. To overcome this challenge, we propose a novel training framework, NoteLLM-2, specifically designed for multimodal representation. We propose two ways to enhance the focus on visual information. The first method is based on the prompt viewpoint, which separates multimodal content into visual content and textual content. NoteLLM-2 adopts the multimodal In-Content Learning method to teach LLMs to focus on both modalities and aggregate key information. The second method is from the model architecture, utilizing a late fusion mechanism to directly fuse visual information into textual information. Extensive experiments have been conducted to validate the effectiveness of our method.

  • 8 authors
·
May 26, 2024

MachineLearningLM: Continued Pretraining Language Models on Millions of Synthetic Tabular Prediction Tasks Scales In-Context ML

Large language models (LLMs) possess broad world knowledge and strong general-purpose reasoning ability, yet they struggle to learn from many in-context examples on standard machine learning (ML) tasks, that is, to leverage many-shot demonstrations purely via in-context learning (ICL) without gradient descent. We introduce MachineLearningLM, a portable continued-pretraining framework that equips a general-purpose LLM with robust in-context ML capability while preserving its general knowledge and reasoning for broader chat workflows. Our pretraining procedure synthesizes ML tasks from millions of structural causal models (SCMs), spanning shot counts up to 1,024. We begin with a random-forest teacher, distilling tree-based decision strategies into the LLM to strengthen robustness in numerical modeling. All tasks are serialized with a token-efficient prompt, enabling 3x to 6x more examples per context window and delivering up to 50x amortized throughput via batch inference. Despite a modest setup (Qwen-2.5-7B-Instruct with LoRA rank 8), MachineLearningLM outperforms strong LLM baselines (e.g., GPT-5-mini) by an average of about 15% on out-of-distribution tabular classification across finance, physics, biology, and healthcare domains. It exhibits a striking many-shot scaling law: accuracy increases monotonically as in-context demonstrations grow from 8 to 1,024. Without any task-specific training, it attains random-forest-level accuracy across hundreds of shots. General chat capabilities, including knowledge and reasoning, are preserved: it achieves 75.4% on MMLU.

  • 5 authors
·
Sep 8 7

LLaVA-KD: A Framework of Distilling Multimodal Large Language Models

The success of Large Language Models (LLM) has led researchers to explore Multimodal Large Language Models (MLLM) for unified visual and linguistic understanding. However, the increasing model size and computational complexity of MLLM limit their use in resource-constrained environments. Small-scale MLLM (s-MLLM) aims to retain the capabilities of the large-scale model (l-MLLM) while reducing computational demands, but resulting in a significant decline in performance. To address the aforementioned issues, we propose a novel LLaVA-KD framework to transfer knowledge from l-MLLM to s-MLLM. Specifically, we introduce Multimodal Distillation (MDist) to minimize the divergence between the visual-textual output distributions of l-MLLM and s-MLLM, and Relation Distillation (RDist) to transfer l-MLLM's ability to model correlations between visual features. Additionally, we propose a three-stage training scheme to fully exploit the potential of s-MLLM: 1) Distilled Pre-Training to align visual-textual representations, 2) Supervised Fine-Tuning to equip the model with multimodal understanding, and 3) Distilled Fine-Tuning to further transfer l-MLLM capabilities. Our approach significantly improves performance without altering the small model's architecture. Extensive experiments and ablation studies validate the effectiveness of each proposed component. Code will be available at https://github.com/caiyuxuan1120/LLaVA-KD.

  • 8 authors
·
Oct 21, 2024

mOSCAR: A Large-scale Multilingual and Multimodal Document-level Corpus

Multimodal Large Language Models (mLLMs) are trained on a large amount of text-image data. While most mLLMs are trained on caption-like data only, Alayrac et al. [2022] showed that additionally training them on interleaved sequences of text and images can lead to the emergence of in-context learning capabilities. However, the dataset they used, M3W, is not public and is only in English. There have been attempts to reproduce their results but the released datasets are English-only. In contrast, current multilingual and multimodal datasets are either composed of caption-like only or medium-scale or fully private data. This limits mLLM research for the 7,000 other languages spoken in the world. We therefore introduce mOSCAR, to the best of our knowledge the first large-scale multilingual and multimodal document corpus crawled from the web. It covers 163 languages, 315M documents, 214B tokens and 1.2B images. We carefully conduct a set of filtering and evaluation steps to make sure mOSCAR is sufficiently safe, diverse and of good quality. We additionally train two types of multilingual model to prove the benefits of mOSCAR: (1) a model trained on a subset of mOSCAR and captioning data and (2) a model train on captioning data only. The model additionally trained on mOSCAR shows a strong boost in few-shot learning performance across various multilingual image-text tasks and benchmarks, confirming previous findings for English-only mLLMs.

  • 8 authors
·
Jun 12, 2024 4

OLA-VLM: Elevating Visual Perception in Multimodal LLMs with Auxiliary Embedding Distillation

The standard practice for developing contemporary MLLMs is to feed features from vision encoder(s) into the LLM and train with natural language supervision. In this work, we posit an overlooked opportunity to optimize the intermediate LLM representations through a vision perspective (objective), i.e., solely natural language supervision is sub-optimal for the MLLM's visual understanding ability. To that end, we propose OLA-VLM, the first approach distilling knowledge into the LLM's hidden representations from a set of target visual representations. Firstly, we formulate the objective during the pretraining stage in MLLMs as a coupled optimization of predictive visual embedding and next text-token prediction. Secondly, we investigate MLLMs trained solely with natural language supervision and identify a positive correlation between the quality of visual representations within these models and their downstream performance. Moreover, upon probing our OLA-VLM, we observe improved representation quality owing to the embedding optimization. Thirdly, we demonstrate that our OLA-VLM outperforms the single and multi-encoder baselines, proving our approach's superiority over explicitly feeding the corresponding features to the LLM. Particularly, OLA-VLM boosts performance by an average margin of up to 2.5% on various benchmarks, with a notable improvement of 8.7% on the Depth task in CV-Bench. Our code is open-sourced at https://github.com/SHI-Labs/OLA-VLM .

  • 5 authors
·
Dec 12, 2024 2

Machine Vision Therapy: Multimodal Large Language Models Can Enhance Visual Robustness via Denoising In-Context Learning

Although vision models such as Contrastive Language-Image Pre-Training (CLIP) show impressive generalization performance, their zero-shot robustness is still limited under Out-of-Distribution (OOD) scenarios without fine-tuning. Instead of undesirably providing human supervision as commonly done, it is possible to take advantage of Multi-modal Large Language Models (MLLMs) that hold powerful visual understanding abilities. However, MLLMs are shown to struggle with vision problems due to the incompatibility of tasks, thus hindering their utilization. In this paper, we propose to effectively leverage MLLMs to conduct Machine Vision Therapy which aims to rectify the noisy predictions from vision models. By fine-tuning with the denoised labels, the learning model performance can be boosted in an unsupervised manner. To solve the incompatibility issue, we propose a novel Denoising In-Context Learning (DICL) strategy to align vision tasks with MLLMs. Concretely, by estimating a transition matrix that captures the probability of one class being confused with another, an instruction containing a correct exemplar and an erroneous one from the most probable noisy class can be constructed. Such an instruction can help any MLLMs with ICL ability to detect and rectify incorrect predictions of vision models. Through extensive experiments on ImageNet, WILDS, DomainBed, and other OOD datasets, we carefully validate the quantitative and qualitative effectiveness of our method. Our code is available at https://github.com/tmllab/Machine_Vision_Therapy.

  • 6 authors
·
Dec 5, 2023

Linguistic Entity Masking to Improve Cross-Lingual Representation of Multilingual Language Models for Low-Resource Languages

Multilingual Pre-trained Language models (multiPLMs), trained on the Masked Language Modelling (MLM) objective are commonly being used for cross-lingual tasks such as bitext mining. However, the performance of these models is still suboptimal for low-resource languages (LRLs). To improve the language representation of a given multiPLM, it is possible to further pre-train it. This is known as continual pre-training. Previous research has shown that continual pre-training with MLM and subsequently with Translation Language Modelling (TLM) improves the cross-lingual representation of multiPLMs. However, during masking, both MLM and TLM give equal weight to all tokens in the input sequence, irrespective of the linguistic properties of the tokens. In this paper, we introduce a novel masking strategy, Linguistic Entity Masking (LEM) to be used in the continual pre-training step to further improve the cross-lingual representations of existing multiPLMs. In contrast to MLM and TLM, LEM limits masking to the linguistic entity types nouns, verbs and named entities, which hold a higher prominence in a sentence. Secondly, we limit masking to a single token within the linguistic entity span thus keeping more context, whereas, in MLM and TLM, tokens are masked randomly. We evaluate the effectiveness of LEM using three downstream tasks, namely bitext mining, parallel data curation and code-mixed sentiment analysis using three low-resource language pairs English-Sinhala, English-Tamil, and Sinhala-Tamil. Experiment results show that continually pre-training a multiPLM with LEM outperforms a multiPLM continually pre-trained with MLM+TLM for all three tasks.

  • 2 authors
·
Jan 9

MLLM-DataEngine: An Iterative Refinement Approach for MLLM

Despite the great advance of Multimodal Large Language Models (MLLMs) in both instruction dataset building and benchmarking, the independence of training and evaluation makes current MLLMs hard to further improve their capability under the guidance of evaluation results with a relatively low human cost. In this paper, we propose MLLM-DataEngine, a novel closed-loop system that bridges data generation, model training, and evaluation. Within each loop iteration, the MLLM-DataEngine first analyze the weakness of the model based on the evaluation results, then generate a proper incremental dataset for the next training iteration and enhance the model capability iteratively. Compared with previous data collection methods which are separate from the benchmarking, the data generated by MLLM-DataEngine shows better targeting, quality, and correctness. For targeting, we propose an Adaptive Bad-case Sampling module, which adjusts the ratio of different types of data within each incremental dataset based on the benchmarking results. For quality, we resort to GPT-4 to generate high-quality data with each given data type. For correctness, prompt design is critical for the data generation results. Rather than previous hand-crafted prompt, we propose an Interactive Prompt Optimization strategy, which optimizes the prompt with the multi-round interaction between human and GPT, and improve the correctness of generated data greatly. Through extensive experiments, we find our MLLM-DataEngine could boost the MLLM capability in a targeted and automatic manner, with only a few human participation. We hope it could be a general solution for the following MLLMs building. The MLLM-DataEngine has been open-sourced and is now available at https://github.com/opendatalab/MLLM-DataEngine.

  • 8 authors
·
Aug 24, 2023

Do Not (Always) Look Right: Investigating the Capabilities of Decoder-Based Large Language Models for Sequence Labeling

Pre-trained language models based on masked language modeling (MLM) objective excel in natural language understanding (NLU) tasks. While fine-tuned MLM-based encoders consistently outperform causal language modeling decoders of comparable size, a recent trend of scaling decoder models to multiple billion parameters resulted in large language models (LLMs), making them competitive with MLM-based encoders. Although scale amplifies their prowess in NLU tasks, LLMs fall short of SOTA results in information extraction (IE) tasks, many framed as sequence labeling (SL). However, whether this is an intrinsic limitation of LLMs or whether their SL performance can be improved remains unclear. To address this, we explore strategies to enhance the SL performance of "open" LLMs (Llama2 and Mistral) on IE tasks. We investigate bidirectional information flow within groups of decoder blocks, applying layer-wise removal or enforcement of the causal mask (CM) during LLM fine-tuning. This approach yields performance gains competitive with SOTA SL models, matching or outperforming the results of CM removal from all blocks. Our findings hold for diverse SL tasks, proving that "open" LLMs with layer-dependent CM removal outperform strong MLM-based encoders and instruction-tuned LLMs. However, we observe no effect from CM removal on a small scale when maintaining an equivalent model size, pre-training steps, and pre-training and fine-tuning data.

  • 2 authors
·
Jan 25, 2024

Active Prompt Learning in Vision Language Models

Pre-trained Vision Language Models (VLMs) have demonstrated notable progress in various zero-shot tasks, such as classification and retrieval. Despite their performance, because improving performance on new tasks requires task-specific knowledge, their adaptation is essential. While labels are needed for the adaptation, acquiring them is typically expensive. To overcome this challenge, active learning, a method of achieving a high performance by obtaining labels for a small number of samples from experts, has been studied. Active learning primarily focuses on selecting unlabeled samples for labeling and leveraging them to train models. In this study, we pose the question, "how can the pre-trained VLMs be adapted under the active learning framework?" In response to this inquiry, we observe that (1) simply applying a conventional active learning framework to pre-trained VLMs even may degrade performance compared to random selection because of the class imbalance in labeling candidates, and (2) the knowledge of VLMs can provide hints for achieving the balance before labeling. Based on these observations, we devise a novel active learning framework for VLMs, denoted as PCB. To assess the effectiveness of our approach, we conduct experiments on seven different real-world datasets, and the results demonstrate that PCB surpasses conventional active learning and random sampling methods. Code will be available in https://github.com/kaist-dmlab/pcb .

  • 3 authors
·
Nov 18, 2023 1

Towards Self-Improving Systematic Cognition for Next-Generation Foundation MLLMs

Despite their impressive capabilities, Multimodal Large Language Models (MLLMs) face challenges with fine-grained perception and complex reasoning. Prevalent multimodal pre-training approaches focus on enhancing perception by training on high-quality image captions due to the extremely high cost of collecting chain-of-thought (CoT) reasoning data for improving reasoning. While leveraging advanced MLLMs for caption generation enhances scalability, the outputs often lack comprehensiveness and accuracy. In this paper, we introduce Self-Improving cognition (SIcog), a self-learning framework designed to construct next-generation foundation MLLMs by enhancing their systematic cognitive capabilities through multimodal pre-training with self-generated data. Specifically, we propose Chain-of-Description, an approach that improves an MLLM's systematic perception by enabling step-by-step visual understanding, ensuring greater comprehensiveness and accuracy. Additionally, we adopt a structured CoT reasoning technique to enable MLLMs to integrate in-depth multimodal reasoning. To construct a next-generation foundation MLLM with self-improved cognition, SIcog first equips an MLLM with systematic perception and reasoning abilities using minimal external annotations. The enhanced models then generate detailed captions and CoT reasoning data, which are further curated through self-consistency. This curated data is ultimately used for multimodal pre-training to develop next-generation foundation models. Extensive experiments on both low- and high-resolution MLLMs across diverse benchmarks demonstrate that, with merely 213K self-generated pre-training samples, SIcog produces next-generation foundation MLLMs with significantly improved cognition, achieving benchmark-leading performance compared to prevalent pre-training approaches.

