Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeEnergy-conserving equivariant GNN for elasticity of lattice architected metamaterials
Lattices are architected metamaterials whose properties strongly depend on their geometrical design. The analogy between lattices and graphs enables the use of graph neural networks (GNNs) as a faster surrogate model compared to traditional methods such as finite element modelling. In this work, we generate a big dataset of structure-property relationships for strut-based lattices. The dataset is made available to the community which can fuel the development of methods anchored in physical principles for the fitting of fourth-order tensors. In addition, we present a higher-order GNN model trained on this dataset. The key features of the model are (i) SE(3) equivariance, and (ii) consistency with the thermodynamic law of conservation of energy. We compare the model to non-equivariant models based on a number of error metrics and demonstrate its benefits in terms of predictive performance and reduced training requirements. Finally, we demonstrate an example application of the model to an architected material design task. The methods which we developed are applicable to fourth-order tensors beyond elasticity such as piezo-optical tensor etc.
Uncertainty quantification for stationary and time-dependent PDEs subject to Gevrey regular random domain deformations
We study uncertainty quantification for partial differential equations subject to domain uncertainty. We parameterize the random domain using the model recently considered by Chernov and Le (2024) as well as Harbrecht, Schmidlin, and Schwab (2024) in which the input random field is assumed to belong to a Gevrey smoothness class. This approach has the advantage of being substantially more general than models which assume a particular parametric representation of the input random field such as a Karhunen-Loeve series expansion. We consider both the Poisson equation as well as the heat equation and design randomly shifted lattice quasi-Monte Carlo (QMC) cubature rules for the computation of the expected solution under domain uncertainty. We show that these QMC rules exhibit dimension-independent, essentially linear cubature convergence rates in this framework. In addition, we complete the error analysis by taking into account the approximation errors incurred by dimension truncation of the random input field and finite element discretization. Numerical experiments are presented to confirm the theoretical rates.
Operator Learning with Neural Fields: Tackling PDEs on General Geometries
Machine learning approaches for solving partial differential equations require learning mappings between function spaces. While convolutional or graph neural networks are constrained to discretized functions, neural operators present a promising milestone toward mapping functions directly. Despite impressive results they still face challenges with respect to the domain geometry and typically rely on some form of discretization. In order to alleviate such limitations, we present CORAL, a new method that leverages coordinate-based networks for solving PDEs on general geometries. CORAL is designed to remove constraints on the input mesh, making it applicable to any spatial sampling and geometry. Its ability extends to diverse problem domains, including PDE solving, spatio-temporal forecasting, and inverse problems like geometric design. CORAL demonstrates robust performance across multiple resolutions and performs well in both convex and non-convex domains, surpassing or performing on par with state-of-the-art models.
Structure-Preserving Operator Learning
Learning complex dynamics driven by partial differential equations directly from data holds great promise for fast and accurate simulations of complex physical systems. In most cases, this problem can be formulated as an operator learning task, where one aims to learn the operator representing the physics of interest, which entails discretization of the continuous system. However, preserving key continuous properties at the discrete level, such as boundary conditions, and addressing physical systems with complex geometries is challenging for most existing approaches. We introduce a family of operator learning architectures, structure-preserving operator networks (SPONs), that allows to preserve key mathematical and physical properties of the continuous system by leveraging finite element (FE) discretizations of the input-output spaces. SPONs are encode-process-decode architectures that are end-to-end differentiable, where the encoder and decoder follows from the discretizations of the input-output spaces. SPONs can operate on complex geometries, enforce certain boundary conditions exactly, and offer theoretical guarantees. Our framework provides a flexible way of devising structure-preserving architectures tailored to specific applications, and offers an explicit trade-off between performance and efficiency, all thanks to the FE discretization of the input-output spaces. Additionally, we introduce a multigrid-inspired SPON architecture that yields improved performance at higher efficiency. Finally, we release a software to automate the design and training of SPON architectures.
HMC with Normalizing Flows
We propose using Normalizing Flows as a trainable kernel within the molecular dynamics update of Hamiltonian Monte Carlo (HMC). By learning (invertible) transformations that simplify our dynamics, we can outperform traditional methods at generating independent configurations. We show that, using a carefully constructed network architecture, our approach can be easily scaled to large lattice volumes with minimal retraining effort. The source code for our implementation is publicly available online at https://github.com/nftqcd/fthmc.
Flow Matching for Discrete Systems: Efficient Free Energy Sampling Across Lattice Sizes and Temperatures
Generative models have advanced significantly in sampling material systems with continuous variables, such as atomistic structures. However, their application to discrete variables, like atom types or spin states, remains underexplored. In this work, we introduce a Boltzmann generator built on discrete flow matching, specifically tailored for systems with discrete phase-space coordinates (e.g., the Ising model or crystalline compounds). This approach enables a single model to sample free energy surfaces over a wide temperature range with minimal training overhead. In addition, the model generation is scalable to larger lattice sizes than those in the training set. We demonstrate the effectiveness of our approach on the 2D Ising model, showing efficient and reliable free energy sampling. This framework provides a scalable and computationally efficient solution for discrete coordinate systems and can be extended to sample the alchemical degrees of freedom in crystalline compounds.
LATTICE: Democratize High-Fidelity 3D Generation at Scale
We present LATTICE, a new framework for high-fidelity 3D asset generation that bridges the quality and scalability gap between 3D and 2D generative models. While 2D image synthesis benefits from fixed spatial grids and well-established transformer architectures, 3D generation remains fundamentally more challenging due to the need to predict both spatial structure and detailed geometric surfaces from scratch. These challenges are exacerbated by the computational complexity of existing 3D representations and the lack of structured and scalable 3D asset encoding schemes. To address this, we propose VoxSet, a semi-structured representation that compresses 3D assets into a compact set of latent vectors anchored to a coarse voxel grid, enabling efficient and position-aware generation. VoxSet retains the simplicity and compression advantages of prior VecSet methods while introducing explicit structure into the latent space, allowing positional embeddings to guide generation and enabling strong token-level test-time scaling. Built upon this representation, LATTICE adopts a two-stage pipeline: first generating a sparse voxelized geometry anchor, then producing detailed geometry using a rectified flow transformer. Our method is simple at its core, but supports arbitrary resolution decoding, low-cost training, and flexible inference schemes, achieving state-of-the-art performance on various aspects, and offering a significant step toward scalable, high-quality 3D asset creation.
Spherical Leech Quantization for Visual Tokenization and Generation
Non-parametric quantization has received much attention due to its efficiency on parameters and scalability to a large codebook. In this paper, we present a unified formulation of different non-parametric quantization methods through the lens of lattice coding. The geometry of lattice codes explains the necessity of auxiliary loss terms when training auto-encoders with certain existing lookup-free quantization variants such as BSQ. As a step forward, we explore a few possible candidates, including random lattices, generalized Fibonacci lattices, and densest sphere packing lattices. Among all, we find the Leech lattice-based quantization method, which is dubbed as Spherical Leech Quantization (Λ_{24}-SQ), leads to both a simplified training recipe and an improved reconstruction-compression tradeoff thanks to its high symmetry and even distribution on the hypersphere. In image tokenization and compression tasks, this quantization approach achieves better reconstruction quality across all metrics than BSQ, the best prior art, while consuming slightly fewer bits. The improvement also extends to state-of-the-art auto-regressive image generation frameworks.
Text2PDE: Latent Diffusion Models for Accessible Physics Simulation
Recent advances in deep learning have inspired numerous works on data-driven solutions to partial differential equation (PDE) problems. These neural PDE solvers can often be much faster than their numerical counterparts; however, each presents its unique limitations and generally balances training cost, numerical accuracy, and ease of applicability to different problem setups. To address these limitations, we introduce several methods to apply latent diffusion models to physics simulation. Firstly, we introduce a mesh autoencoder to compress arbitrarily discretized PDE data, allowing for efficient diffusion training across various physics. Furthermore, we investigate full spatio-temporal solution generation to mitigate autoregressive error accumulation. Lastly, we investigate conditioning on initial physical quantities, as well as conditioning solely on a text prompt to introduce text2PDE generation. We show that language can be a compact, interpretable, and accurate modality for generating physics simulations, paving the way for more usable and accessible PDE solvers. Through experiments on both uniform and structured grids, we show that the proposed approach is competitive with current neural PDE solvers in both accuracy and efficiency, with promising scaling behavior up to sim3 billion parameters. By introducing a scalable, accurate, and usable physics simulator, we hope to bring neural PDE solvers closer to practical use.
Message Passing Neural PDE Solvers
The numerical solution of partial differential equations (PDEs) is difficult, having led to a century of research so far. Recently, there have been pushes to build neural--numerical hybrid solvers, which piggy-backs the modern trend towards fully end-to-end learned systems. Most works so far can only generalize over a subset of properties to which a generic solver would be faced, including: resolution, topology, geometry, boundary conditions, domain discretization regularity, dimensionality, etc. In this work, we build a solver, satisfying these properties, where all the components are based on neural message passing, replacing all heuristically designed components in the computation graph with backprop-optimized neural function approximators. We show that neural message passing solvers representationally contain some classical methods, such as finite differences, finite volumes, and WENO schemes. In order to encourage stability in training autoregressive models, we put forward a method that is based on the principle of zero-stability, posing stability as a domain adaptation problem. We validate our method on various fluid-like flow problems, demonstrating fast, stable, and accurate performance across different domain topologies, equation parameters, discretizations, etc., in 1D and 2D.
Fast Sampling of Diffusion Models with Exponential Integrator
The past few years have witnessed the great success of Diffusion models~(DMs) in generating high-fidelity samples in generative modeling tasks. A major limitation of the DM is its notoriously slow sampling procedure which normally requires hundreds to thousands of time discretization steps of the learned diffusion process to reach the desired accuracy. Our goal is to develop a fast sampling method for DMs with a much less number of steps while retaining high sample quality. To this end, we systematically analyze the sampling procedure in DMs and identify key factors that affect the sample quality, among which the method of discretization is most crucial. By carefully examining the learned diffusion process, we propose Diffusion Exponential Integrator Sampler~(DEIS). It is based on the Exponential Integrator designed for discretizing ordinary differential equations (ODEs) and leverages a semilinear structure of the learned diffusion process to reduce the discretization error. The proposed method can be applied to any DMs and can generate high-fidelity samples in as few as 10 steps. In our experiments, it takes about 3 minutes on one A6000 GPU to generate 50k images from CIFAR10. Moreover, by directly using pre-trained DMs, we achieve the state-of-art sampling performance when the number of score function evaluation~(NFE) is limited, e.g., 4.17 FID with 10 NFEs, 3.37 FID, and 9.74 IS with only 15 NFEs on CIFAR10. Code is available at https://github.com/qsh-zh/deis
Better Neural PDE Solvers Through Data-Free Mesh Movers
Recently, neural networks have been extensively employed to solve partial differential equations (PDEs) in physical system modeling. While major studies focus on learning system evolution on predefined static mesh discretizations, some methods utilize reinforcement learning or supervised learning techniques to create adaptive and dynamic meshes, due to the dynamic nature of these systems. However, these approaches face two primary challenges: (1) the need for expensive optimal mesh data, and (2) the change of the solution space's degree of freedom and topology during mesh refinement. To address these challenges, this paper proposes a neural PDE solver with a neural mesh adapter. To begin with, we introduce a novel data-free neural mesh adaptor, called Data-free Mesh Mover (DMM), with two main innovations. Firstly, it is an operator that maps the solution to adaptive meshes and is trained using the Monge-Amp\`ere equation without optimal mesh data. Secondly, it dynamically changes the mesh by moving existing nodes rather than adding or deleting nodes and edges. Theoretical analysis shows that meshes generated by DMM have the lowest interpolation error bound. Based on DMM, to efficiently and accurately model dynamic systems, we develop a moving mesh based neural PDE solver (MM-PDE) that embeds the moving mesh with a two-branch architecture and a learnable interpolation framework to preserve information within the data. Empirical experiments demonstrate that our method generates suitable meshes and considerably enhances accuracy when modeling widely considered PDE systems. The code can be found at: https://github.com/Peiyannn/MM-PDE.git.
Implicit Neural Spatial Representations for Time-dependent PDEs
Implicit Neural Spatial Representation (INSR) has emerged as an effective representation of spatially-dependent vector fields. This work explores solving time-dependent PDEs with INSR. Classical PDE solvers introduce both temporal and spatial discretizations. Common spatial discretizations include meshes and meshless point clouds, where each degree-of-freedom corresponds to a location in space. While these explicit spatial correspondences are intuitive to model and understand, these representations are not necessarily optimal for accuracy, memory usage, or adaptivity. Keeping the classical temporal discretization unchanged (e.g., explicit/implicit Euler), we explore INSR as an alternative spatial discretization, where spatial information is implicitly stored in the neural network weights. The network weights then evolve over time via time integration. Our approach does not require any training data generated by existing solvers because our approach is the solver itself. We validate our approach on various PDEs with examples involving large elastic deformations, turbulent fluids, and multi-scale phenomena. While slower to compute than traditional representations, our approach exhibits higher accuracy and lower memory consumption. Whereas classical solvers can dynamically adapt their spatial representation only by resorting to complex remeshing algorithms, our INSR approach is intrinsically adaptive. By tapping into the rich literature of classic time integrators, e.g., operator-splitting schemes, our method enables challenging simulations in contact mechanics and turbulent flows where previous neural-physics approaches struggle. Videos and codes are available on the project page: http://www.cs.columbia.edu/cg/INSR-PDE/
A Deep Conjugate Direction Method for Iteratively Solving Linear Systems
We present a novel deep learning approach to approximate the solution of large, sparse, symmetric, positive-definite linear systems of equations. These systems arise from many problems in applied science, e.g., in numerical methods for partial differential equations. Algorithms for approximating the solution to these systems are often the bottleneck in problems that require their solution, particularly for modern applications that require many millions of unknowns. Indeed, numerical linear algebra techniques have been investigated for many decades to alleviate this computational burden. Recently, data-driven techniques have also shown promise for these problems. Motivated by the conjugate gradients algorithm that iteratively selects search directions for minimizing the matrix norm of the approximation error, we design an approach that utilizes a deep neural network to accelerate convergence via data-driven improvement of the search directions. Our method leverages a carefully chosen convolutional network to approximate the action of the inverse of the linear operator up to an arbitrary constant. We train the network using unsupervised learning with a loss function equal to the L^2 difference between an input and the system matrix times the network evaluation, where the unspecified constant in the approximate inverse is accounted for. We demonstrate the efficacy of our approach on spatially discretized Poisson equations with millions of degrees of freedom arising in computational fluid dynamics applications. Unlike state-of-the-art learning approaches, our algorithm is capable of reducing the linear system residual to a given tolerance in a small number of iterations, independent of the problem size. Moreover, our method generalizes effectively to various systems beyond those encountered during training.