  • 9 authors
·
Mar 15 3

MMBoundary: Advancing MLLM Knowledge Boundary Awareness through Reasoning Step Confidence Calibration

In recent years, multimodal large language models (MLLMs) have made significant progress but continue to face inherent challenges in multimodal reasoning, which requires multi-level (e.g., perception, reasoning) and multi-granular (e.g., multi-step reasoning chain) advanced inferencing. Prior work on estimating model confidence tends to focus on the overall response for training and calibration, but fails to assess confidence in each reasoning step, leading to undesirable hallucination snowballing. In this work, we present MMBoundary, a novel framework that advances the knowledge boundary awareness of MLLMs through reasoning step confidence calibration. To achieve this, we propose to incorporate complementary textual and cross-modal self-rewarding signals to estimate confidence at each step of the MLLM reasoning process. In addition to supervised fine-tuning MLLM on this set of self-rewarded confidence estimation signal for initial confidence expression warm-up, we introduce a reinforcement learning stage with multiple reward functions for further aligning model knowledge and calibrating confidence at each reasoning step, enhancing reasoning chain self-correction. Empirical results show that MMBoundary significantly outperforms existing methods across diverse domain datasets and metrics, achieving an average of 7.5% reduction in multimodal confidence calibration errors and up to 8.3% improvement in task performance.

  • 6 authors
·
May 29

On the Provable Advantage of Unsupervised Pretraining

Unsupervised pretraining, which learns a useful representation using a large amount of unlabeled data to facilitate the learning of downstream tasks, is a critical component of modern large-scale machine learning systems. Despite its tremendous empirical success, the rigorous theoretical understanding of why unsupervised pretraining generally helps remains rather limited -- most existing results are restricted to particular methods or approaches for unsupervised pretraining with specialized structural assumptions. This paper studies a generic framework, where the unsupervised representation learning task is specified by an abstract class of latent variable models Phi and the downstream task is specified by a class of prediction functions Psi. We consider a natural approach of using Maximum Likelihood Estimation (MLE) for unsupervised pretraining and Empirical Risk Minimization (ERM) for learning downstream tasks. We prove that, under a mild ''informative'' condition, our algorithm achieves an excess risk of mathcal{O}(mathcal{C_Phi/m} + mathcal{C_Psi/n}) for downstream tasks, where C_Phi, C_Psi are complexity measures of function classes Phi, Psi, and m, n are the number of unlabeled and labeled data respectively. Comparing to the baseline of mathcal{O}(mathcal{C_{Phi circ Psi}/n}) achieved by performing supervised learning using only the labeled data, our result rigorously shows the benefit of unsupervised pretraining when m gg n and C_{Phicirc Psi} > C_Psi. This paper further shows that our generic framework covers a wide range of approaches for unsupervised pretraining, including factor models, Gaussian mixture models, and contrastive learning.

  • 4 authors
·
Mar 2, 2023

From Generator to Embedder: Harnessing Innate Abilities of Multimodal LLMs via Building Zero-Shot Discriminative Embedding Model

Multimodal Large Language Models (MLLMs) have emerged as a promising solution for universal embedding tasks, yet adapting their generative nature for discriminative representation learning remains a significant challenge. The dominant paradigm of large-scale contrastive pre-training suffers from critical inefficiencies, including prohibitive computational costs and a failure to leverage the intrinsic, instruction-following capabilities of MLLMs. To overcome these limitations, we propose an efficient framework for universal multimodal embeddings, which bridges this gap by centering on two synergistic components. First, our hierarchical embedding prompt template employs a two-level instruction architecture that forces the model to produce discriminative representations. Building on this strong foundation, our second component, self-aware hard negative sampling, redefines the fine-tuning process by leveraging the model's own understanding to efficiently mine challenging negatives while actively filtering out potential false negatives. Our comprehensive experiments show that our hierarchical prompt achieves zero-shot performance competitive with contrastively trained baselines and enhances the fine-tuning process by lifting a simple in-batch negative baseline by 4.8 points on the MMEB benchmark. We further boost the performance via our self-aware hard negative sampling, achieving the state-of-the-art performance without the contrative pre-training. Our work presents an effective and efficient pathway to adapt MLLMs for universal embedding tasks, significantly reducing training time.

  • 2 authors
·
Aug 1

Merlin:Empowering Multimodal LLMs with Foresight Minds

Humans possess the remarkable ability to foresee the future to a certain extent based on present observations, a skill we term as foresight minds. However, this capability remains largely under explored within existing Multimodal Large Language Models (MLLMs), hindering their capacity to learn the fundamental principles of how things operate and the intentions behind the observed subjects. To address this issue, we introduce the integration of future modeling into the existing learning frameworks of MLLMs. By utilizing the subject trajectory, a highly structured representation of a consecutive frame sequence, as a learning objective, we aim to bridge the gap between the past and the future. We propose two innovative methods to empower MLLMs with foresight minds, Foresight Pre-Training (FPT) and Foresight Instruction-Tuning (FIT), which are inspired by the modern learning paradigm of LLMs. Specifically, FPT jointly training various tasks centered on trajectories, enabling MLLMs to learn how to attend and predict entire trajectories from a given initial observation. Then, FIT requires MLLMs to first predict trajectories of related objects and then reason about potential future events based on them. Aided by FPT and FIT, we build a novel and unified MLLM named Merlin that supports multi-images input and analysis about potential actions of multiple objects for the future reasoning. Experimental results show Merlin powerful foresight minds with impressive performance on both future reasoning and visual comprehension tasks.

  • 11 authors
·
Nov 30, 2023 1

Empowering Multimodal LLMs with External Tools: A Comprehensive Survey

By integrating the perception capabilities of multimodal encoders with the generative power of Large Language Models (LLMs), Multimodal Large Language Models (MLLMs), exemplified by GPT-4V, have achieved great success in various multimodal tasks, pointing toward a promising pathway to artificial general intelligence. Despite this progress, the limited quality of multimodal data, poor performance on many complex downstream tasks, and inadequate evaluation protocols continue to hinder the reliability and broader applicability of MLLMs across diverse domains. Inspired by the human ability to leverage external tools for enhanced reasoning and problem-solving, augmenting MLLMs with external tools (e.g., APIs, expert models, and knowledge bases) offers a promising strategy to overcome these challenges. In this paper, we present a comprehensive survey on leveraging external tools to enhance MLLM performance. Our discussion is structured along four key dimensions about external tools: (1) how they can facilitate the acquisition and annotation of high-quality multimodal data; (2) how they can assist in improving MLLM performance on challenging downstream tasks; (3) how they enable comprehensive and accurate evaluation of MLLMs; (4) the current limitations and future directions of tool-augmented MLLMs. Through this survey, we aim to underscore the transformative potential of external tools in advancing MLLM capabilities, offering a forward-looking perspective on their development and applications. The project page of this paper is publicly available athttps://github.com/Lackel/Awesome-Tools-for-MLLMs.

  • 6 authors
·
Aug 14

Multilingual Large Language Models: A Systematic Survey

This paper provides a comprehensive survey of the latest research on multilingual large language models (MLLMs). MLLMs not only are able to understand and generate language across linguistic boundaries, but also represent an important advancement in artificial intelligence. We first discuss the architecture and pre-training objectives of MLLMs, highlighting the key components and methodologies that contribute to their multilingual capabilities. We then discuss the construction of multilingual pre-training and alignment datasets, underscoring the importance of data quality and diversity in enhancing MLLM performance. An important focus of this survey is on the evaluation of MLLMs. We present a detailed taxonomy and roadmap covering the assessment of MLLMs' cross-lingual knowledge, reasoning, alignment with human values, safety, interpretability and specialized applications. Specifically, we extensively discuss multilingual evaluation benchmarks and datasets, and explore the use of LLMs themselves as multilingual evaluators. To enhance MLLMs from black to white boxes, we also address the interpretability of multilingual capabilities, cross-lingual transfer and language bias within these models. Finally, we provide a comprehensive review of real-world applications of MLLMs across diverse domains, including biology, medicine, computer science, mathematics and law. We showcase how these models have driven innovation and improvements in these specialized fields while also highlighting the challenges and opportunities in deploying MLLMs within diverse language communities and application scenarios. We listed the paper related in this survey and publicly available at https://github.com/tjunlp-lab/Awesome-Multilingual-LLMs-Papers.

  • 10 authors
·
Nov 17, 2024

CyberV: Cybernetics for Test-time Scaling in Video Understanding

Current Multimodal Large Language Models (MLLMs) may struggle with understanding long or complex videos due to computational demands at test time, lack of robustness, and limited accuracy, primarily stemming from their feed-forward processing nature. These limitations could be more severe for models with fewer parameters. To address these limitations, we propose a novel framework inspired by cybernetic principles, redesigning video MLLMs as adaptive systems capable of self-monitoring, self-correction, and dynamic resource allocation during inference. Our approach, CyberV, introduces a cybernetic loop consisting of an MLLM Inference System, a Sensor, and a Controller. Specifically, the sensor monitors forward processes of the MLLM and collects intermediate interpretations, such as attention drift, then the controller determines when and how to trigger self-correction and generate feedback to guide the next round. This test-time adaptive scaling framework enhances frozen MLLMs without requiring retraining or additional components. Experiments demonstrate significant improvements: CyberV boosts Qwen2.5-VL-7B by 8.3% and InternVL3-8B by 5.5% on VideoMMMU, surpassing the competitive proprietary model GPT-4o. When applied to Qwen2.5-VL-72B, it yields a 10.0% improvement, achieving performance even comparable to human experts. Furthermore, our method demonstrates consistent gains on general-purpose benchmarks, such as VideoMME and WorldSense, highlighting its effectiveness and generalization capabilities in making MLLMs more robust and accurate for dynamic video understanding. The code is released at https://github.com/marinero4972/CyberV.

ByteDance ByteDance
·
Jun 9 2

InternVL3: Exploring Advanced Training and Test-Time Recipes for Open-Source Multimodal Models

We introduce InternVL3, a significant advancement in the InternVL series featuring a native multimodal pre-training paradigm. Rather than adapting a text-only large language model (LLM) into a multimodal large language model (MLLM) that supports visual inputs, InternVL3 jointly acquires multimodal and linguistic capabilities from both diverse multimodal data and pure-text corpora during a single pre-training stage. This unified training paradigm effectively addresses the complexities and alignment challenges commonly encountered in conventional post-hoc training pipelines for MLLMs. To further improve performance and scalability, InternVL3 incorporates variable visual position encoding (V2PE) to support extended multimodal contexts, employs advanced post-training techniques such as supervised fine-tuning (SFT) and mixed preference optimization (MPO), and adopts test-time scaling strategies alongside an optimized training infrastructure. Extensive empirical evaluations demonstrate that InternVL3 delivers superior performance across a wide range of multi-modal tasks. In particular, InternVL3-78B achieves a score of 72.2 on the MMMU benchmark, setting a new state-of-the-art among open-source MLLMs. Its capabilities remain highly competitive with leading proprietary models, including ChatGPT-4o, Claude 3.5 Sonnet, and Gemini 2.5 Pro, while also maintaining strong pure-language proficiency. In pursuit of open-science principles, we will publicly release both the training data and model weights to foster further research and development in next-generation MLLMs.

  • 47 authors
·
Apr 14 8

RL makes MLLMs see better than SFT

A dominant assumption in Multimodal Language Model (MLLM) research is that its performance is largely inherited from the LLM backbone, given its immense parameter scale and remarkable capabilities. This has created a void in the understanding of the vision encoder, which determines how MLLMs perceive images. The recent shift in MLLM training paradigms, from Supervised Finetuning (SFT) to Reinforcement Learning (RL), magnifies this oversight-namely, the significant lack of analysis on how such training reshapes the vision encoder as well as the MLLM. To address this, we first investigate the impact of training strategies on MLLMs, where RL shows a clear advantage over SFT in strongly vision-related VQA benchmarks. Motivated by this, we conduct a critical yet under-explored analysis of the vision encoder of MLLMs through diverse and in-depth experiments, ranging from ImageNet classification and segmentation to gradient visualization. Our results demonstrate that MLLM's post-training strategy (i.e., SFT or RL) not only leads to distinct outcomes on MLLM downstream tasks, but also fundamentally reshapes MLLM's underlying visual representations. Specifically, the key finding of our study is that RL produces stronger and precisely localized visual representations compared to SFT, boosting the ability of the vision encoder for MLLM. We then reframe our findings into a simple recipe for building strong vision encoders for MLLMs, Preference-Instructed Vision OpTimization (PIVOT). When integrated into MLLMs, a PIVOT-trained vision encoder outperforms even larger and more heavily-trained counterparts, despite requiring less than 1% of the computational cost of standard vision pretraining. This result opens an effective and efficient path for advancing the vision backbones of MLLMs. Project page available at https://june-page.github.io/pivot/

naver-ai NAVER AI Lab
·
Oct 17 2

Revisiting MLLMs: An In-Depth Analysis of Image Classification Abilities

With the rapid advancement of Multimodal Large Language Models (MLLMs), a variety of benchmarks have been introduced to evaluate their capabilities. While most evaluations have focused on complex tasks such as scientific comprehension and visual reasoning, little attention has been given to assessing their fundamental image classification abilities. In this paper, we address this gap by thoroughly revisiting the MLLMs with an in-depth analysis of image classification. Specifically, building on established datasets, we examine a broad spectrum of scenarios, from general classification tasks (e.g., ImageNet, ObjectNet) to more fine-grained categories such as bird and food classification. Our findings reveal that the most recent MLLMs can match or even outperform CLIP-style vision-language models on several datasets, challenging the previous assumption that MLLMs are bad at image classification VLMClassifier. To understand the factors driving this improvement, we conduct an in-depth analysis of the network architecture, data selection, and training recipe used in public MLLMs. Our results attribute this success to advancements in language models and the diversity of training data sources. Based on these observations, we further analyze and attribute the potential reasons to conceptual knowledge transfer and enhanced exposure of target concepts, respectively. We hope our findings will offer valuable insights for future research on MLLMs and their evaluation in image classification tasks.

  • 7 authors
·
Dec 20, 2024

T2Vid: Translating Long Text into Multi-Image is the Catalyst for Video-LLMs

The success of Multimodal Large Language Models (MLLMs) in the image domain has garnered wide attention from the research community. Drawing on previous successful experiences, researchers have recently explored extending the success to the video understanding realms. Apart from training from scratch, an efficient way is to utilize the pre-trained image-LLMs, leading to two mainstream approaches, i.e. zero-shot inference and further fine-tuning with video data. In this work, our study of these approaches harvests an effective data augmentation method. We first make a deeper inspection of the zero-shot inference way and identify two limitations, i.e. limited generalization and lack of temporal understanding capabilities. Thus, we further investigate the fine-tuning approach and find a low learning efficiency when simply using all the video data samples, which can be attributed to a lack of instruction diversity. Aiming at this issue, we develop a method called T2Vid to synthesize video-like samples to enrich the instruction diversity in the training corpus. Integrating these data enables a simple and efficient training scheme, which achieves performance comparable to or even superior to using full video datasets by training with just 15% the sample size. Meanwhile, we find that the proposed scheme can boost the performance of long video understanding without training with long video samples. We hope our study will spark more thinking about using MLLMs for video understanding and curation of high-quality data. The code is released at https://github.com/xjtupanda/T2Vid.