Spatio-Temporal Lattice Planning Using Optimal Motion Primitives
Lattice-based planning techniques simplify the motion planning problem for autonomous vehicles by limiting available motions to a pre-computed set of primitives. These primitives are then combined online to generate more complex maneuvers. A set of motion primitives t-span a lattice if, given a real number t at least 1, any configuration in the lattice can be reached via a sequence of motion primitives whose cost is no more than a factor of t from optimal. Computing a minimal t-spanning set balances a trade-off between computed motion quality and motion planning performance. In this work, we formulate this problem for an arbitrary lattice as a mixed integer linear program. We also propose an A*-based algorithm to solve the motion planning problem using these primitives. Finally, we present an algorithm that removes the excessive oscillations from planned motions -- a common problem in lattice-based planning. Our method is validated for autonomous driving in both parking lot and highway scenarios.
Neural Operator: Learning Maps Between Function Spaces
The classical development of neural networks has primarily focused on learning mappings between finite dimensional Euclidean spaces or finite sets. We propose a generalization of neural networks to learn operators, termed neural operators, that map between infinite dimensional function spaces. We formulate the neural operator as a composition of linear integral operators and nonlinear activation functions. We prove a universal approximation theorem for our proposed neural operator, showing that it can approximate any given nonlinear continuous operator. The proposed neural operators are also discretization-invariant, i.e., they share the same model parameters among different discretization of the underlying function spaces. Furthermore, we introduce four classes of efficient parameterization, viz., graph neural operators, multi-pole graph neural operators, low-rank neural operators, and Fourier neural operators. An important application for neural operators is learning surrogate maps for the solution operators of partial differential equations (PDEs). We consider standard PDEs such as the Burgers, Darcy subsurface flow, and the Navier-Stokes equations, and show that the proposed neural operators have superior performance compared to existing machine learning based methodologies, while being several orders of magnitude faster than conventional PDE solvers.
Learning Grouped Lattice Vector Quantizers for Low-Bit LLM Compression
Large Language Models (LLMs) have demonstrated remarkable capabilities but typically require extensive computational resources and memory for inference. Post-training quantization (PTQ) can effectively reduce these demands by storing weights in lower bit-width formats. However, standard uniform quantization often leads to notable performance degradation, particularly in low-bit scenarios. In this work, we introduce a Grouped Lattice Vector Quantization (GLVQ) framework that assigns each group of weights a customized lattice codebook, defined by a learnable generation matrix. To address the non-differentiability of the quantization process, we adopt Babai rounding to approximate nearest-lattice-point search during training, which enables stable optimization of the generation matrices. Once trained, decoding reduces to a simple matrix-vector multiplication, yielding an efficient and practical quantization pipeline. Experiments on multiple benchmarks show that our approach achieves a better trade-off between model size and accuracy compared to existing post-training quantization baselines, highlighting its effectiveness in deploying large models under stringent resource constraints. Our source code is available on GitHub repository: https://github.com/xzhang9308/GLVQ.
Neural Operator: Is data all you need to model the world? An insight into the impact of Physics Informed Machine Learning
Numerical approximations of partial differential equations (PDEs) are routinely employed to formulate the solution of physics, engineering and mathematical problems involving functions of several variables, such as the propagation of heat or sound, fluid flow, elasticity, electrostatics, electrodynamics, and more. While this has led to solving many complex phenomena, there are some limitations. Conventional approaches such as Finite Element Methods (FEMs) and Finite Differential Methods (FDMs) require considerable time and are computationally expensive. In contrast, data driven machine learning-based methods such as neural networks provide a faster, fairly accurate alternative, and have certain advantages such as discretization invariance and resolution invariance. This article aims to provide a comprehensive insight into how data-driven approaches can complement conventional techniques to solve engineering and physics problems, while also noting some of the major pitfalls of machine learning-based approaches. Furthermore, we highlight, a novel and fast machine learning-based approach (~1000x) to learning the solution operator of a PDE operator learning. We will note how these new computational approaches can bring immense advantages in tackling many problems in fundamental and applied physics.
FreeBird.jl: An Extensible Toolbox for Simulating Interfacial Phase Equilibria
We present FreeBird, an extensible Julia-based platform for computational studies of phase equilibria at generic interfaces. The package supports a range of system configurations, from atomistic solid surfaces to coarse-grained lattice-gas models, with energies evaluated using classical interatomic potentials or lattice Hamiltonians. Both atomistic and lattice systems accommodate single- or multi-component mixtures with flexibly definable surface and lattice geometries. Implemented sampling algorithms include nested sampling, Wang-Landau sampling, Metropolis Monte Carlo, and, for tractable lattice systems, exact enumeration. Leveraging Julia's type hierarchies and multiple dispatch, FreeBird provides a modular interface that allows seamless integration of system definitions, energy evaluators, and sampling schemes. Designed for flexibility, extensibility, and performance, FreeBird offers a versatile framework for exploring the thermodynamics of interfacial phenomena.
Turbo-Muon: Accelerating Orthogonality-Based Optimization with Pre-Conditioning
Orthogonality-based optimizers, such as Muon, have recently shown strong performance across large-scale training and community-driven efficiency challenges. However, these methods rely on a costly gradient orthogonalization step. Even efficient iterative approximations such as Newton-Schulz remain expensive, typically requiring dozens of matrix multiplications to converge. We introduce a preconditioning procedure that accelerates Newton-Schulz convergence and reduces its computational cost. We evaluate its impact and show that the overhead of our preconditioning can be made negligible. Furthermore, the faster convergence it enables allows us to remove one iteration out of the usual five without degrading approximation quality. Our publicly available implementation achieves up to a 2.8x speedup in the Newton-Schulz approximation. We also show that this has a direct impact on end-to-end training runtime with 5-10% improvement in realistic training scenarios across two efficiency-focused tasks. On challenging language or vision tasks, we validate that our method maintains equal or superior model performance while improving runtime. Crucially, these improvements require no hyperparameter tuning and can be adopted as a simple drop-in replacement. Our code is publicly available on github.
Polynomial Preconditioning for Gradient Methods
We study first-order methods with preconditioning for solving structured nonlinear convex optimization problems. We propose a new family of preconditioners generated by symmetric polynomials. They provide first-order optimization methods with a provable improvement of the condition number, cutting the gaps between highest eigenvalues, without explicit knowledge of the actual spectrum. We give a stochastic interpretation of this preconditioning in terms of coordinate volume sampling and compare it with other classical approaches, including the Chebyshev polynomials. We show how to incorporate a polynomial preconditioning into the Gradient and Fast Gradient Methods and establish the corresponding global complexity bounds. Finally, we propose a simple adaptive search procedure that automatically chooses the best possible polynomial preconditioning for the Gradient Method, minimizing the objective along a low-dimensional Krylov subspace. Numerical experiments confirm the efficiency of our preconditioning strategies for solving various machine learning problems.
Principled Acceleration of Iterative Numerical Methods Using Machine Learning
Iterative methods are ubiquitous in large-scale scientific computing applications, and a number of approaches based on meta-learning have been recently proposed to accelerate them. However, a systematic study of these approaches and how they differ from meta-learning is lacking. In this paper, we propose a framework to analyze such learning-based acceleration approaches, where one can immediately identify a departure from classical meta-learning. We show that this departure may lead to arbitrary deterioration of model performance. Based on our analysis, we introduce a novel training method for learning-based acceleration of iterative methods. Furthermore, we theoretically prove that the proposed method improves upon the existing methods, and demonstrate its significant advantage and versatility through various numerical applications.
NUNO: A General Framework for Learning Parametric PDEs with Non-Uniform Data
The neural operator has emerged as a powerful tool in learning mappings between function spaces in PDEs. However, when faced with real-world physical data, which are often highly non-uniformly distributed, it is challenging to use mesh-based techniques such as the FFT. To address this, we introduce the Non-Uniform Neural Operator (NUNO), a comprehensive framework designed for efficient operator learning with non-uniform data. Leveraging a K-D tree-based domain decomposition, we transform non-uniform data into uniform grids while effectively controlling interpolation error, thereby paralleling the speed and accuracy of learning from non-uniform data. We conduct extensive experiments on 2D elasticity, (2+1)D channel flow, and a 3D multi-physics heatsink, which, to our knowledge, marks a novel exploration into 3D PDE problems with complex geometries. Our framework has reduced error rates by up to 60% and enhanced training speeds by 2x to 30x. The code is now available at https://github.com/thu-ml/NUNO.
A domain splitting strategy for solving PDEs
In this work we develop a novel domain splitting strategy for the solution of partial differential equations. Focusing on a uniform discretization of the d-dimensional advection-diffusion equation, our proposal is a two-level algorithm that merges the solutions obtained from the discretization of the equation over highly anisotropic submeshes to compute an initial approximation of the fine solution. The algorithm then iteratively refines the initial guess by leveraging the structure of the residual. Performing costly calculations on anisotropic submeshes enable us to reduce the dimensionality of the problem by one, and the merging process, which involves the computation of solutions over disjoint domains, allows for parallel implementation.
Hunyuan3D 2.5: Towards High-Fidelity 3D Assets Generation with Ultimate Details
In this report, we present Hunyuan3D 2.5, a robust suite of 3D diffusion models aimed at generating high-fidelity and detailed textured 3D assets. Hunyuan3D 2.5 follows two-stages pipeline of its previous version Hunyuan3D 2.0, while demonstrating substantial advancements in both shape and texture generation. In terms of shape generation, we introduce a new shape foundation model -- LATTICE, which is trained with scaled high-quality datasets, model-size, and compute. Our largest model reaches 10B parameters and generates sharp and detailed 3D shape with precise image-3D following while keeping mesh surface clean and smooth, significantly closing the gap between generated and handcrafted 3D shapes. In terms of texture generation, it is upgraded with phyiscal-based rendering (PBR) via a novel multi-view architecture extended from Hunyuan3D 2.0 Paint model. Our extensive evaluation shows that Hunyuan3D 2.5 significantly outperforms previous methods in both shape and end-to-end texture generation.
Fast Solvers for Discrete Diffusion Models: Theory and Applications of High-Order Algorithms
Discrete diffusion models have emerged as a powerful generative modeling framework for discrete data with successful applications spanning from text generation to image synthesis. However, their deployment faces challenges due to the high dimensionality of the state space, necessitating the development of efficient inference algorithms. Current inference approaches mainly fall into two categories: exact simulation and approximate methods such as tau-leaping. While exact methods suffer from unpredictable inference time and redundant function evaluations, tau-leaping is limited by its first-order accuracy. In this work, we advance the latter category by tailoring the first extension of high-order numerical inference schemes to discrete diffusion models, enabling larger step sizes while reducing error. We rigorously analyze the proposed schemes and establish the second-order accuracy of the theta-trapezoidal method in KL divergence. Empirical evaluations on GPT-2 level text and ImageNet-level image generation tasks demonstrate that our method achieves superior sample quality compared to existing approaches under equivalent computational constraints.
Self-Supervised Learning with Lie Symmetries for Partial Differential Equations
Machine learning for differential equations paves the way for computationally efficient alternatives to numerical solvers, with potentially broad impacts in science and engineering. Though current algorithms typically require simulated training data tailored to a given setting, one may instead wish to learn useful information from heterogeneous sources, or from real dynamical systems observations that are messy or incomplete. In this work, we learn general-purpose representations of PDEs from heterogeneous data by implementing joint embedding methods for self-supervised learning (SSL), a framework for unsupervised representation learning that has had notable success in computer vision. Our representation outperforms baseline approaches to invariant tasks, such as regressing the coefficients of a PDE, while also improving the time-stepping performance of neural solvers. We hope that our proposed methodology will prove useful in the eventual development of general-purpose foundation models for PDEs.
Reduced-Order Neural Operators: Learning Lagrangian Dynamics on Highly Sparse Graphs
We present a neural operator architecture to simulate Lagrangian dynamics, such as fluid flow, granular flows, and elastoplasticity. Traditional numerical methods, such as the finite element method (FEM), suffer from long run times and large memory consumption. On the other hand, approaches based on graph neural networks are faster but still suffer from long computation times on dense graphs, which are often required for high-fidelity simulations. Our model, GIOROM or Graph Interaction Operator for Reduced-Order Modeling, learns temporal dynamics within a reduced-order setting, capturing spatial features from a highly sparse graph representation of the input and generalizing to arbitrary spatial locations during inference. The model is geometry-aware and discretization-agnostic and can generalize to different initial conditions, velocities, and geometries after training. We show that point clouds of the order of 100,000 points can be inferred from sparse graphs with sim1000 points, with negligible change in computation time. We empirically evaluate our model on elastic solids, Newtonian fluids, Non-Newtonian fluids, Drucker-Prager granular flows, and von Mises elastoplasticity. On these benchmarks, our approach results in a 25times speedup compared to other neural network-based physics simulators while delivering high-fidelity predictions of complex physical systems and showing better performance on most benchmarks. The code and the demos are provided at https://github.com/HrishikeshVish/GIOROM.
DiscQuant: A Quantization Method for Neural Networks Inspired by Discrepancy Theory
Quantizing the weights of a neural network has two steps: (1) Finding a good low bit-complexity representation for weights (which we call the quantization grid) and (2) Rounding the original weights to values in the quantization grid. In this paper, we study the problem of rounding optimally given any quantization grid. The simplest and most commonly used way to round is Round-to-Nearest (RTN). By rounding in a data-dependent way instead, one can improve the quality of the quantized model significantly. We study the rounding problem from the lens of discrepancy theory, which studies how well we can round a continuous solution to a discrete solution without affecting solution quality too much. We prove that given m=poly(1/ε) samples from the data distribution, we can round all but O(m) model weights such that the expected approximation error of the quantized model on the true data distribution is le ε as long as the space of gradients of the original model is approximately low rank (which we empirically validate). Our proof, which is algorithmic, inspired a simple and practical rounding algorithm called DiscQuant. In our experiments, we demonstrate that DiscQuant significantly improves over the prior state-of-the-art rounding method called GPTQ and the baseline RTN over a range of benchmarks on Phi3mini-3.8B and Llama3.1-8B. For example, rounding Phi3mini-3.8B to a fixed quantization grid with 3.25 bits per parameter using DiscQuant gets 64\% accuracy on the GSM8k dataset, whereas GPTQ achieves 54\% and RTN achieves 31\% (the original model achieves 84\%). We make our code available at https://github.com/jerry-chee/DiscQuant.