  • 13 authors
·
Nov 29, 2024

MC-Bench: A Benchmark for Multi-Context Visual Grounding in the Era of MLLMs

While multimodal large language models (MLLMs) have demonstrated extraordinary vision-language understanding capabilities and shown potential to serve as general-purpose assistants, their abilities to solve instance-level visual-language problems beyond a single image warrant further exploration. In order to assess these unproven abilities of MLLMs, this paper proposes a new visual grounding task called multi-context visual grounding, which aims to localize instances of interest across multiple images based on open-ended text prompts. To facilitate this research, we meticulously construct a new dataset MC-Bench for benchmarking the visual grounding capabilities of MLLMs. MC-Bench features 2K high-quality and manually annotated samples, consisting of instance-level labeled image pairs and corresponding text prompts that indicate the target instances in the images. In total, there are three distinct styles of text prompts, covering 20 practical skills. We benchmark over 20 state-of-the-art MLLMs and foundation models with potential multi-context visual grounding capabilities. Our evaluation reveals a non-trivial performance gap between existing MLLMs and humans across all metrics. We also observe that existing MLLMs typically outperform foundation models without LLMs only on image-level metrics, and the specialist MLLMs trained on single images often struggle to generalize to multi-image scenarios. Moreover, a simple stepwise baseline integrating advanced MLLM and a detector can significantly surpass prior end-to-end MLLMs. We hope our MC-Bench and empirical findings can encourage the research community to further explore and enhance the untapped potentials of MLLMs in instance-level tasks, particularly in multi-image contexts. Project page: https://xuyunqiu.github.io/MC-Bench/.

  • 3 authors
·
Oct 16, 2024

CLS-RL: Image Classification with Rule-Based Reinforcement Learning

Classification is a core task in machine learning. Recent research has shown that although Multimodal Large Language Models (MLLMs) are initially poor at image classification, fine-tuning them with an adequate amount of data can significantly enhance their performance, making them comparable to SOTA classification models. However, acquiring large-scale labeled data is expensive. In this paper, we explore few-shot MLLM classification fine-tuning. We found that SFT can cause severe overfitting issues and may even degrade performance over the zero-shot approach. To address this challenge, inspired by the recent successes in rule-based reinforcement learning, we propose CLS-RL, which uses verifiable signals as reward to fine-tune MLLMs. We discovered that CLS-RL outperforms SFT in most datasets and has a much higher average accuracy on both base-to-new and few-shot learning setting. Moreover, we observed a free-lunch phenomenon for CLS-RL; when models are fine-tuned on a particular dataset, their performance on other distinct datasets may also improve over zero-shot models, even if those datasets differ in distribution and class names. This suggests that RL-based methods effectively teach models the fundamentals of classification. Lastly, inspired by recent works in inference time thinking, we re-examine the `thinking process' during fine-tuning, a critical aspect of RL-based methods, in the context of visual classification. We question whether such tasks require extensive thinking process during fine-tuning, proposing that this may actually detract from performance. Based on this premise, we introduce the No-Thinking-CLS-RL method, which minimizes thinking processes during training by setting an equality accuracy reward. Our findings indicate that, with much less fine-tuning time, No-Thinking-CLS-RL method achieves superior in-domain performance and generalization capabilities than CLS-RL.

  • 5 authors
·
Mar 20 2

LLaVA-MoD: Making LLaVA Tiny via MoE Knowledge Distillation

We introduce LLaVA-MoD, a novel framework designed to enable the efficient training of small-scale Multimodal Language Models (s-MLLM) by distilling knowledge from large-scale MLLM (l-MLLM). Our approach tackles two fundamental challenges in MLLM distillation. First, we optimize the network structure of s-MLLM by integrating a sparse Mixture of Experts (MoE) architecture into the language model, striking a balance between computational efficiency and model expressiveness. Second, we propose a progressive knowledge transfer strategy to ensure comprehensive knowledge migration. This strategy begins with mimic distillation, where we minimize the Kullback-Leibler (KL) divergence between output distributions to enable the student model to emulate the teacher network's understanding. Following this, we introduce preference distillation via Direct Preference Optimization (DPO), where the key lies in treating l-MLLM as the reference model. During this phase, the s-MLLM's ability to discriminate between superior and inferior examples is significantly enhanced beyond l-MLLM, leading to a better student that surpasses its teacher, particularly in hallucination benchmarks. Extensive experiments demonstrate that LLaVA-MoD outperforms existing models across various multimodal benchmarks while maintaining a minimal number of activated parameters and low computational costs. Remarkably, LLaVA-MoD, with only 2B activated parameters, surpasses Qwen-VL-Chat-7B by an average of 8.8% across benchmarks, using merely 0.3% of the training data and 23% trainable parameters. These results underscore LLaVA-MoD's ability to effectively distill comprehensive knowledge from its teacher model, paving the way for the development of more efficient MLLMs. The code will be available on: https://github.com/shufangxun/LLaVA-MoD.

  • 16 authors
·
Aug 28, 2024 2

Open-Qwen2VL: Compute-Efficient Pre-Training of Fully-Open Multimodal LLMs on Academic Resources

The reproduction of state-of-the-art multimodal LLM pre-training faces barriers at every stage of the pipeline, including high-quality data filtering, multimodal data mixture strategies, sequence packing techniques, and training frameworks. We introduce Open-Qwen2VL, a fully open-source 2B-parameter Multimodal Large Language Model pre-trained efficiently on 29M image-text pairs using only 442 A100-40G GPU hours. Our approach employs low-to-high dynamic image resolution and multimodal sequence packing to significantly enhance pre-training efficiency. The training dataset was carefully curated using both MLLM-based filtering techniques (e.g., MLM-Filter) and conventional CLIP-based filtering methods, substantially improving data quality and training efficiency. The Open-Qwen2VL pre-training is conducted on academic level 8xA100-40G GPUs at UCSB on 5B packed multimodal tokens, which is 0.36\% of 1.4T multimodal pre-training tokens of Qwen2-VL. The final instruction-tuned Open-Qwen2VL outperforms partially-open state-of-the-art MLLM Qwen2-VL-2B on various multimodal benchmarks of MMBench, SEEDBench, MMstar, and MathVista, indicating the remarkable training efficiency of Open-Qwen2VL. We open-source all aspects of our work, including compute-efficient and data-efficient training details, data filtering methods, sequence packing scripts, pre-training data in WebDataset format, FSDP-based training codebase, and both base and instruction-tuned model checkpoints. We redefine "fully open" for multimodal LLMs as the complete release of: 1) the training codebase, 2) detailed data filtering techniques, and 3) all pre-training and supervised fine-tuning data used to develop the model.

  • 5 authors
·
Apr 1 7

MME-Survey: A Comprehensive Survey on Evaluation of Multimodal LLMs

As a prominent direction of Artificial General Intelligence (AGI), Multimodal Large Language Models (MLLMs) have garnered increased attention from both industry and academia. Building upon pre-trained LLMs, this family of models further develops multimodal perception and reasoning capabilities that are impressive, such as writing code given a flow chart or creating stories based on an image. In the development process, evaluation is critical since it provides intuitive feedback and guidance on improving models. Distinct from the traditional train-eval-test paradigm that only favors a single task like image classification, the versatility of MLLMs has spurred the rise of various new benchmarks and evaluation methods. In this paper, we aim to present a comprehensive survey of MLLM evaluation, discussing four key aspects: 1) the summarised benchmarks types divided by the evaluation capabilities, including foundation capabilities, model self-analysis, and extented applications; 2) the typical process of benchmark counstruction, consisting of data collection, annotation, and precautions; 3) the systematic evaluation manner composed of judge, metric, and toolkit; 4) the outlook for the next benchmark. This work aims to offer researchers an easy grasp of how to effectively evaluate MLLMs according to different needs and to inspire better evaluation methods, thereby driving the progress of MLLM research.

  • 12 authors
·
Nov 22, 2024 2

Bifrost-1: Bridging Multimodal LLMs and Diffusion Models with Patch-level CLIP Latents

There is growing interest in integrating high-fidelity visual synthesis capabilities into large language models (LLMs) without compromising their strong reasoning capabilities. Existing methods that directly train LLMs or bridge LLMs and diffusion models usually suffer from costly training since the backbone LLMs have not seen image representations during pretraining. We present Bifrost-1, a unified framework that bridges pretrained multimodal LLMs (MLLMs) and diffusion models using patch-level CLIP image embeddings as latent variables, which are natively aligned with the MLLM's CLIP visual encoder. These patch-level image embeddings are integrated into the diffusion model with a lightweight adaptation of its ControlNet. To retain the original multimodal reasoning capabilities of MLLMs, we equip the MLLM with a visual generation branch initialized from the original MLLM parameters when predicting the patch-level image embeddings. By seamlessly integrating pretrained MLLMs and diffusion models with patch-level CLIP latents, our framework enables high-fidelity controllable image generation with significant training efficiency. Our experiments demonstrate that Bifrost-1 achieves comparable or better performance than previous methods in terms of visual fidelity and multimodal understanding, with substantially lower compute during training. We also provide comprehensive ablation studies showing the effectiveness of our design choices.

  • 5 authors
·
Aug 7 2

Visual Jigsaw Post-Training Improves MLLMs

Reinforcement learning based post-training has recently emerged as a powerful paradigm for enhancing the alignment and reasoning capabilities of multimodal large language models (MLLMs). While vision-centric post-training is crucial for enhancing MLLMs' intrinsic understanding of visual signals, current post-training paradigms are predominantly text-centric, where dense visual inputs are only leveraged to extract sparse cues for text-based reasoning. There exist a few approaches in this direction, however, they often still rely on text as an intermediate mediator or introduce additional visual generative designs. In this work, we introduce Visual Jigsaw, a generic self-supervised post-training framework designed to strengthen visual understanding in MLLMs. Visual Jigsaw is formulated as a general ordering task: visual inputs are partitioned, shuffled, and the model must reconstruct the visual information by producing the correct permutation in natural language. This naturally aligns with reinforcement learning from verifiable rewards (RLVR), requires no additional visual generative components, and derives its supervisory signal automatically without any annotations. We instantiate Visual Jigsaw across three visual modalities, including images, videos, and 3D data. Extensive experiments demonstrate substantial improvements in fine-grained perception, temporal reasoning, and 3D spatial understanding. Our findings highlight the potential of self-supervised vision-centric tasks in post-training MLLMs and aim to inspire further research on vision-centric pretext designs. Project Page: https://penghao-wu.github.io/visual_jigsaw/

  • 6 authors
·
Sep 29 2

RLAIF-V: Aligning MLLMs through Open-Source AI Feedback for Super GPT-4V Trustworthiness

Learning from feedback reduces the hallucination of multimodal large language models (MLLMs) by aligning them with human preferences. While traditional methods rely on labor-intensive and time-consuming manual labeling, recent approaches employing models as automatic labelers have shown promising results without human intervention. However, these methods heavily rely on costly proprietary models like GPT-4V, resulting in scalability issues. Moreover, this paradigm essentially distills the proprietary models to provide a temporary solution to quickly bridge the performance gap. As this gap continues to shrink, the community is soon facing the essential challenge of aligning MLLMs using labeler models of comparable capability. In this work, we introduce RLAIF-V, a novel framework that aligns MLLMs in a fully open-source paradigm for super GPT-4V trustworthiness. RLAIF-V maximally exploits the open-source feedback from two perspectives, including high-quality feedback data and online feedback learning algorithm. Extensive experiments on seven benchmarks in both automatic and human evaluation show that RLAIF-V substantially enhances the trustworthiness of models without sacrificing performance on other tasks. Using a 34B model as labeler, RLAIF-V 7B model reduces object hallucination by 82.9\% and overall hallucination by 42.1\%, outperforming the labeler model. Remarkably, RLAIF-V also reveals the self-alignment potential of open-source MLLMs, where a 12B model can learn from the feedback of itself to achieve less than 29.5\% overall hallucination rate, surpassing GPT-4V (45.9\%) by a large margin. The results shed light on a promising route to enhance the efficacy of leading-edge MLLMs.

  • 11 authors
·
May 27, 2024

Automatic Evaluation for Text-to-image Generation: Task-decomposed Framework, Distilled Training, and Meta-evaluation Benchmark

Driven by the remarkable progress in diffusion models, text-to-image generation has made significant strides, creating a pressing demand for automatic quality evaluation of generated images. Current state-of-the-art automatic evaluation methods heavily rely on Multi-modal Large Language Models (MLLMs), particularly powerful commercial models like GPT-4o. While these models are highly effective, their substantial costs limit scalability in large-scale evaluations. Adopting open-source MLLMs is an alternative; however, their performance falls short due to significant limitations in processing multi-modal data compared to commercial MLLMs. To tackle these problems, we first propose a task decomposition evaluation framework based on GPT-4o to automatically construct a new training dataset, where the complex evaluation task is decoupled into simpler sub-tasks, effectively reducing the learning complexity. Based on this dataset, we design innovative training strategies to effectively distill GPT-4o's evaluation capabilities into a 7B open-source MLLM, MiniCPM-V-2.6. Furthermore, to reliably and comprehensively assess prior works and our proposed model, we manually annotate a meta-evaluation benchmark that includes chain-of-thought explanations alongside quality scores for generated images. Experimental results demonstrate that our distilled open-source MLLM significantly outperforms the current state-of-the-art GPT-4o-base baseline, VIEScore, with over 4.6\% improvement in Spearman and Kendall correlations with human judgments.

  • 6 authors
·
Nov 23, 2024

AfroLM: A Self-Active Learning-based Multilingual Pretrained Language Model for 23 African Languages

In recent years, multilingual pre-trained language models have gained prominence due to their remarkable performance on numerous downstream Natural Language Processing tasks (NLP). However, pre-training these large multilingual language models requires a lot of training data, which is not available for African Languages. Active learning is a semi-supervised learning algorithm, in which a model consistently and dynamically learns to identify the most beneficial samples to train itself on, in order to achieve better optimization and performance on downstream tasks. Furthermore, active learning effectively and practically addresses real-world data scarcity. Despite all its benefits, active learning, in the context of NLP and especially multilingual language models pretraining, has received little consideration. In this paper, we present AfroLM, a multilingual language model pretrained from scratch on 23 African languages (the largest effort to date) using our novel self-active learning framework. Pretrained on a dataset significantly (14x) smaller than existing baselines, AfroLM outperforms many multilingual pretrained language models (AfriBERTa, XLMR-base, mBERT) on various NLP downstream tasks (NER, text classification, and sentiment analysis). Additional out-of-domain sentiment analysis experiments show that AfroLM is able to generalize well across various domains. We release the code source, and our datasets used in our framework at https://github.com/bonaventuredossou/MLM_AL.