High-order finite element method for atomic structure calculations
We introduce featom, an open source code that implements a high-order finite element solver for the radial Schr\"odinger, Dirac, and Kohn-Sham equations. The formulation accommodates various mesh types, such as uniform or exponential, and the convergence can be systematically controlled by increasing the number and/or polynomial order of the finite element basis functions. The Dirac equation is solved using a squared Hamiltonian approach to eliminate spurious states. To address the slow convergence of the kappa=pm1 states due to divergent derivatives at the origin, we incorporate known asymptotic forms into the solutions. We achieve a high level of accuracy (10^{-8} Hartree) for total energies and eigenvalues of heavy atoms such as uranium in both Schr\"odinger and Dirac Kohn-Sham solutions. We provide detailed convergence studies and computational parameters required to attain commonly required accuracies. Finally, we compare our results with known analytic results as well as the results of other methods. In particular, we calculate benchmark results for atomic numbers (Z) from 1 to 92, verifying current benchmarks. We demonstrate significant speedup compared to the state-of-the-art shooting solver dftatom. An efficient, modular Fortran 2008 implementation, is provided under an open source, permissive license, including examples and tests, wherein particular emphasis is placed on the independence (no global variables), reusability, and generality of the individual routines.
Mitigating Propagation Failures in Physics-informed Neural Networks using Retain-Resample-Release (R3) Sampling
Despite the success of physics-informed neural networks (PINNs) in approximating partial differential equations (PDEs), PINNs can sometimes fail to converge to the correct solution in problems involving complicated PDEs. This is reflected in several recent studies on characterizing the "failure modes" of PINNs, although a thorough understanding of the connection between PINN failure modes and sampling strategies is missing. In this paper, we provide a novel perspective of failure modes of PINNs by hypothesizing that training PINNs relies on successful "propagation" of solution from initial and/or boundary condition points to interior points. We show that PINNs with poor sampling strategies can get stuck at trivial solutions if there are propagation failures, characterized by highly imbalanced PDE residual fields. To mitigate propagation failures, we propose a novel Retain-Resample-Release sampling (R3) algorithm that can incrementally accumulate collocation points in regions of high PDE residuals with little to no computational overhead. We provide an extension of R3 sampling to respect the principle of causality while solving time-dependent PDEs. We theoretically analyze the behavior of R3 sampling and empirically demonstrate its efficacy and efficiency in comparison with baselines on a variety of PDE problems.
CodePDE: An Inference Framework for LLM-driven PDE Solver Generation
Partial differential equations (PDEs) are fundamental to modeling physical systems, yet solving them remains a complex challenge. Traditional numerical solvers rely on expert knowledge to implement and are computationally expensive, while neural-network-based solvers require large training datasets and often lack interpretability. In this work, we frame PDE solving as a code generation task and introduce CodePDE, the first inference framework for generating PDE solvers using large language models (LLMs). Leveraging advanced inference-time algorithms and scaling strategies, CodePDE unlocks critical capacities of LLM for PDE solving: reasoning, debugging, selfrefinement, and test-time scaling -- all without task-specific tuning. CodePDE achieves superhuman performance across a range of representative PDE problems. We also present a systematic empirical analysis of LLM generated solvers, analyzing their accuracy, efficiency, and numerical scheme choices. Our findings highlight the promise and the current limitations of LLMs in PDE solving, offering a new perspective on solver design and opportunities for future model development. Our code is available at https://github.com/LithiumDA/CodePDE.
Adversarial Adaptive Sampling: Unify PINN and Optimal Transport for the Approximation of PDEs
Solving partial differential equations (PDEs) is a central task in scientific computing. Recently, neural network approximation of PDEs has received increasing attention due to its flexible meshless discretization and its potential for high-dimensional problems. One fundamental numerical difficulty is that random samples in the training set introduce statistical errors into the discretization of loss functional which may become the dominant error in the final approximation, and therefore overshadow the modeling capability of the neural network. In this work, we propose a new minmax formulation to optimize simultaneously the approximate solution, given by a neural network model, and the random samples in the training set, provided by a deep generative model. The key idea is to use a deep generative model to adjust random samples in the training set such that the residual induced by the approximate PDE solution can maintain a smooth profile when it is being minimized. Such an idea is achieved by implicitly embedding the Wasserstein distance between the residual-induced distribution and the uniform distribution into the loss, which is then minimized together with the residual. A nearly uniform residual profile means that its variance is small for any normalized weight function such that the Monte Carlo approximation error of the loss functional is reduced significantly for a certain sample size. The adversarial adaptive sampling (AAS) approach proposed in this work is the first attempt to formulate two essential components, minimizing the residual and seeking the optimal training set, into one minmax objective functional for the neural network approximation of PDEs.
Deep Learning Hamiltonian Monte Carlo
We generalize the Hamiltonian Monte Carlo algorithm with a stack of neural network layers and evaluate its ability to sample from different topologies in a two dimensional lattice gauge theory. We demonstrate that our model is able to successfully mix between modes of different topologies, significantly reducing the computational cost required to generated independent gauge field configurations. Our implementation is available at https://github.com/saforem2/l2hmc-qcd .
GRAND: Graph Neural Diffusion
We present Graph Neural Diffusion (GRAND) that approaches deep learning on graphs as a continuous diffusion process and treats Graph Neural Networks (GNNs) as discretisations of an underlying PDE. In our model, the layer structure and topology correspond to the discretisation choices of temporal and spatial operators. Our approach allows a principled development of a broad new class of GNNs that are able to address the common plights of graph learning models such as depth, oversmoothing, and bottlenecks. Key to the success of our models are stability with respect to perturbations in the data and this is addressed for both implicit and explicit discretisation schemes. We develop linear and nonlinear versions of GRAND, which achieve competitive results on many standard graph benchmarks.
rd-spiral: An open-source Python library for learning 2D reaction-diffusion dynamics through pseudo-spectral method
We introduce rd-spiral, an open-source Python library for simulating 2D reaction-diffusion systems using pseudo-spectral methods. The framework combines FFT-based spatial discretization with adaptive Dormand-Prince time integration, achieving exponential convergence while maintaining pedagogical clarity. We analyze three dynamical regimes: stable spirals, spatiotemporal chaos, and pattern decay, revealing extreme non-Gaussian statistics (kurtosis >96) in stable states. Information-theoretic metrics show 10.7% reduction in activator-inhibitor coupling during turbulence versus 6.5% in stable regimes. The solver handles stiffness ratios >6:1 with features including automated equilibrium classification and checkpointing. Effect sizes (delta=0.37--0.78) distinguish regimes, with asymmetric field sensitivities to perturbations. By balancing computational rigor with educational transparency, rd-spiral bridges theoretical and practical nonlinear dynamics.