  • 8 authors
·
Nov 6, 2022

A Little Help Goes a Long Way: Efficient LLM Training by Leveraging Small LMs

A primary challenge in large language model (LLM) development is their onerous pre-training cost. Typically, such pre-training involves optimizing a self-supervised objective (such as next-token prediction) over a large corpus. This paper explores a promising paradigm to improve LLM pre-training efficiency and quality by suitably leveraging a small language model (SLM). In particular, this paradigm relies on an SLM to both (1) provide soft labels as additional training supervision, and (2) select a small subset of valuable ("informative" and "hard") training examples. Put together, this enables an effective transfer of the SLM's predictive distribution to the LLM, while prioritizing specific regions of the training data distribution. Empirically, this leads to reduced LLM training time compared to standard training, while improving the overall quality. Theoretically, we develop a statistical framework to systematically study the utility of SLMs in enabling efficient training of high-quality LLMs. In particular, our framework characterizes how the SLM's seemingly low-quality supervision can enhance the training of a much more capable LLM. Furthermore, it also highlights the need for an adaptive utilization of such supervision, by striking a balance between the bias and variance introduced by the SLM-provided soft labels. We corroborate our theoretical framework by improving the pre-training of an LLM with 2.8B parameters by utilizing a smaller LM with 1.5B parameters on the Pile dataset.

  • 15 authors
·
Oct 24, 2024

ARMOR v0.1: Empowering Autoregressive Multimodal Understanding Model with Interleaved Multimodal Generation via Asymmetric Synergy

Unified models (UniMs) for multimodal understanding and generation have recently received much attention in the area of vision and language. Existing UniMs are designed to simultaneously learn both multimodal understanding and generation capabilities, demanding substantial computational resources, and often struggle to generate interleaved text-image. We present ARMOR, a resource-efficient and pure autoregressive framework that achieves both understanding and generation by fine-tuning existing multimodal large language models (MLLMs). Specifically, ARMOR extends existing MLLMs from three perspectives: (1) For model architecture, an asymmetric encoder-decoder architecture with a forward-switching mechanism is introduced to unify embedding space integrating textual and visual modalities for enabling natural text-image interleaved generation with minimal computational overhead. (2) For training data, a meticulously curated, high-quality interleaved dataset is collected for fine-tuning MLLMs. (3) For the training algorithm, we propose a ``what or how to generate" algorithm to empower existing MLLMs with multimodal generation capabilities while preserving their multimodal understanding capabilities, through three progressive training stages based on the collected dataset. Experimental results demonstrate that ARMOR upgrades existing MLLMs to UniMs with promising image generation capabilities, using limited training resources. Our code will be released soon at https://armor.github.io.

The Future of MLLM Prompting is Adaptive: A Comprehensive Experimental Evaluation of Prompt Engineering Methods for Robust Multimodal Performance

Multimodal Large Language Models (MLLMs) are set to transform how machines process and generate human-like responses by integrating diverse modalities such as text, images, and code. Yet, effectively harnessing their capabilities hinges on optimal prompt engineering. We present a comprehensive experimental evaluation of seven prompt engineering methods applied to 13 open-source MLLMs over 24 tasks spanning Reasoning and Compositionality, Multimodal Understanding and Alignment, Complex Code Generation and Execution, and Knowledge Retrieval and Integration. Our approach stratifies models by parameter count into Small (<4B), Medium (4B-10B), and Large (>10B) categories and compares prompting techniques including Zero-Shot, One-Shot, Few-Shot, Chain-of-Thought, Analogical, Generated Knowledge, and Tree-of-Thought. While Large MLLMs excel in structured tasks such as code generation, achieving accuracies up to 96.88% under Few-Shot prompting, all models struggle with complex reasoning and abstract understanding, often yielding accuracies below 60% and high hallucination rates. Structured reasoning prompts frequently increased hallucination up to 75% in small models and led to longer response times (over 20 seconds in Large MLLMs), while simpler prompting methods provided more concise and efficient outputs. No single prompting method uniformly optimises all task types. Instead, adaptive strategies combining example-based guidance with selective structured reasoning are essential to enhance robustness, efficiency, and factual accuracy. Our findings offer practical recommendations for prompt engineering and support more reliable deployment of MLLMs across applications including AI-assisted coding, knowledge retrieval, and multimodal content understanding.

  • 3 authors
·
Apr 14 1

Catching the Details: Self-Distilled RoI Predictors for Fine-Grained MLLM Perception

Multimodal Large Language Models (MLLMs) require high-resolution visual information to perform fine-grained perception, yet processing entire high-resolution images is computationally prohibitive. While recent methods leverage a Region-of-Interest (RoI) mechanism to focus on salient areas, they typically present a difficult trade-off: training-based approaches depend on large-scale annotated datasets, while training-free methods that utilize the model's internal attention are computationally inefficient and less accurate, requiring either multi-pass prefill stages or reliance on the slow auto-regressive decoding process. In this paper, we propose an efficient, annotation-free Self-Distilled Region Proposal Network (SD-RPN) that resolves this trade-off. The SD-RPN is built around a pipeline that transforms the noisy attention maps from the MLLM's middle layers into high-quality pseudo-RoI labels by explicitly denoising the signal and resolving ambiguity. We use these labels to train a lightweight Region Proposal Network (RPN) that learns a more precise localization. This RPN is also highly efficient, predicting the RoI in a single forward pass using features from the MLLM's middle layers, decoupling RoI identification from the auto-regressive generation and avoiding costly multi-pass operations.To validate our approach, we integrate the framework into the LLaVA-1.5 architecture. Despite being trained on only a few (e.g. 10K) question-answer pairs, our method demonstrates exceptional data efficiency and generalization, achieving over a 10% absolute accuracy improvement on unseen benchmarks, including TextVQA, DocVQA, and V-Star. Our work presents a practical and scalable solution for enhancing the fine-grained perception of MLLMs without requiring costly supervision or full model fine-tuning. Code is available at https://github.com/YuHengsss/SD-RPN.

InfiMM-WebMath-40B: Advancing Multimodal Pre-Training for Enhanced Mathematical Reasoning

Pre-training on large-scale, high-quality datasets is crucial for enhancing the reasoning capabilities of Large Language Models (LLMs), especially in specialized domains such as mathematics. Despite the recognized importance, the Multimodal LLMs (MLLMs) field currently lacks a comprehensive open-source pre-training dataset specifically designed for mathematical reasoning. To address this gap, we introduce InfiMM-WebMath-40B, a high-quality dataset of interleaved image-text documents. It comprises 24 million web pages, 85 million associated image URLs, and 40 billion text tokens, all meticulously extracted and filtered from CommonCrawl. We provide a detailed overview of our data collection and processing pipeline. To demonstrate the robustness of InfiMM-WebMath-40B, we conducted evaluations in both text-only and multimodal settings. Our evaluations on text-only benchmarks show that, despite utilizing only 40 billion tokens, our dataset significantly enhances the performance of our 1.3B model, delivering results comparable to DeepSeekMath-1.3B, which uses 120 billion tokens for the same model size. Nevertheless, with the introduction of our multi-modal math pre-training dataset, our models set a new state-of-the-art among open-source models on multi-modal math benchmarks such as MathVerse and We-Math. We release our data at https://huggingface.co/datasets/Infi-MM/InfiMM-WebMath-40B.

  • 11 authors
·
Sep 19, 2024 4

SEED-Bench-2-Plus: Benchmarking Multimodal Large Language Models with Text-Rich Visual Comprehension

Comprehending text-rich visual content is paramount for the practical application of Multimodal Large Language Models (MLLMs), since text-rich scenarios are ubiquitous in the real world, which are characterized by the presence of extensive texts embedded within images. Recently, the advent of MLLMs with impressive versatility has raised the bar for what we can expect from MLLMs. However, their proficiency in text-rich scenarios has yet to be comprehensively and objectively assessed, since current MLLM benchmarks primarily focus on evaluating general visual comprehension. In this work, we introduce SEED-Bench-2-Plus, a benchmark specifically designed for evaluating text-rich visual comprehension of MLLMs. Our benchmark comprises 2.3K multiple-choice questions with precise human annotations, spanning three broad categories: Charts, Maps, and Webs, each of which covers a wide spectrum of text-rich scenarios in the real world. These categories, due to their inherent complexity and diversity, effectively simulate real-world text-rich environments. We further conduct a thorough evaluation involving 34 prominent MLLMs (including GPT-4V, Gemini-Pro-Vision and Claude-3-Opus) and emphasize the current limitations of MLLMs in text-rich visual comprehension. We hope that our work can serve as a valuable addition to existing MLLM benchmarks, providing insightful observations and inspiring further research in the area of text-rich visual comprehension with MLLMs. The dataset and evaluation code can be accessed at https://github.com/AILab-CVC/SEED-Bench.

  • 6 authors
·
Apr 25, 2024 1

Prompt4Trust: A Reinforcement Learning Prompt Augmentation Framework for Clinically-Aligned Confidence Calibration in Multimodal Large Language Models

Multimodal large language models (MLLMs) hold considerable promise for applications in healthcare. However, their deployment in safety-critical settings is hindered by two key limitations: (i) sensitivity to prompt design, and (ii) a tendency to generate incorrect responses with high confidence. As clinicians may rely on a model's stated confidence to gauge the reliability of its predictions, it is especially important that when a model expresses high confidence, it is also highly accurate. We introduce Prompt4Trust, the first reinforcement learning (RL) framework for prompt augmentation targeting confidence calibration in MLLMs. A lightweight LLM is trained to produce context-aware auxiliary prompts that guide a downstream task MLLM to generate responses in which the expressed confidence more accurately reflects predictive accuracy. Unlike conventional calibration techniques, Prompt4Trust specifically prioritizes aspects of calibration most critical for safe and trustworthy clinical decision-making. Beyond improvements driven by this clinically motivated calibration objective, our proposed method also improves task accuracy, achieving state-of-the-art medical visual question answering (VQA) performance on the PMC-VQA benchmark, which is composed of multiple-choice questions spanning diverse medical imaging modalities. Moreover, our framework trained with a small downstream task MLLM showed promising zero-shot generalization to larger MLLMs in our experiments, suggesting the potential for scalable calibration without the associated computational costs. This work demonstrates the potential of automated yet human-aligned prompt engineering for improving the the trustworthiness of MLLMs in safety critical settings. Our codebase can be found at https://github.com/xingbpshen/prompt4trust.

  • 4 authors
·
Jul 12

AlignGPT: Multi-modal Large Language Models with Adaptive Alignment Capability

Multimodal Large Language Models (MLLMs) are widely regarded as crucial in the exploration of Artificial General Intelligence (AGI). The core of MLLMs lies in their capability to achieve cross-modal alignment. To attain this goal, current MLLMs typically follow a two-phase training paradigm: the pre-training phase and the instruction-tuning phase. Despite their success, there are shortcomings in the modeling of alignment capabilities within these models. Firstly, during the pre-training phase, the model usually assumes that all image-text pairs are uniformly aligned, but in fact the degree of alignment between different image-text pairs is inconsistent. Secondly, the instructions currently used for finetuning incorporate a variety of tasks, different tasks's instructions usually require different levels of alignment capabilities, but previous MLLMs overlook these differentiated alignment needs. To tackle these issues, we propose a new multimodal large language model AlignGPT. In the pre-training stage, instead of treating all image-text pairs equally, we assign different levels of alignment capabilities to different image-text pairs. Then, in the instruction-tuning phase, we adaptively combine these different levels of alignment capabilities to meet the dynamic alignment needs of different instructions. Extensive experimental results show that our model achieves competitive performance on 12 benchmarks.

  • 7 authors
·
May 22, 2024

Discrete Diffusion in Large Language and Multimodal Models: A Survey

In this work, we provide a systematic survey of Discrete Diffusion Language Models (dLLMs) and Discrete Diffusion Multimodal Language Models (dMLLMs). Unlike autoregressive (AR) models, dLLMs and dMLLMs adopt a multi-token, parallel decoding paradigm using full attention and a denoising-based generation strategy. This paradigm naturally enables parallel generation, fine-grained output controllability, and dynamic, response-aware perception. These capabilities are previously difficult to achieve with AR models. Recently, a growing number of industrial-scale proprietary d(M)LLMs, as well as a large number of open-source academic d(M)LLMs, have demonstrated performance comparable to their autoregressive counterparts, while achieving up to 10x acceleration in inference speed. The advancement of discrete diffusion LLMs and MLLMs has been largely driven by progress in two domains. The first is the development of autoregressive LLMs and MLLMs, which has accumulated vast amounts of data, benchmarks, and foundational infrastructure for training and inference. The second contributing domain is the evolution of the mathematical models underlying discrete diffusion. Together, these advancements have catalyzed a surge in dLLMs and dMLLMs research in early 2025. In this work, we present a comprehensive overview of the research in the dLLM and dMLLM domains. We trace the historical development of dLLMs and dMLLMs, formalize the underlying mathematical frameworks, and categorize representative models. We further analyze key techniques for training and inference, and summarize emerging applications across language, vision-language, and biological domains. We conclude by discussing future directions for research and deployment. Paper collection: https://github.com/LiQiiiii/DLLM-Survey

  • 3 authors
·
Jun 16 3

Should We Still Pretrain Encoders with Masked Language Modeling?

Learning high-quality text representations is fundamental to a wide range of NLP tasks. While encoder pretraining has traditionally relied on Masked Language Modeling (MLM), recent evidence suggests that decoder models pretrained with Causal Language Modeling (CLM) can be effectively repurposed as encoders, often surpassing traditional encoders on text representation benchmarks. However, it remains unclear whether these gains reflect an inherent advantage of the CLM objective or arise from confounding factors such as model and data scale. In this paper, we address this question through a series of large-scale, carefully controlled pretraining ablations, training a total of 30 models ranging from 210 million to 1 billion parameters, and conducting over 15,000 fine-tuning and evaluation runs. We find that while training with MLM generally yields better performance across text representation tasks, CLM-trained models are more data-efficient and demonstrate improved fine-tuning stability. Building on these findings, we experimentally show that a biphasic training strategy that sequentially applies CLM and then MLM, achieves optimal performance under a fixed computational training budget. Moreover, we demonstrate that this strategy becomes more appealing when initializing from readily available pretrained CLM models (from the existing LLM ecosystem), reducing the computational burden needed to train best-in-class encoder models. We release all project artifacts at https://hf.co/MLMvsCLM to foster further research.