The Geometry of LLM Quantization: GPTQ as Babai's Nearest Plane Algorithm
Quantizing the weights of large language models (LLMs) from 16-bit to lower bitwidth is the de facto approach to deploy massive transformers onto more affordable accelerators. GPTQ emerged as one of the standard methods for one-shot post-training quantization at LLM scale. Yet, its inner workings are described as a sequence of ad-hoc algebraic updates that obscure any geometric meaning or worst-case guarantees. In this work, we show that, when executed back-to-front (from the last to first dimension) for a linear layer, GPTQ is mathematically identical to Babai's nearest plane algorithm for the classical closest vector problem (CVP) on a lattice defined by the Hessian matrix of the layer's inputs. This equivalence is based on a sophisticated mathematical argument, and has two analytical consequences: (i) the GPTQ error propagation step gains an intuitive geometric interpretation; (ii) GPTQ inherits the error upper bound of Babai's algorithm under the no-clipping condition. Taken together, these results place GPTQ on firm theoretical footing and open the door to importing decades of progress in lattice algorithms towards the design of future quantization algorithms for billion-parameter models.
PhysiX: A Foundation Model for Physics Simulations
Foundation models have achieved remarkable success across video, image, and language domains. By scaling up the number of parameters and training datasets, these models acquire generalizable world knowledge and often surpass task-specific approaches. However, such progress has yet to extend to the domain of physics simulation. A primary bottleneck is data scarcity: while millions of images, videos, and textual resources are readily available on the internet, the largest physics simulation datasets contain only tens of thousands of samples. This data limitation hinders the use of large models, as overfitting becomes a major concern. As a result, physics applications typically rely on small models, which struggle with long-range prediction due to limited context understanding. Additionally, unlike images, videos, or text-which typically exhibit fixed granularity-physics datasets often vary drastically in scale, amplifying the challenges of scaling up multitask training. We introduce PhysiX, the first large-scale foundation model for physics simulation. PhysiX is a 4.5B parameter autoregressive generative model. It uses a discrete tokenizer to encode physical processes at different scales into a sequence of discrete tokens, and employs an autoregressive next-token prediction objective to model such processes in the token space. To mitigate the rounding error in the discretization process, PhysiX incorporates a specialized refinement module. Through extensive experiments, we show that PhysiX effectively addresses the data bottleneck, outperforming task-specific baselines under comparable settings as well as the previous absolute state-of-the-art approaches on The Well benchmark. Our results indicate that knowledge learned from natural videos can be successfully transferred to physics simulation, and that joint training across diverse simulation tasks enables synergistic learning.
Guided Diffusion Sampling on Function Spaces with Applications to PDEs
We propose a general framework for conditional sampling in PDE-based inverse problems, targeting the recovery of whole solutions from extremely sparse or noisy measurements. This is accomplished by a function-space diffusion model and plug-and-play guidance for conditioning. Our method first trains an unconditional discretization-agnostic denoising model using neural operator architectures. At inference, we refine the samples to satisfy sparse observation data via a gradient-based guidance mechanism. Through rigorous mathematical analysis, we extend Tweedie's formula to infinite-dimensional Hilbert spaces, providing the theoretical foundation for our posterior sampling approach. Our method (FunDPS) accurately captures posterior distributions in function spaces under minimal supervision and severe data scarcity. Across five PDE tasks with only 3% observation, our method achieves an average 32% accuracy improvement over state-of-the-art fixed-resolution diffusion baselines while reducing sampling steps by 4x. Furthermore, multi-resolution fine-tuning ensures strong cross-resolution generalizability. To the best of our knowledge, this is the first diffusion-based framework to operate independently of discretization, offering a practical and flexible solution for forward and inverse problems in the context of PDEs. Code is available at https://github.com/neuraloperator/FunDPS
Fractal Generative Models
Modularization is a cornerstone of computer science, abstracting complex functions into atomic building blocks. In this paper, we introduce a new level of modularization by abstracting generative models into atomic generative modules. Analogous to fractals in mathematics, our method constructs a new type of generative model by recursively invoking atomic generative modules, resulting in self-similar fractal architectures that we call fractal generative models. As a running example, we instantiate our fractal framework using autoregressive models as the atomic generative modules and examine it on the challenging task of pixel-by-pixel image generation, demonstrating strong performance in both likelihood estimation and generation quality. We hope this work could open a new paradigm in generative modeling and provide a fertile ground for future research. Code is available at https://github.com/LTH14/fractalgen.
FlowMM: Generating Materials with Riemannian Flow Matching
Crystalline materials are a fundamental component in next-generation technologies, yet modeling their distribution presents unique computational challenges. Of the plausible arrangements of atoms in a periodic lattice only a vanishingly small percentage are thermodynamically stable, which is a key indicator of the materials that can be experimentally realized. Two fundamental tasks in this area are to (a) predict the stable crystal structure of a known composition of elements and (b) propose novel compositions along with their stable structures. We present FlowMM, a pair of generative models that achieve state-of-the-art performance on both tasks while being more efficient and more flexible than competing methods. We generalize Riemannian Flow Matching to suit the symmetries inherent to crystals: translation, rotation, permutation, and periodic boundary conditions. Our framework enables the freedom to choose the flow base distributions, drastically simplifying the problem of learning crystal structures compared with diffusion models. In addition to standard benchmarks, we validate FlowMM's generated structures with quantum chemistry calculations, demonstrating that it is about 3x more efficient, in terms of integration steps, at finding stable materials compared to previous open methods.
Model-Based and Sample-Efficient AI-Assisted Math Discovery in Sphere Packing
Sphere packing, Hilbert's eighteenth problem, asks for the densest arrangement of congruent spheres in n-dimensional Euclidean space. Although relevant to areas such as cryptography, crystallography, and medical imaging, the problem remains unresolved: beyond a few special dimensions, neither optimal packings nor tight upper bounds are known. Even a major breakthrough in dimension n=8, later recognised with a Fields Medal, underscores its difficulty. A leading technique for upper bounds, the three-point method, reduces the problem to solving large, high-precision semidefinite programs (SDPs). Because each candidate SDP may take days to evaluate, standard data-intensive AI approaches are infeasible. We address this challenge by formulating SDP construction as a sequential decision process, the SDP game, in which a policy assembles SDP formulations from a set of admissible components. Using a sample-efficient model-based framework that combines Bayesian optimisation with Monte Carlo Tree Search, we obtain new state-of-the-art upper bounds in dimensions 4-16, showing that model-based search can advance computational progress in longstanding geometric problems. Together, these results demonstrate that sample-efficient, model-based search can make tangible progress on mathematically rigid, evaluation limited problems, pointing towards a complementary direction for AI-assisted discovery beyond large-scale LLM-driven exploration.
Space Group Constrained Crystal Generation
Crystals are the foundation of numerous scientific and industrial applications. While various learning-based approaches have been proposed for crystal generation, existing methods seldom consider the space group constraint which is crucial in describing the geometry of crystals and closely relevant to many desirable properties. However, considering space group constraint is challenging owing to its diverse and nontrivial forms. In this paper, we reduce the space group constraint into an equivalent formulation that is more tractable to be handcrafted into the generation process. In particular, we translate the space group constraint into two parts: the basis constraint of the invariant logarithmic space of the lattice matrix and the Wyckoff position constraint of the fractional coordinates. Upon the derived constraints, we then propose DiffCSP++, a novel diffusion model that has enhanced a previous work DiffCSP by further taking space group constraint into account. Experiments on several popular datasets verify the benefit of the involvement of the space group constraint, and show that our DiffCSP++ achieves promising performance on crystal structure prediction, ab initio crystal generation and controllable generation with customized space groups.