  • 8 authors
·
Jul 1 9

Remember, Retrieve and Generate: Understanding Infinite Visual Concepts as Your Personalized Assistant

The development of large language models (LLMs) has significantly enhanced the capabilities of multimodal LLMs (MLLMs) as general assistants. However, lack of user-specific knowledge still restricts their application in human's daily life. In this paper, we introduce the Retrieval Augmented Personalization (RAP) framework for MLLMs' personalization. Starting from a general MLLM, we turn it into a personalized assistant in three steps. (a) Remember: We design a key-value database to store user-related information, e.g., user's name, avatar and other attributes. (b) Retrieve: When the user initiates a conversation, RAP will retrieve relevant information from the database using a multimodal retriever. (c) Generate: The input query and retrieved concepts' information are fed into MLLMs to generate personalized, knowledge-augmented responses. Unlike previous methods, RAP allows real-time concept editing via updating the external database. To further improve generation quality and alignment with user-specific information, we design a pipeline for data collection and create a specialized dataset for personalized training of MLLMs. Based on the dataset, we train a series of MLLMs as personalized multimodal assistants. By pretraining on large-scale dataset, RAP-MLLMs can generalize to infinite visual concepts without additional finetuning. Our models demonstrate outstanding flexibility and generation quality across a variety of tasks, such as personalized image captioning, question answering and visual recognition. The code, data and models are available at https://github.com/Hoar012/RAP-MLLM.

  • 5 authors
·
Oct 17, 2024 2

Mono-InternVL-1.5: Towards Cheaper and Faster Monolithic Multimodal Large Language Models

This paper focuses on monolithic Multimodal Large Language Models (MLLMs), which integrate visual encoding and language decoding into a single model. Existing structures and pre-training strategies for monolithic MLLMs often suffer from unstable optimization and catastrophic forgetting. To address these challenges, our key idea is to embed a new visual parameter space into a pre-trained LLM, enabling stable learning of visual knowledge from noisy data via delta tuning. Based on this principle, we first introduce Mono-InternVL, an advanced monolithic MLLM that incorporates a set of visual experts through a multimodal mixture-of-experts architecture. In addition, we design an innovative Endogenous Visual Pre-training (EViP) for Mono-InternVL to maximize its visual capabilities via progressive learning. Mono-InternVL achieves competitive performance against existing MLLMs but also leads to relatively expensive data cost. Therefore, we further present Mono-InternVL-1.5, a cheaper and stronger monolithic MLLM equipped with an improved EViP (EViP++). EViP++ introduces additional visual attention experts to Mono-InternVL-1.5 and re-organizes the pre-training process in an efficient manner. During inference, it includes a fused CUDA kernel to speed up its MoE operations. With these designs, Mono-InternVL-1.5 significantly reduces training and inference costs, while still maintaining competitive performance with Mono-InternVL. To evaluate our approach, we conduct extensive experiments across 15 benchmarks. Results demonstrate that Mono-InternVL outperforms existing monolithic MLLMs on 12 out of 15 benchmarks, e.g., +114-point improvement over Emu3 on OCRBench. Compared to its modular counterpart, i.e., InternVL-1.5, Mono-InternVL-1.5 achieves similar multimodal performance while reducing first-token latency by up to 69%. Code and models are released at https://github.com/OpenGVLab/Mono-InternVL.

  • 12 authors
·
Jul 16 1

Q-Bench: A Benchmark for General-Purpose Foundation Models on Low-level Vision

The rapid evolution of Multi-modality Large Language Models (MLLMs) has catalyzed a shift in computer vision from specialized models to general-purpose foundation models. Nevertheless, there is still an inadequacy in assessing the abilities of MLLMs on low-level visual perception and understanding. To address this gap, we present Q-Bench, a holistic benchmark crafted to systematically evaluate potential abilities of MLLMs on three realms: low-level visual perception, low-level visual description, and overall visual quality assessment. a) To evaluate the low-level perception ability, we construct the LLVisionQA dataset, consisting of 2,990 diverse-sourced images, each equipped with a human-asked question focusing on its low-level attributes. We then measure the correctness of MLLMs on answering these questions. b) To examine the description ability of MLLMs on low-level information, we propose the LLDescribe dataset consisting of long expert-labelled golden low-level text descriptions on 499 images, and a GPT-involved comparison pipeline between outputs of MLLMs and the golden descriptions. c) Besides these two tasks, we further measure their visual quality assessment ability to align with human opinion scores. Specifically, we design a softmax-based strategy that enables MLLMs to predict quantifiable quality scores, and evaluate them on various existing image quality assessment (IQA) datasets. Our evaluation across the three abilities confirms that MLLMs possess preliminary low-level visual skills. However, these skills are still unstable and relatively imprecise, indicating the need for specific enhancements on MLLMs towards these abilities. We hope that our benchmark can encourage the research community to delve deeper to discover and enhance these untapped potentials of MLLMs. Project Page: https://vqassessment.github.io/Q-Bench.

  • 11 authors
·
Sep 25, 2023 2

SEED-Bench-2: Benchmarking Multimodal Large Language Models

Multimodal large language models (MLLMs), building upon the foundation of powerful large language models (LLMs), have recently demonstrated exceptional capabilities in generating not only texts but also images given interleaved multimodal inputs (acting like a combination of GPT-4V and DALL-E 3). However, existing MLLM benchmarks remain limited to assessing only models' comprehension ability of single image-text inputs, failing to keep up with the strides made in MLLMs. A comprehensive benchmark is imperative for investigating the progress and uncovering the limitations of current MLLMs. In this work, we categorize the capabilities of MLLMs into hierarchical levels from L_0 to L_4 based on the modalities they can accept and generate, and propose SEED-Bench-2, a comprehensive benchmark that evaluates the hierarchical capabilities of MLLMs. Specifically, SEED-Bench-2 comprises 24K multiple-choice questions with accurate human annotations, which spans 27 dimensions, including the evaluation of both text and image generation. Multiple-choice questions with groundtruth options derived from human annotation enables an objective and efficient assessment of model performance, eliminating the need for human or GPT intervention during evaluation. We further evaluate the performance of 23 prominent open-source MLLMs and summarize valuable observations. By revealing the limitations of existing MLLMs through extensive evaluations, we aim for SEED-Bench-2 to provide insights that will motivate future research towards the goal of General Artificial Intelligence. Dataset and evaluation code are available at https://github.com/AILab-CVC/SEED-Bench

  • 7 authors
·
Nov 28, 2023

Genixer: Empowering Multimodal Large Language Models as a Powerful Data Generator

Large Language Models (LLMs) excel in understanding human instructions, driving the development of Multimodal LLMs (MLLMs) with instruction tuning. However, acquiring high-quality multimodal instruction tuning data poses a significant challenge. Previous approaches relying on GPT-4 for data generation proved expensive and exhibited unsatisfactory performance for certain tasks. To solve this, we present Genixer, an innovative data generation pipeline producing high-quality multimodal instruction tuning data for various tasks. Genixer collects datasets for ten prevalent multimodal tasks and designs instruction templates to transform these datasets into instruction-tuning data. It then trains pretrained MLLMs to generate task-specific instruction data and proposes an effective data filtering strategy to ensure high quality. To evaluate Genixer, a base MLLM model, Kakapo, is built and achieves SoTA performance in image captioning and visual question answering (VQA) tasks across multiple datasets. Experimental results show that filtered data from Genixer continually improves Kakapo for image captioning and VQA tasks. For the SoTA Shikra MLLM model on the image-region-related tasks, e.g., region caption and detection, Genixer also successfully generates corresponding data and improves its performance. Genixer opens avenues for generating high-quality multimodal instruction data for diverse tasks, enabling innovative applications across domains. The code and models will be released soon.

  • 3 authors
·
Dec 11, 2023

Token Activation Map to Visually Explain Multimodal LLMs

Multimodal large language models (MLLMs) are broadly empowering various fields. Despite their advancements, the explainability of MLLMs remains less explored, hindering deeper understanding, model credibility, and effective visualization. Unlike conventional vision models (e.g., CNNs, ViTs, CLIP) that produce a single output, MLLMs generate sequences of tokens progressively, where each generated token depends on the previous context. Therefore, earlier context tokens can introduce redundant activations that interfere with the explanation of later tokens beyond their original information. Existing studies often overlook this issue, but our observations reveal that these redundant correlations can significantly hurt the reliability of explanations. To address this, we propose an estimated causal inference method to mitigate the interference of context to achieve high-quality MLLM explanation, with a novel rank Gaussian filter to further reduce activation noises. We term this method Token Activation Map (TAM) to highlight the consideration of interactions between tokens. TAM also indicates that it excels at explaining multiple tokens of MLLM, which is different from the Class Activation Map (CAM) for a single prediction. Our TAM method significantly outperforms existing SoTA methods, showcasing high-quality visualization results that can be utilized for various scenarios, such as object localization, failure case analysis, video visualization, MLLMs visual comparison, and model understanding (e.g., color, shape, action, location, visual reasoning, multi-turn conversation, etc). The code is available atgithub.com/xmed-lab/TAM.

  • 5 authors
·
Jun 29

On the Compositional Generalization of Multimodal LLMs for Medical Imaging

Multimodal large language models (MLLMs) hold significant potential in the medical field, but their capabilities are often limited by insufficient data in certain medical domains, highlighting the need for understanding what kinds of images can be used by MLLMs for generalization. Current research suggests that multi-task training outperforms single-task as different tasks can benefit each other, but they often overlook the internal relationships within these tasks, providing limited guidance on selecting datasets to enhance specific tasks. To analyze this phenomenon, we attempted to employ compositional generalization (CG)-the ability of models to understand novel combinations by recombining learned elements-as a guiding framework. Since medical images can be precisely defined by Modality, Anatomical area, and Task, naturally providing an environment for exploring CG. Therefore, we assembled 106 medical datasets to create Med-MAT for comprehensive experiments. The experiments confirmed that MLLMs can use CG to understand unseen medical images and identified CG as one of the main drivers of the generalization observed in multi-task training. Additionally, further studies demonstrated that CG effectively supports datasets with limited data and delivers consistent performance across different backbones, highlighting its versatility and broad applicability. Med-MAT is publicly available at https://github.com/FreedomIntelligence/Med-MAT.

  • 9 authors
·
Dec 28, 2024 4

Capybara-OMNI: An Efficient Paradigm for Building Omni-Modal Language Models

With the development of Multimodal Large Language Models (MLLMs), numerous outstanding accomplishments have emerged within the open-source community. Due to the complexity of creating and training multimodal data pairs, it is still a computational and time-consuming process to build powerful MLLMs. In this work, we introduce Capybara-OMNI, an MLLM that trains in a lightweight and efficient manner and supports understanding text, image, video, and audio modalities. We present in detail the framework design, the data construction, and the training recipe, to develop an MLLM step-by-step to obtain competitive performance. We also provide exclusive benchmarks utilized in our experiments to show how to properly verify understanding capabilities across different modalities. Results show that by following our guidance, we can efficiently build an MLLM that achieves competitive performance among models of the same scale on various multimodal benchmarks. Additionally, to enhance the multimodal instruction following and conversational capabilities of the model, we further discuss how to train the chat version upon an MLLM understanding model, which is more in line with user habits for tasks like real-time interaction with humans. We publicly disclose the Capybara-OMNI model, along with its chat-based version. The disclosure includes both the model weights, a portion of the training data, and the inference codes, which are made available on GitHub.

  • 9 authors
·
Apr 10

MLLM-Tool: A Multimodal Large Language Model For Tool Agent Learning

Recently, the astonishing performance of large language models (LLMs) in natural language comprehension and generation tasks triggered lots of exploration of using them as central controllers to build agent systems. Multiple studies focus on bridging the LLMs to external tools to extend the application scenarios. However, the current LLMs' perceiving tool-use ability is limited to a single text query, which may result in ambiguity in understanding the users' real intentions. LLMs are expected to eliminate that by perceiving the visual- or auditory-grounded instructions' information. Therefore, in this paper, we propose MLLM-Tool, a system incorporating open-source LLMs and multi-modal encoders so that the learnt LLMs can be conscious of multi-modal input instruction and then select the function-matched tool correctly. To facilitate the evaluation of the model's capability, we collect a dataset featured by consisting of multi-modal input tools from HuggingFace. Another important feature of our dataset is that our dataset also contains multiple potential choices for the same instruction due to the existence of identical functions and synonymous functions, which provides more potential solutions for the same query. The experiments reveal that our MLLM-Tool is capable of recommending appropriate tools for multi-modal instructions. Codes and data are available at https://github.com/MLLM-Tool/MLLM-Tool.

  • 11 authors
·
Jan 19, 2024

MLLMs Know Where to Look: Training-free Perception of Small Visual Details with Multimodal LLMs

Multimodal Large Language Models (MLLMs) have experienced rapid progress in visual recognition tasks in recent years. Given their potential integration into many critical applications, it is important to understand the limitations of their visual perception. In this work, we study whether MLLMs can perceive small visual details as effectively as large ones when answering questions about images. We observe that their performance is very sensitive to the size of the visual subject of the question, and further show that this effect is in fact causal by conducting an intervention study. Next, we study the attention patterns of MLLMs when answering visual questions, and intriguingly find that they consistently know where to look, even when they provide the wrong answer. Based on these findings, we then propose training-free visual intervention methods that leverage the internal knowledge of any MLLM itself, in the form of attention and gradient maps, to enhance its perception of small visual details. We evaluate our proposed methods on two widely-used MLLMs and seven visual question answering benchmarks and show that they can significantly improve MLLMs' accuracy without requiring any training. Our results elucidate the risk of applying MLLMs to visual recognition tasks concerning small details and indicate that visual intervention using the model's internal state is a promising direction to mitigate this risk.

  • 4 authors
·
Feb 24 2

Bidirectional Likelihood Estimation with Multi-Modal Large Language Models for Text-Video Retrieval

Text-Video Retrieval aims to find the most relevant text (or video) candidate given a video (or text) query from large-scale online databases. Recent work leverages multi-modal large language models (MLLMs) to improve retrieval, especially for long or complex query-candidate pairs. However, we observe that the naive application of MLLMs, i.e., retrieval based on candidate likelihood, introduces candidate prior bias, favoring candidates with inherently higher priors over those more relevant to the query. To this end, we propose a novel retrieval framework, Bidirectional Likelihood Estimation with MLLM (BLiM), which leverages both query and candidate likelihoods by training the model to generate text from a given video as well as video features from a given text. Furthermore, we introduce Candidate Prior Normalization (CPN), a simple yet effective training-free score calibration module designed to mitigate candidate prior bias in candidate likelihood. On four Text-Video Retrieval benchmarks, our BLiM equipped with CPN outperforms previous state-of-the-art models by 6.4 R@1 on average, effectively alleviating candidate prior bias and emphasizing query-candidate relevance. Our in-depth analysis across various multi-modal tasks beyond retrieval highlights the broad applicability of CPN which enhances visual understanding by reducing reliance on textual priors. Code is available at https://github.com/mlvlab/BLiM.