Discrete Total Variation with Finite Elements and Applications to Imaging
The total variation (TV)-seminorm is considered for piecewise polynomial, globally discontinuous (DG) and continuous (CG) finite element functions on simplicial meshes. A novel, discrete variant (DTV) based on a nodal quadrature formula is defined. DTV has favorable properties, compared to the original TV-seminorm for finite element functions. These include a convenient dual representation in terms of the supremum over the space of Raviart--Thomas finite element functions, subject to a set of simple constraints. It can therefore be shown that a variety of algorithms for classical image reconstruction problems, including TV-L^2 and TV-L^1, can be implemented in low and higher-order finite element spaces with the same efficiency as their counterparts originally developed for images on Cartesian grids.
Learning Preconditioner for Conjugate Gradient PDE Solvers
Efficient numerical solvers for partial differential equations empower science and engineering. One of the commonly employed numerical solvers is the preconditioned conjugate gradient (PCG) algorithm which can solve large systems to a given precision level. One challenge in PCG solvers is the selection of preconditioners, as different problem-dependent systems can benefit from different preconditioners. We present a new method to introduce inductive bias in preconditioning conjugate gradient algorithm. Given a system matrix and a set of solution vectors arise from an underlying distribution, we train a graph neural network to obtain an approximate decomposition to the system matrix to be used as a preconditioner in the context of PCG solvers. We conduct extensive experiments to demonstrate the efficacy and generalizability of our proposed approach in solving various 2D and 3D linear second-order PDEs.
DualFast: Dual-Speedup Framework for Fast Sampling of Diffusion Models
Diffusion probabilistic models (DPMs) have achieved impressive success in visual generation. While, they suffer from slow inference speed due to iterative sampling. Employing fewer sampling steps is an intuitive solution, but this will also introduces discretization error. Existing fast samplers make inspiring efforts to reduce discretization error through the adoption of high-order solvers, potentially reaching a plateau in terms of optimization. This raises the question: can the sampling process be accelerated further? In this paper, we re-examine the nature of sampling errors, discerning that they comprise two distinct elements: the widely recognized discretization error and the less explored approximation error. Our research elucidates the dynamics between these errors and the step by implementing a dual-error disentanglement strategy. Building on these foundations, we introduce an unified and training-free acceleration framework, DualFast, designed to enhance the speed of DPM sampling by concurrently accounting for both error types, thereby minimizing the total sampling error. DualFast is seamlessly compatible with existing samplers and significantly boost their sampling quality and speed, particularly in extremely few sampling steps. We substantiate the effectiveness of our framework through comprehensive experiments, spanning both unconditional and conditional sampling domains, across both pixel-space and latent-space DPMs.
Neural Spectral Methods: Self-supervised learning in the spectral domain
We present Neural Spectral Methods, a technique to solve parametric Partial Differential Equations (PDEs), grounded in classical spectral methods. Our method uses orthogonal bases to learn PDE solutions as mappings between spectral coefficients. In contrast to current machine learning approaches which enforce PDE constraints by minimizing the numerical quadrature of the residuals in the spatiotemporal domain, we leverage Parseval's identity and introduce a new training strategy through a spectral loss. Our spectral loss enables more efficient differentiation through the neural network, and substantially reduces training complexity. At inference time, the computational cost of our method remains constant, regardless of the spatiotemporal resolution of the domain. Our experimental results demonstrate that our method significantly outperforms previous machine learning approaches in terms of speed and accuracy by one to two orders of magnitude on multiple different problems. When compared to numerical solvers of the same accuracy, our method demonstrates a 10times increase in performance speed.
Space and Time Continuous Physics Simulation From Partial Observations
Modern techniques for physical simulations rely on numerical schemes and mesh-refinement methods to address trade-offs between precision and complexity, but these handcrafted solutions are tedious and require high computational power. Data-driven methods based on large-scale machine learning promise high adaptivity by integrating long-range dependencies more directly and efficiently. In this work, we focus on fluid dynamics and address the shortcomings of a large part of the literature, which are based on fixed support for computations and predictions in the form of regular or irregular grids. We propose a novel setup to perform predictions in a continuous spatial and temporal domain while being trained on sparse observations. We formulate the task as a double observation problem and propose a solution with two interlinked dynamical systems defined on, respectively, the sparse positions and the continuous domain, which allows to forecast and interpolate a solution from the initial condition. Our practical implementation involves recurrent GNNs and a spatio-temporal attention observer capable of interpolating the solution at arbitrary locations. Our model not only generalizes to new initial conditions (as standard auto-regressive models do) but also performs evaluation at arbitrary space and time locations. We evaluate on three standard datasets in fluid dynamics and compare to strong baselines, which are outperformed both in classical settings and in the extended new task requiring continuous predictions.
Symmetric Basis Convolutions for Learning Lagrangian Fluid Mechanics
Learning physical simulations has been an essential and central aspect of many recent research efforts in machine learning, particularly for Navier-Stokes-based fluid mechanics. Classic numerical solvers have traditionally been computationally expensive and challenging to use in inverse problems, whereas Neural solvers aim to address both concerns through machine learning. We propose a general formulation for continuous convolutions using separable basis functions as a superset of existing methods and evaluate a large set of basis functions in the context of (a) a compressible 1D SPH simulation, (b) a weakly compressible 2D SPH simulation, and (c) an incompressible 2D SPH Simulation. We demonstrate that even and odd symmetries included in the basis functions are key aspects of stability and accuracy. Our broad evaluation shows that Fourier-based continuous convolutions outperform all other architectures regarding accuracy and generalization. Finally, using these Fourier-based networks, we show that prior inductive biases, such as window functions, are no longer necessary. An implementation of our approach, as well as complete datasets and solver implementations, is available at https://github.com/tum-pbs/SFBC.
Segmentation of 3D pore space from CT images using curvilinear skeleton: application to numerical simulation of microbial decomposition
Recent advances in 3D X-ray Computed Tomographic (CT) sensors have stimulated research efforts to unveil the extremely complex micro-scale processes that control the activity of soil microorganisms. Voxel-based description (up to hundreds millions voxels) of the pore space can be extracted, from grey level 3D CT scanner images, by means of simple image processing tools. Classical methods for numerical simulation of biological dynamics using mesh of voxels, such as Lattice Boltzmann Model (LBM), are too much time consuming. Thus, the use of more compact and reliable geometrical representations of pore space can drastically decrease the computational cost of the simulations. Several recent works propose basic analytic volume primitives (e.g. spheres, generalized cylinders, ellipsoids) to define a piece-wise approximation of pore space for numerical simulation of draining, diffusion and microbial decomposition. Such approaches work well but the drawback is that it generates approximation errors. In the present work, we study another alternative where pore space is described by means of geometrically relevant connected subsets of voxels (regions) computed from the curvilinear skeleton. Indeed, many works use the curvilinear skeleton (3D medial axis) for analyzing and partitioning 3D shapes within various domains (medicine, material sciences, petroleum engineering, etc.) but only a few ones in soil sciences. Within the context of soil sciences, most studies dealing with 3D medial axis focus on the determination of pore throats. Here, we segment pore space using curvilinear skeleton in order to achieve numerical simulation of microbial decomposition (including diffusion processes). We validate simulation outputs by comparison with other methods using different pore space geometrical representations (balls, voxels).