  • 5 authors
·
Jul 31 2

Learning to See Before Seeing: Demystifying LLM Visual Priors from Language Pre-training

Large Language Models (LLMs), despite being trained on text alone, surprisingly develop rich visual priors. These priors allow latent visual capabilities to be unlocked for vision tasks with a relatively small amount of multimodal data, and in some cases, to perform visual tasks without ever having seen an image. Through systematic analysis, we reveal that visual priors-the implicit, emergent knowledge about the visual world acquired during language pre-training-are composed of separable perception and reasoning priors with unique scaling trends and origins. We show that an LLM's latent visual reasoning ability is predominantly developed by pre-training on reasoning-centric data (e.g., code, math, academia) and scales progressively. This reasoning prior acquired from language pre-training is transferable and universally applicable to visual reasoning. In contrast, a perception prior emerges more diffusely from broad corpora, and perception ability is more sensitive to the vision encoder and visual instruction tuning data. In parallel, text describing the visual world proves crucial, though its performance impact saturates rapidly. Leveraging these insights, we propose a data-centric recipe for pre-training vision-aware LLMs and verify it in 1T token scale pre-training. Our findings are grounded in over 100 controlled experiments consuming 500,000 GPU-hours, spanning the full MLLM construction pipeline-from LLM pre-training to visual alignment and supervised multimodal fine-tuning-across five model scales, a wide range of data categories and mixtures, and multiple adaptation setups. Along with our main findings, we propose and investigate several hypotheses, and introduce the Multi-Level Existence Bench (MLE-Bench). Together, this work provides a new way of deliberately cultivating visual priors from language pre-training, paving the way for the next generation of multimodal LLMs.

  • 7 authors
·
Sep 30 2

BIOptimus: Pre-training an Optimal Biomedical Language Model with Curriculum Learning for Named Entity Recognition

Using language models (LMs) pre-trained in a self-supervised setting on large corpora and then fine-tuning for a downstream task has helped to deal with the problem of limited label data for supervised learning tasks such as Named Entity Recognition (NER). Recent research in biomedical language processing has offered a number of biomedical LMs pre-trained using different methods and techniques that advance results on many BioNLP tasks, including NER. However, there is still a lack of a comprehensive comparison of pre-training approaches that would work more optimally in the biomedical domain. This paper aims to investigate different pre-training methods, such as pre-training the biomedical LM from scratch and pre-training it in a continued fashion. We compare existing methods with our proposed pre-training method of initializing weights for new tokens by distilling existing weights from the BERT model inside the context where the tokens were found. The method helps to speed up the pre-training stage and improve performance on NER. In addition, we compare how masking rate, corruption strategy, and masking strategies impact the performance of the biomedical LM. Finally, using the insights from our experiments, we introduce a new biomedical LM (BIOptimus), which is pre-trained using Curriculum Learning (CL) and contextualized weight distillation method. Our model sets new states of the art on several biomedical Named Entity Recognition (NER) tasks. We release our code and all pre-trained models

  • 2 authors
·
Aug 16, 2023

Improving Bilingual Capabilities of Language Models to Support Diverse Linguistic Practices in Education

Large language models (LLMs) offer promise in generating educational content, providing instructor feedback, and reducing teacher workload on assessments. While prior studies have focused on studying LLM-powered learning analytics, limited research has examined how effective LLMs are in a bilingual context. In this paper, we study the effectiveness of multilingual large language models (MLLMs) across monolingual (English-only, Spanish-only) and bilingual (Spanglish) student writing. We present a learning analytics use case that details LLM performance in assessing acceptable and unacceptable explanations of Science and Social Science concepts. Our findings reveal a significant bias in the grading performance of pre-trained models for bilingual writing compared to English-only and Spanish-only writing. Following this, we fine-tune open-source MLLMs including Llama 3.1 and Mistral NeMo using synthetic datasets generated in English, Spanish, and Spanglish. Our experiments indicate that the models perform significantly better for all three languages after fine-tuning with bilingual data. This study highlights the potential of enhancing MLLM effectiveness to support authentic language practices amongst bilingual learners. It also aims to illustrate the value of incorporating non-English languages into the design and implementation of language models in education.

  • 7 authors
·
Nov 6, 2024

Balancing Continuous Pre-Training and Instruction Fine-Tuning: Optimizing Instruction-Following in LLMs

Large Language Models (LLMs) for public use require continuous pre-training to remain up-to-date with the latest data. The models also need to be fine-tuned with specific instructions to maintain their ability to follow instructions accurately. Typically, LLMs are released in two versions: the Base LLM, pre-trained on diverse data, and the instruction-refined LLM, additionally trained with specific instructions for better instruction following. The question arises as to which model should undergo continuous pre-training to maintain its instruction-following abilities while also staying current with the latest data. In this study, we delve into the intricate relationship between continuous pre-training and instruction fine-tuning of the LLMs and investigate the impact of continuous pre-training on the instruction following abilities of both the base and its instruction finetuned model. Further, the instruction fine-tuning process is computationally intense and requires a substantial number of hand-annotated examples for the model to learn effectively. This study aims to find the most compute-efficient strategy to gain up-to-date knowledge and instruction-following capabilities without requiring any instruction data and fine-tuning. We empirically prove our findings on the LLaMa 3, 3.1 and Qwen 2, 2.5 family of base and instruction models, providing a comprehensive exploration of our hypotheses across varying sizes of pre-training data corpus and different LLMs settings.

  • 5 authors
·
Oct 14, 2024 1

COCO is "ALL'' You Need for Visual Instruction Fine-tuning

Multi-modal Large Language Models (MLLMs) are increasingly prominent in the field of artificial intelligence. Visual instruction fine-tuning (IFT) is a vital process for aligning MLLMs' output with user's intentions. High-quality and diversified instruction following data is the key to this fine-tuning process. Recent studies propose to construct visual IFT datasets through a multifaceted approach: transforming existing datasets with rule-based templates, employing GPT-4 for rewriting annotations, and utilizing GPT-4V for visual dataset pseudo-labeling. LLaVA-1.5 adopted similar approach and construct LLaVA-mix-665k, which is one of the simplest, most widely used, yet most effective IFT datasets today. Notably, when properly fine-tuned with this dataset, MLLMs can achieve state-of-the-art performance on several benchmarks. However, we noticed that models trained with this dataset often struggle to follow user instructions properly in multi-round dialog. In addition, tradition caption and VQA evaluation benchmarks, with their closed-form evaluation structure, are not fully equipped to assess the capabilities of modern open-ended generative MLLMs. This problem is not unique to the LLaVA-mix-665k dataset, but may be a potential issue in all IFT datasets constructed from image captioning or VQA sources, though the extent of this issue may vary. We argue that datasets with diverse and high-quality detailed instruction following annotations are essential and adequate for MLLMs IFT. In this work, we establish a new IFT dataset, with images sourced from the COCO dataset along with more diverse instructions. Our experiments show that when fine-tuned with out proposed dataset, MLLMs achieve better performance on open-ended evaluation benchmarks in both single-round and multi-round dialog setting.

  • 5 authors
·
Jan 16, 2024

Pre-training Language Model as a Multi-perspective Course Learner

ELECTRA, the generator-discriminator pre-training framework, has achieved impressive semantic construction capability among various downstream tasks. Despite the convincing performance, ELECTRA still faces the challenges of monotonous training and deficient interaction. Generator with only masked language modeling (MLM) leads to biased learning and label imbalance for discriminator, decreasing learning efficiency; no explicit feedback loop from discriminator to generator results in the chasm between these two components, underutilizing the course learning. In this study, a multi-perspective course learning (MCL) method is proposed to fetch a many degrees and visual angles for sample-efficient pre-training, and to fully leverage the relationship between generator and discriminator. Concretely, three self-supervision courses are designed to alleviate inherent flaws of MLM and balance the label in a multi-perspective way. Besides, two self-correction courses are proposed to bridge the chasm between the two encoders by creating a "correction notebook" for secondary-supervision. Moreover, a course soups trial is conducted to solve the "tug-of-war" dynamics problem of MCL, evolving a stronger pre-trained model. Experimental results show that our method significantly improves ELECTRA's average performance by 2.8% and 3.2% absolute points respectively on GLUE and SQuAD 2.0 benchmarks, and overshadows recent advanced ELECTRA-style models under the same settings. The pre-trained MCL model is available at https://huggingface.co/McmanusChen/MCL-base.

  • 9 authors
·
May 6, 2023

MiniCPM-V: A GPT-4V Level MLLM on Your Phone

The recent surge of Multimodal Large Language Models (MLLMs) has fundamentally reshaped the landscape of AI research and industry, shedding light on a promising path toward the next AI milestone. However, significant challenges remain preventing MLLMs from being practical in real-world applications. The most notable challenge comes from the huge cost of running an MLLM with a massive number of parameters and extensive computation. As a result, most MLLMs need to be deployed on high-performing cloud servers, which greatly limits their application scopes such as mobile, offline, energy-sensitive, and privacy-protective scenarios. In this work, we present MiniCPM-V, a series of efficient MLLMs deployable on end-side devices. By integrating the latest MLLM techniques in architecture, pretraining and alignment, the latest MiniCPM-Llama3-V 2.5 has several notable features: (1) Strong performance, outperforming GPT-4V-1106, Gemini Pro and Claude 3 on OpenCompass, a comprehensive evaluation over 11 popular benchmarks, (2) strong OCR capability and 1.8M pixel high-resolution image perception at any aspect ratio, (3) trustworthy behavior with low hallucination rates, (4) multilingual support for 30+ languages, and (5) efficient deployment on mobile phones. More importantly, MiniCPM-V can be viewed as a representative example of a promising trend: The model sizes for achieving usable (e.g., GPT-4V) level performance are rapidly decreasing, along with the fast growth of end-side computation capacity. This jointly shows that GPT-4V level MLLMs deployed on end devices are becoming increasingly possible, unlocking a wider spectrum of real-world AI applications in the near future.

  • 23 authors
·
Aug 3, 2024 7

EndoBench: A Comprehensive Evaluation of Multi-Modal Large Language Models for Endoscopy Analysis

Endoscopic procedures are essential for diagnosing and treating internal diseases, and multi-modal large language models (MLLMs) are increasingly applied to assist in endoscopy analysis. However, current benchmarks are limited, as they typically cover specific endoscopic scenarios and a small set of clinical tasks, failing to capture the real-world diversity of endoscopic scenarios and the full range of skills needed in clinical workflows. To address these issues, we introduce EndoBench, the first comprehensive benchmark specifically designed to assess MLLMs across the full spectrum of endoscopic practice with multi-dimensional capacities. EndoBench encompasses 4 distinct endoscopic scenarios, 12 specialized clinical tasks with 12 secondary subtasks, and 5 levels of visual prompting granularities, resulting in 6,832 rigorously validated VQA pairs from 21 diverse datasets. Our multi-dimensional evaluation framework mirrors the clinical workflow--spanning anatomical recognition, lesion analysis, spatial localization, and surgical operations--to holistically gauge the perceptual and diagnostic abilities of MLLMs in realistic scenarios. We benchmark 23 state-of-the-art models, including general-purpose, medical-specialized, and proprietary MLLMs, and establish human clinician performance as a reference standard. Our extensive experiments reveal: (1) proprietary MLLMs outperform open-source and medical-specialized models overall, but still trail human experts; (2) medical-domain supervised fine-tuning substantially boosts task-specific accuracy; and (3) model performance remains sensitive to prompt format and clinical task complexity. EndoBench establishes a new standard for evaluating and advancing MLLMs in endoscopy, highlighting both progress and persistent gaps between current models and expert clinical reasoning. We publicly release our benchmark and code.

  • 8 authors
·
May 29

MLLM Is a Strong Reranker: Advancing Multimodal Retrieval-augmented Generation via Knowledge-enhanced Reranking and Noise-injected Training

Multimodal Large Language Models (MLLMs) have demonstrated remarkable capabilities in processing and generating content across multiple data modalities, including text, images, audio, and video. However, a significant drawback of MLLMs is their reliance on static training data, leading to outdated information and limited contextual awareness. This static nature hampers their ability to provide accurate, up-to-date responses, particularly in dynamic or rapidly evolving contexts. Integrating Multimodal Retrieval-augmented Generation (Multimodal RAG) offers a promising solution, but the system would inevitably encounter the multi-granularity noisy correspondence (MNC) problem, which involves two types of noise: coarse-grained (query-caption) and fine-grained (query-image). This noise hinders accurate retrieval and generation. In this work, we propose RagLLaVA, a novel framework with knowledge-enhanced reranking and noise-injected training, to address these limitations. We instruction-tune the MLLM with a simple yet effective instruction template to induce its ranking ability and serve it as a reranker to precisely filter the top-k retrieved images. For generation, we inject visual noise during training at the data and token levels to enhance the generator's robustness. Extensive experiments are conducted on the subsets of two datasets that require retrieving and reasoning over images to answer a given query. Our results demonstrate the superiority of RagLLaVA in retrieving accurately and generating robustly. Code and models are available at https://github.com/IDEA-FinAI/RagLLaVA.

  • 4 authors
·
Jul 31, 2024

Single Image Unlearning: Efficient Machine Unlearning in Multimodal Large Language Models

Machine unlearning empowers individuals with the `right to be forgotten' by removing their private or sensitive information encoded in machine learning models. However, it remains uncertain whether MU can be effectively applied to Multimodal Large Language Models (MLLMs), particularly in scenarios of forgetting the leaked visual data of concepts. To overcome the challenge, we propose an efficient method, Single Image Unlearning (SIU), to unlearn the visual recognition of a concept by fine-tuning a single associated image for few steps. SIU consists of two key aspects: (i) Constructing Multifaceted fine-tuning data. We introduce four targets, based on which we construct fine-tuning data for the concepts to be forgotten; (ii) Jointly training loss. To synchronously forget the visual recognition of concepts and preserve the utility of MLLMs, we fine-tune MLLMs through a novel Dual Masked KL-divergence Loss combined with Cross Entropy loss. Alongside our method, we establish MMUBench, a new benchmark for MU in MLLMs and introduce a collection of metrics for its evaluation. Experimental results on MMUBench show that SIU completely surpasses the performance of existing methods. Furthermore, we surprisingly find that SIU can avoid invasive membership inference attacks and jailbreak attacks. To the best of our knowledge, we are the first to explore MU in MLLMs. We will release the code and benchmark in the near future.

  • 8 authors
·
May 21, 2024

SemiHVision: Enhancing Medical Multimodal Models with a Semi-Human Annotated Dataset and Fine-Tuned Instruction Generation

Multimodal large language models (MLLMs) have made significant strides, yet they face challenges in the medical domain due to limited specialized knowledge. While recent medical MLLMs demonstrate strong performance in lab settings, they often struggle in real-world applications, highlighting a substantial gap between research and practice. In this paper, we seek to address this gap at various stages of the end-to-end learning pipeline, including data collection, model fine-tuning, and evaluation. At the data collection stage, we introduce SemiHVision, a dataset that combines human annotations with automated augmentation techniques to improve both medical knowledge representation and diagnostic reasoning. For model fine-tuning, we trained PMC-Cambrian-8B-AN over 2400 H100 GPU hours, resulting in performance that surpasses public medical models like HuatuoGPT-Vision-34B (79.0% vs. 66.7%) and private general models like Claude3-Opus (55.7%) on traditional benchmarks such as SLAKE and VQA-RAD. In the evaluation phase, we observed that traditional benchmarks cannot accurately reflect realistic clinical task capabilities. To overcome this limitation and provide more targeted guidance for model evaluation, we introduce the JAMA Clinical Challenge, a novel benchmark specifically designed to evaluate diagnostic reasoning. On this benchmark, PMC-Cambrian-AN achieves state-of-the-art performance with a GPT-4 score of 1.29, significantly outperforming HuatuoGPT-Vision-34B (1.13) and Claude3-Opus (1.17), demonstrating its superior diagnostic reasoning abilities.

  • 7 authors
·
Oct 18, 2024

Multimodal Needle in a Haystack: Benchmarking Long-Context Capability of Multimodal Large Language Models

Multimodal Large Language Models (MLLMs) have shown significant promise in various applications, leading to broad interest from researchers and practitioners alike. However, a comprehensive evaluation of their long-context capabilities remains underexplored. To address these gaps, we introduce the MultiModal Needle-in-a-haystack (MMNeedle) benchmark, specifically designed to assess the long-context capabilities of MLLMs. Besides multi-image input, we employ image stitching to further increase the input context length, and develop a protocol to automatically generate labels for sub-image level retrieval. Essentially, MMNeedle evaluates MLLMs by stress-testing their capability to locate a target sub-image (needle) within a set of images (haystack) based on textual instructions and descriptions of image contents. This setup necessitates an advanced understanding of extensive visual contexts and effective information retrieval within long-context image inputs. With this benchmark, we evaluate state-of-the-art MLLMs, encompassing both API-based and open-source models. The findings reveal that GPT-4o consistently surpasses other models in long-context scenarios, but suffers from hallucination problems in negative samples, i.e., when needles are not in the haystacks. Our comprehensive long-context evaluation of MLLMs also sheds lights on the considerable performance gap between API-based and open-source models. All the code, data, and instructions required to reproduce the main results are available at https://github.com/Wang-ML-Lab/multimodal-needle-in-a-haystack.

  • 9 authors
·
Jun 17, 2024 1

OFFSIDE: Benchmarking Unlearning Misinformation in Multimodal Large Language Models

Advances in Multimodal Large Language Models (MLLMs) intensify concerns about data privacy, making Machine Unlearning (MU), the selective removal of learned information, a critical necessity. However, existing MU benchmarks for MLLMs are limited by a lack of image diversity, potential inaccuracies, and insufficient evaluation scenarios, which fail to capture the complexity of real-world applications. To facilitate the development of MLLMs unlearning and alleviate the aforementioned limitations, we introduce OFFSIDE, a novel benchmark for evaluating misinformation unlearning in MLLMs based on football transfer rumors. This manually curated dataset contains 15.68K records for 80 players, providing a comprehensive framework with four test sets to assess forgetting efficacy, generalization, utility, and robustness. OFFSIDE supports advanced settings like selective unlearning and corrective relearning, and crucially, unimodal unlearning (forgetting only text data). Our extensive evaluation of multiple baselines reveals key findings: (1) Unimodal methods (erasing text-based knowledge) fail on multimodal rumors; (2) Unlearning efficacy is largely driven by catastrophic forgetting; (3) All methods struggle with "visual rumors" (rumors appear in the image); (4) The unlearned rumors can be easily recovered and (5) All methods are vulnerable to prompt attacks. These results expose significant vulnerabilities in current approaches, highlighting the need for more robust multimodal unlearning solutions. The code is available at https://github.com/zh121800/OFFSIDE{https://github.com/zh121800/OFFSIDE}.

  • 8 authors
·
Oct 26

Link-Context Learning for Multimodal LLMs

The ability to learn from context with novel concepts, and deliver appropriate responses are essential in human conversations. Despite current Multimodal Large Language Models (MLLMs) and Large Language Models (LLMs) being trained on mega-scale datasets, recognizing unseen images or understanding novel concepts in a training-free manner remains a challenge. In-Context Learning (ICL) explores training-free few-shot learning, where models are encouraged to ``learn to learn" from limited tasks and generalize to unseen tasks. In this work, we propose link-context learning (LCL), which emphasizes "reasoning from cause and effect" to augment the learning capabilities of MLLMs. LCL goes beyond traditional ICL by explicitly strengthening the causal relationship between the support set and the query set. By providing demonstrations with causal links, LCL guides the model to discern not only the analogy but also the underlying causal associations between data points, which empowers MLLMs to recognize unseen images and understand novel concepts more effectively. To facilitate the evaluation of this novel approach, we introduce the ISEKAI dataset, comprising exclusively of unseen generated image-label pairs designed for link-context learning. Extensive experiments show that our LCL-MLLM exhibits strong link-context learning capabilities to novel concepts over vanilla MLLMs. Code and data will be released at https://github.com/isekai-portal/Link-Context-Learning.

  • 6 authors
·
Aug 15, 2023 1

SWIFT:A Scalable lightWeight Infrastructure for Fine-Tuning

Recent development in Large Language Models (LLMs) and Multi-modal Large Language Models (MLLMs) have leverage Attention-based Transformer architectures and achieved superior performance and generalization capabilities. They have since covered extensive areas of traditional learning tasks. For instance, text-based tasks such as text-classification and sequence-labeling, as well as multi-modal tasks like Visual Question Answering (VQA) and Optical Character Recognition (OCR), which were previously addressed using different models, can now be tackled based on one foundation model. Consequently, the training and lightweight fine-tuning of LLMs and MLLMs, especially those based on Transformer architecture, has become particularly important. In recognition of these overwhelming needs, we develop SWIFT, a customizable one-stop infrastructure for large models. With support of over 300+ LLMs and 50+ MLLMs, SWIFT stands as the open-source framework that provide the most comprehensive support for fine-tuning large models. In particular, it is the first training framework that provides systematic support for MLLMs. In addition to the core functionalities of fine-tuning, SWIFT also integrates post-training processes such as inference, evaluation, and model quantization, to facilitate fast adoptions of large models in various application scenarios. With a systematic integration of various training techniques, SWIFT offers helpful utilities such as benchmark comparisons among different training techniques for large models. For fine-tuning models specialized in agent framework, we show that notable improvements on the ToolBench leader-board can be achieved by training with customized dataset on SWIFT, with an increase of 5.2%-21.8% in the Act.EM metric over various baseline models, a reduction in hallucination by 1.6%-14.1%, and an average performance improvement of 8%-17%.

  • 12 authors
·
Aug 10, 2024

Proximity QA: Unleashing the Power of Multi-Modal Large Language Models for Spatial Proximity Analysis

Multi-modal large language models (MLLMs) have demonstrated remarkable vision-language capabilities, primarily due to the exceptional in-context understanding and multi-task learning strengths of large language models (LLMs). The advent of visual instruction tuning has further enhanced MLLMs' performance in vision-language understanding. However, while existing MLLMs adeptly recognize what objects are in an image, they still face challenges in effectively discerning where these objects are, particularly along the distance (scene depth) axis. To overcome this limitation in MLLMs, we introduce Proximity Question Answering (Proximity QA), a novel framework designed to enable MLLMs to infer the proximity relationship between objects in images. The framework operates in two phases: the first phase focuses on guiding the models to understand the relative depth of objects, and the second phase further encourages the models to infer the proximity relationships between objects based on their depth perceptions. We also propose a VQA dataset called Proximity-110K, containing additional instructions that incorporate depth information and the proximity relationships of objects. We have conducted extensive experiments to validate Proximity QA's superior ability in depth perception and proximity analysis, outperforming other state-of-the-art MLLMs. Code and dataset will be released at magenta{https://github.com/NorthSummer/ProximityQA.git}.

  • 5 authors
·
Jan 31, 2024

Video-MME: The First-Ever Comprehensive Evaluation Benchmark of Multi-modal LLMs in Video Analysis

In the quest for artificial general intelligence, Multi-modal Large Language Models (MLLMs) have emerged as a focal point in recent advancements. However, the predominant focus remains on developing their capabilities in static image understanding. The potential of MLLMs in processing sequential visual data is still insufficiently explored, highlighting the absence of a comprehensive, high-quality assessment of their performance. In this paper, we introduce Video-MME, the first-ever full-spectrum, Multi-Modal Evaluation benchmark of MLLMs in Video analysis. Our work distinguishes from existing benchmarks through four key features: 1) Diversity in video types, spanning 6 primary visual domains with 30 subfields to ensure broad scenario generalizability; 2) Duration in temporal dimension, encompassing both short-, medium-, and long-term videos, ranging from 11 seconds to 1 hour, for robust contextual dynamics; 3) Breadth in data modalities, integrating multi-modal inputs besides video frames, including subtitles and audios, to unveil the all-round capabilities of MLLMs; 4) Quality in annotations, utilizing rigorous manual labeling by expert annotators to facilitate precise and reliable model assessment. 900 videos with a total of 256 hours are manually selected and annotated by repeatedly viewing all the video content, resulting in 2,700 question-answer pairs. With Video-MME, we extensively evaluate various state-of-the-art MLLMs, including GPT-4 series and Gemini 1.5 Pro, as well as open-source image models like InternVL-Chat-V1.5 and video models like LLaVA-NeXT-Video. Our experiments reveal that Gemini 1.5 Pro is the best-performing commercial model, significantly outperforming the open-source models. Our dataset along with these findings underscores the need for further improvements in handling longer sequences and multi-modal data. Project Page: https://video-mme.github.io

  • 20 authors
·
May 31, 2024 2

Seeing Clearly, Answering Incorrectly: A Multimodal Robustness Benchmark for Evaluating MLLMs on Leading Questions

Multimodal Large Language Models (MLLMs) have exhibited impressive capabilities in visual understanding and reasoning, providing sightly reasonable answers, such as image descriptions. This has spurred extensive research on the evaluation of MLLMs. Most evaluation benchmarks assume that incorrect answers indicate a lack of understanding of the visual content. However, our findings reveal that, in many cases, MLLMs answer questions incorrectly despite correctly understanding the visual content. This suggests that incorrect answers do not necessarily imply a lack of comprehension but may instead result from lacking robustness to leading questions. To comprehensively measure MLLMs' understanding capability and robustness to leading questions, we introduce a MultiModal Robustness benchmark (MMR). MMR contains paired positive and negative questions across 12 categories, meticulously annotated by humans. We evaluate 18 leading MLLMs on the MMB benchmark, revealing that MLLMs suffer from fragility to leading questions despite understanding the visual content. To enhance MLLMs' understanding capability and robustness, we further present a training set with paired positive and negative visual question-answer samples. Experiments verify that MLLMs' robustness can be significantly enhanced by tuning on this new training set. The benchmark, training set, and code can be found at https://github.com/BAAI-DCAI/Multimodal-Robustness-Benchmark.

  • 6 authors
·
Jun 15, 2024

GRPO-CARE: Consistency-Aware Reinforcement Learning for Multimodal Reasoning

Recent reinforcement learning approaches, such as outcome-supervised GRPO, have advanced Chain-of-Thought reasoning in large language models (LLMs), yet their adaptation to multimodal LLMs (MLLMs) is unexplored. To address the lack of rigorous evaluation for MLLM post-training methods, we introduce SEED-Bench-R1, a benchmark with complex real-world videos requiring balanced perception and reasoning. It offers a large training set and evaluates generalization across three escalating challenges: in-distribution, cross-environment, and cross-environment-task scenarios. Using SEED-Bench-R1, we find that standard GRPO, while improving answer accuracy, often reduces logical coherence between reasoning steps and answers, with only a 57.9% consistency rate. This stems from reward signals focusing solely on final answers, encouraging shortcuts, and strict KL penalties limiting exploration.To address this, we propose GRPO-CARE, a consistency-aware RL framework optimizing both answer correctness and reasoning coherence without explicit supervision. GRPO-CARE introduces a two-tiered reward: (1) a base reward for answer correctness, and (2) an adaptive consistency bonus, computed by comparing the model's reasoning-to-answer likelihood (via a slowly-evolving reference model) against group peers.This dual mechanism amplifies rewards for reasoning paths that are both correct and logically consistent. Replacing KL penalties with this adaptive bonus, GRPO-CARE outperforms standard GRPO on SEED-Bench-R1, achieving a 6.7% performance gain on the hardest evaluation level and a 24.5% improvement in consistency. It also shows strong transferability, improving model performance across diverse video understanding benchmarks. Our work contributes a systematically designed benchmark and a generalizable post-training framework, advancing the development of more interpretable and robust MLLMs.

  • 7 authors
·
Jun 19 2

SLTrain: a sparse plus low-rank approach for parameter and memory efficient pretraining

Large language models (LLMs) have shown impressive capabilities across various tasks. However, training LLMs from scratch requires significant computational power and extensive memory capacity. Recent studies have explored low-rank structures on weights for efficient fine-tuning in terms of parameters and memory, either through low-rank adaptation or factorization. While effective for fine-tuning, low-rank structures are generally less suitable for pretraining because they restrict parameters to a low-dimensional subspace. In this work, we propose to parameterize the weights as a sum of low-rank and sparse matrices for pretraining, which we call SLTrain. The low-rank component is learned via matrix factorization, while for the sparse component, we employ a simple strategy of uniformly selecting the sparsity support at random and learning only the non-zero entries with the fixed support. While being simple, the random fixed-support sparse learning strategy significantly enhances pretraining when combined with low-rank learning. Our results show that SLTrain adds minimal extra parameters and memory costs compared to pretraining with low-rank parameterization, yet achieves substantially better performance, which is comparable to full-rank training. Remarkably, when combined with quantization and per-layer updates, SLTrain can reduce memory requirements by up to 73% when pretraining the LLaMA 7B model.

  • 7 authors
·
Jun 4, 2024 2

Effective Training Data Synthesis for Improving MLLM Chart Understanding

Being able to effectively read scientific plots, or chart understanding, is a central part toward building effective agents for science. However, existing multimodal large language models (MLLMs), especially open-source ones, are still falling behind with a typical success rate of 30%-50% on challenging benchmarks. Previous studies on fine-tuning MLLMs with synthetic charts are often restricted by their inadequate similarity to the real charts, which could compromise model training and performance on complex real-world charts. In this study, we show that modularizing chart generation and diversifying visual details improves chart understanding capabilities. In particular, we design a five-step data synthesis pipeline, where we separate data and function creation for single plot generation, condition the generation of later subplots on earlier ones for multi-subplot figures, visually diversify the generated figures, filter out low quality data, and finally generate the question-answer (QA) pairs with GPT-4o. This approach allows us to streamline the generation of fine-tuning datasets and introduce the effective chart dataset (ECD), which contains 10k+ chart images and 300k+ QA pairs, covering 25 topics and featuring 250+ chart type combinations with high visual complexity. We show that ECD consistently improves the performance of various MLLMs on a range of real-world and synthetic test sets. Code, data and models are available at: https://github.com/yuweiyang-anu/ECD.

  • 8 authors
·
Aug 8

Hallucination of Multimodal Large Language Models: A Survey

This survey presents a comprehensive analysis of the phenomenon of hallucination in multimodal large language models (MLLMs), also known as Large Vision-Language Models (LVLMs), which have demonstrated significant advancements and remarkable abilities in multimodal tasks. Despite these promising developments, MLLMs often generate outputs that are inconsistent with the visual content, a challenge known as hallucination, which poses substantial obstacles to their practical deployment and raises concerns regarding their reliability in real-world applications. This problem has attracted increasing attention, prompting efforts to detect and mitigate such inaccuracies. We review recent advances in identifying, evaluating, and mitigating these hallucinations, offering a detailed overview of the underlying causes, evaluation benchmarks, metrics, and strategies developed to address this issue. Additionally, we analyze the current challenges and limitations, formulating open questions that delineate potential pathways for future research. By drawing the granular classification and landscapes of hallucination causes, evaluation benchmarks, and mitigation methods, this survey aims to deepen the understanding of hallucinations in MLLMs and inspire further advancements in the field. Through our thorough and in-depth review, we contribute to the ongoing dialogue on enhancing the robustness and reliability of MLLMs, providing valuable insights and resources for researchers and practitioners alike. Resources are available at: https://github.com/showlab/Awesome-MLLM-Hallucination.

  • 7 authors
·
Apr 29, 2024

HalluciDoctor: Mitigating Hallucinatory Toxicity in Visual Instruction Data

Multi-modal Large Language Models (MLLMs) tuned on machine-generated instruction-following data have demonstrated remarkable performance in various multi-modal understanding and generation tasks. However, the hallucinations inherent in machine-generated data, which could lead to hallucinatory outputs in MLLMs, remain under-explored. This work aims to investigate various hallucinations (i.e., object, relation, attribute hallucinations) and mitigate those hallucinatory toxicities in large-scale machine-generated visual instruction datasets. Drawing on the human ability to identify factual errors, we present a novel hallucination detection and elimination framework, HalluciDoctor, based on the cross-checking paradigm. We use our framework to identify and eliminate hallucinations in the training data automatically. Interestingly, HalluciDoctor also indicates that spurious correlations arising from long-tail object co-occurrences contribute to hallucinations. Based on that, we execute counterfactual visual instruction expansion to balance data distribution, thereby enhancing MLLMs' resistance to hallucinations. Comprehensive experiments on hallucination evaluation benchmarks show that our method successfully mitigates 44.6% hallucinations relatively and maintains competitive performance compared to LLaVA.The source code will be released at https://github.com/Yuqifan1117/HalluciDoctor.

  • 9 authors
·
Nov 21, 2023

OThink-MR1: Stimulating multimodal generalized reasoning capabilities via dynamic reinforcement learning

Multimodal Large Language Models (MLLMs) have gained significant traction for their ability to process diverse input data types and generate coherent, contextually relevant outputs across various applications. While supervised fine-tuning (SFT) has been the predominant approach to enhance MLLM capabilities in task-specific optimization, it often falls short in fostering crucial generalized reasoning abilities. Although reinforcement learning (RL) holds great promise in overcoming these limitations, it encounters two significant challenges: (1) its generalized capacities in multimodal tasks remain largely unexplored, and (2) its training constraints, including the constant Kullback-Leibler divergence or the clamp strategy, often result in suboptimal bottlenecks. To address these challenges, we propose OThink-MR1, an advanced MLLM equipped with profound comprehension and reasoning capabilities across multimodal tasks. Specifically, we introduce Group Relative Policy Optimization with a dynamic Kullback-Leibler strategy (GRPO-D), which markedly enhances reinforcement learning (RL) performance. For Qwen2-VL-2B-Instruct, GRPO-D achieves a relative improvement of more than 5.72% over SFT and more than 13.59% over GRPO in same-task evaluation on two adapted datasets. Furthermore, GRPO-D demonstrates remarkable cross-task generalization capabilities, with an average relative improvement of more than 61.63% over SFT in cross-task evaluation. These results highlight that the MLLM trained with GRPO-D on one multimodal task can be effectively transferred to another task, underscoring the superior generalized reasoning capabilities of our proposed OThink-MR1 model.

  • 6 authors
·
Mar 20 3

Pre-Trained Language Models for Interactive Decision-Making

Language model (LM) pre-training is useful in many language processing tasks. But can pre-trained LMs be further leveraged for more general machine learning problems? We propose an approach for using LMs to scaffold learning and generalization in general sequential decision-making problems. In this approach, goals and observations are represented as a sequence of embeddings, and a policy network initialized with a pre-trained LM predicts the next action. We demonstrate that this framework enables effective combinatorial generalization across different environments and supervisory modalities. We begin by assuming access to a set of expert demonstrations, and show that initializing policies with LMs and fine-tuning them via behavior cloning improves task completion rates by 43.6% in the VirtualHome environment. Next, we integrate an active data gathering procedure in which agents iteratively interact with the environment, relabel past "failed" experiences with new goals, and update their policies in a self-supervised loop. Active data gathering further improves combinatorial generalization, outperforming the best baseline by 25.1%. Finally, we explain these results by investigating three possible factors underlying the effectiveness of the LM-based policy. We find that sequential input representations (vs. fixed-dimensional feature vectors) and LM-based weight initialization are both important for generalization. Surprisingly, however, the format of the policy inputs encoding (e.g. as a natural language string vs. an arbitrary sequential encoding) has little influence. Together, these results suggest that language modeling induces representations that are useful for modeling not just language, but also goals and plans; these representations can aid learning and generalization even outside of language processing.

  • 14 authors
·
Feb 3, 2022

Retrieval-augmented in-context learning for multimodal large language models in disease classification

Objectives: We aim to dynamically retrieve informative demonstrations, enhancing in-context learning in multimodal large language models (MLLMs) for disease classification. Methods: We propose a Retrieval-Augmented In-Context Learning (RAICL) framework, which integrates retrieval-augmented generation (RAG) and in-context learning (ICL) to adaptively select demonstrations with similar disease patterns, enabling more effective ICL in MLLMs. Specifically, RAICL examines embeddings from diverse encoders, including ResNet, BERT, BioBERT, and ClinicalBERT, to retrieve appropriate demonstrations, and constructs conversational prompts optimized for ICL. We evaluated the framework on two real-world multi-modal datasets (TCGA and IU Chest X-ray), assessing its performance across multiple MLLMs (Qwen, Llava, Gemma), embedding strategies, similarity metrics, and varying numbers of demonstrations. Results: RAICL consistently improved classification performance. Accuracy increased from 0.7854 to 0.8368 on TCGA and from 0.7924 to 0.8658 on IU Chest X-ray. Multi-modal inputs outperformed single-modal ones, with text-only inputs being stronger than images alone. The richness of information embedded in each modality will determine which embedding model can be used to get better results. Few-shot experiments showed that increasing the number of retrieved examples further enhanced performance. Across different similarity metrics, Euclidean distance achieved the highest accuracy while cosine similarity yielded better macro-F1 scores. RAICL demonstrated consistent improvements across various MLLMs, confirming its robustness and versatility. Conclusions: RAICL provides an efficient and scalable approach to enhance in-context learning in MLLMs for multimodal disease classification.

  • 9 authors
·
May 4

Video-CCAM: Enhancing Video-Language Understanding with Causal Cross-Attention Masks for Short and Long Videos

Multi-modal large language models (MLLMs) have demonstrated considerable potential across various downstream tasks that require cross-domain knowledge. MLLMs capable of processing videos, known as Video-MLLMs, have attracted broad interest in video-language understanding. However, videos, especially long videos, contain more visual tokens than images, making them difficult for LLMs to process. Existing works either downsample visual features or extend the LLM context size, risking the loss of high-resolution information or slowing down inference speed. To address these limitations, we apply cross-attention layers in the intermediate projector between the visual encoder and the large language model (LLM). As the naive cross-attention mechanism is insensitive to temporal order, we further introduce causal cross-attention masks (CCAMs) within the cross-attention layers. This Video-MLLM, named Video-CCAM, is trained in a straightforward two-stage fashion: feature alignment and visual instruction tuning. We develop several Video-CCAM models based on LLMs of different sizes (4B, 9B, and 14B). Video-CCAM proves to be a robust Video-MLLM and shows outstanding performance from short videos to long ones. Among standard video benchmarks like MVBench and VideoChatGPT-QA, Video-CCAM shows outstanding performances (1st/2nd/3rd in MVBench and TGIF-QA, 2nd/3rd/4th in MSVD-QA, MSRVTT-QA, and ActivityNet-QA). In benchmarks encompassing long videos, Video-CCAM models can be directly adapted to long video understanding and still achieve exceptional scores despite being trained solely with images and 16-frame videos. Using 96 frames (6times the training number of frames), Video-CCAM models rank 1st/2nd/3rd in VideoVista and 1st/2nd/4th in MLVU among all open-source Video-MLLMs, respectively. The code is publicly available in https://github.com/QQ-MM/Video-CCAM.

  • 6 authors
·
Aug 26, 2024

MIBench: Evaluating Multimodal Large Language Models over Multiple Images

Built on the power of LLMs, numerous multimodal large language models (MLLMs) have recently achieved remarkable performance on various vision-language tasks across multiple benchmarks. However, most existing MLLMs and benchmarks primarily focus on single-image input scenarios, leaving the performance of MLLMs when handling realistic multiple images remain underexplored. Although a few benchmarks consider multiple images, their evaluation dimensions and samples are very limited. Therefore, in this paper, we propose a new benchmark MIBench, to comprehensively evaluate fine-grained abilities of MLLMs in multi-image scenarios. Specifically, MIBench categorizes the multi-image abilities into three scenarios: multi-image instruction (MII), multimodal knowledge-seeking (MKS) and multimodal in-context learning (MIC), and constructs 13 tasks with a total of 13K annotated samples. During data construction, for MII and MKS, we extract correct options from manual annotations and create challenging distractors to obtain multiple-choice questions. For MIC, to enable an in-depth evaluation, we set four sub-tasks and transform the original datasets into in-context learning formats. We evaluate several open-source MLLMs and close-source MLLMs on the proposed MIBench. The results reveal that although current models excel in single-image tasks, they exhibit significant shortcomings when faced with multi-image inputs, such as confused fine-grained perception, limited multi-image reasoning, and unstable in-context learning. The annotated data in MIBench is available at https://huggingface.co/datasets/StarBottle/MIBench.

  • 11 authors
·
Jul 21, 2024 3

Mini-Monkey: Multi-Scale Adaptive Cropping for Multimodal Large Language Models

Recently, there has been significant interest in enhancing the capability of multimodal large language models (MLLMs) to process high-resolution images. Most existing methods focus on adopting a cropping strategy to improve the ability of multimodal large language models to understand image details. However, this cropping operation inevitably causes the segmentation of objects and connected areas, which impairs the MLLM's ability to recognize small or irregularly shaped objects or text. This issue is particularly evident in lightweight MLLMs. Addressing this issue, we propose Mini-Monkey, a lightweight MLLM that incorporates a plug-and-play method called multi-scale adaptive crop strategy (MSAC). Mini-Monkey adaptively generates multi-scale representations, allowing it to select non-segmented objects from various scales. To mitigate the computational overhead introduced by MSAC, we propose a Scale Compression Mechanism (SCM), which effectively compresses image tokens. Mini-Monkey achieves state-of-the-art performance among 2B-parameter MLLMs. It not only demonstrates leading performance on a variety of general multimodal understanding tasks but also shows consistent improvements in document understanding capabilities. On the OCRBench, Mini-Monkey achieves a score of 802, outperforming 8B-parameter state-of-the-art model InternVL2-8B. Besides, our model and training strategy are very efficient, which can be trained with only eight RTX 3090. The code is available at https://github.com/Yuliang-Liu/Monkey.

  • 5 authors
·
Aug 4, 2024

Can Multimodal LLMs Perform Time Series Anomaly Detection?

Large language models (LLMs) have been increasingly used in time series analysis. However, the potential of multimodal LLMs (MLLMs), particularly vision-language models, for time series remains largely under-explored. One natural way for humans to detect time series anomalies is through visualization and textual description. Motivated by this, we raise a critical and practical research question: Can multimodal LLMs perform time series anomaly detection? To answer this, we propose VisualTimeAnomaly benchmark to evaluate MLLMs in time series anomaly detection (TSAD). Our approach transforms time series numerical data into the image format and feed these images into various MLLMs, including proprietary models (GPT-4o and Gemini-1.5) and open-source models (LLaVA-NeXT and Qwen2-VL), each with one larger and one smaller variant. In total, VisualTimeAnomaly contains 12.4k time series images spanning 3 scenarios and 3 anomaly granularities with 9 anomaly types across 8 MLLMs. Starting with the univariate case (point- and range-wise anomalies), we extend our evaluation to more practical scenarios, including multivariate and irregular time series scenarios, and variate-wise anomalies. Our study reveals several key insights: 1) MLLMs detect range- and variate-wise anomalies more effectively than point-wise anomalies. 2) MLLMs are highly robust to irregular time series, even with 25% of the data missing. 3) Open-source MLLMs perform comparably to proprietary models in TSAD. While open-source MLLMs excel on univariate time series, proprietary MLLMs demonstrate superior effectiveness on multivariate time series. To the best of our knowledge, this is the first work to comprehensively investigate MLLMs for TSAD, particularly for multivariate and irregular time series scenarios. We release our dataset and code at https://github.com/mllm-ts/VisualTimeAnomaly to support future research.

  • 6 authors
·
Feb 24