MGARD: A multigrid framework for high-performance, error-controlled data compression and refactoring
We describe MGARD, a software providing MultiGrid Adaptive Reduction for floating-point scientific data on structured and unstructured grids. With exceptional data compression capability and precise error control, MGARD addresses a wide range of requirements, including storage reduction, high-performance I/O, and in-situ data analysis. It features a unified application programming interface (API) that seamlessly operates across diverse computing architectures. MGARD has been optimized with highly-tuned GPU kernels and efficient memory and device management mechanisms, ensuring scalable and rapid operations.
An information theoretic necessary condition for perfect reconstruction
A new information theoretic condition is presented for reconstructing a discrete random variable X based on the knowledge of a set of discrete functions of X. The reconstruction condition is derived from Shannon's 1953 lattice theory with two entropic metrics of Shannon and Rajski. Because such a theoretical material is relatively unknown and appears quite dispersed in different references, we first provide a synthetic description (with complete proofs) of its concepts, such as total, common and complementary informations. Definitions and properties of the two entropic metrics are also fully detailed and shown compatible with the lattice structure. A new geometric interpretation of such a lattice structure is then investigated that leads to a necessary (and sometimes sufficient) condition for reconstructing the discrete random variable X given a set { X_1,ldots,X_{n} } of elements in the lattice generated by X. Finally, this condition is illustrated in five specific examples of perfect reconstruction problems: reconstruction of a symmetric random variable from the knowledge of its sign and absolute value, reconstruction of a word from a set of linear combinations, reconstruction of an integer from its prime signature (fundamental theorem of arithmetic) and from its remainders modulo a set of coprime integers (Chinese remainder theorem), and reconstruction of the sorting permutation of a list from a minimal set of pairwise comparisons.
Scaling Riemannian Diffusion Models
Riemannian diffusion models draw inspiration from standard Euclidean space diffusion models to learn distributions on general manifolds. Unfortunately, the additional geometric complexity renders the diffusion transition term inexpressible in closed form, so prior methods resort to imprecise approximations of the score matching training objective that degrade performance and preclude applications in high dimensions. In this work, we reexamine these approximations and propose several practical improvements. Our key observation is that most relevant manifolds are symmetric spaces, which are much more amenable to computation. By leveraging and combining various ans\"{a}tze, we can quickly compute relevant quantities to high precision. On low dimensional datasets, our correction produces a noticeable improvement, allowing diffusion to compete with other methods. Additionally, we show that our method enables us to scale to high dimensional tasks on nontrivial manifolds. In particular, we model QCD densities on SU(n) lattices and contrastively learned embeddings on high dimensional hyperspheres.
Efficient Encoding of Graphics Primitives with Simplex-based Structures
Grid-based structures are commonly used to encode explicit features for graphics primitives such as images, signed distance functions (SDF), and neural radiance fields (NeRF) due to their simple implementation. However, in n-dimensional space, calculating the value of a sampled point requires interpolating the values of its 2^n neighboring vertices. The exponential scaling with dimension leads to significant computational overheads. To address this issue, we propose a simplex-based approach for encoding graphics primitives. The number of vertices in a simplex-based structure increases linearly with dimension, making it a more efficient and generalizable alternative to grid-based representations. Using the non-axis-aligned simplicial structure property, we derive and prove a coordinate transformation, simplicial subdivision, and barycentric interpolation scheme for efficient sampling, which resembles transformation procedures in the simplex noise algorithm. Finally, we use hash tables to store multiresolution features of all interest points in the simplicial grid, which are passed into a tiny fully connected neural network to parameterize graphics primitives. We implemented a detailed simplex-based structure encoding algorithm in C++ and CUDA using the methods outlined in our approach. In the 2D image fitting task, the proposed method is capable of fitting a giga-pixel image with 9.4% less time compared to the baseline method proposed by instant-ngp, while maintaining the same quality and compression rate. In the volumetric rendering setup, we observe a maximum 41.2% speedup when the samples are dense enough.
Adaptive Preconditioned Gradient Descent with Energy
We propose an adaptive step size with an energy approach for a suitable class of preconditioned gradient descent methods. We focus on settings where the preconditioning is applied to address the constraints in optimization problems, such as the Hessian-Riemannian and natural gradient descent methods. More specifically, we incorporate these preconditioned gradient descent algorithms in the recently introduced Adaptive Energy Gradient Descent (AEGD) framework. In particular, we discuss theoretical results on the unconditional energy-stability and convergence rates across three classes of objective functions. Furthermore, our numerical results demonstrate excellent performance of the proposed method on several test bed optimization problems.
Limits and Powers of Koopman Learning
Dynamical systems provide a comprehensive way to study complex and changing behaviors across various sciences. Many modern systems are too complicated to analyze directly or we do not have access to models, driving significant interest in learning methods. Koopman operators have emerged as a dominant approach because they allow the study of nonlinear dynamics using linear techniques by solving an infinite-dimensional spectral problem. However, current algorithms face challenges such as lack of convergence, hindering practical progress. This paper addresses a fundamental open question: When can we robustly learn the spectral properties of Koopman operators from trajectory data of dynamical systems, and when can we not? Understanding these boundaries is crucial for analysis, applications, and designing algorithms. We establish a foundational approach that combines computational analysis and ergodic theory, revealing the first fundamental barriers -- universal for any algorithm -- associated with system geometry and complexity, regardless of data quality and quantity. For instance, we demonstrate well-behaved smooth dynamical systems on tori where non-trivial eigenfunctions of the Koopman operator cannot be determined by any sequence of (even randomized) algorithms, even with unlimited training data. Additionally, we identify when learning is possible and introduce optimal algorithms with verification that overcome issues in standard methods. These results pave the way for a sharp classification theory of data-driven dynamical systems based on how many limits are needed to solve a problem. These limits characterize all previous methods, presenting a unified view. Our framework systematically determines when and how Koopman spectral properties can be learned.
Poseidon: Efficient Foundation Models for PDEs
We introduce Poseidon, a foundation model for learning the solution operators of PDEs. It is based on a multiscale operator transformer, with time-conditioned layer norms that enable continuous-in-time evaluations. A novel training strategy leveraging the semi-group property of time-dependent PDEs to allow for significant scaling-up of the training data is also proposed. Poseidon is pretrained on a diverse, large scale dataset for the governing equations of fluid dynamics. It is then evaluated on a suite of 15 challenging downstream tasks that include a wide variety of PDE types and operators. We show that Poseidon exhibits excellent performance across the board by outperforming baselines significantly, both in terms of sample efficiency and accuracy. Poseidon also generalizes very well to new physics that is not seen during pretraining. Moreover, Poseidon scales with respect to model and data size, both for pretraining and for downstream tasks. Taken together, our results showcase the surprising ability of Poseidon to learn effective representations from a very small set of PDEs during pretraining in order to generalize well to unseen and unrelated PDEs downstream, demonstrating its potential as an effective, general purpose PDE foundation model. Finally, the Poseidon model as well as underlying pretraining and downstream datasets are open sourced, with code being available at https://github.com/camlab-ethz/poseidon and pretrained models and datasets at https://huggingface.co/camlab-ethz.
Construction of simplicial complexes with prescribed degree-size sequences
We study the realizability of simplicial complexes with a given pair of integer sequences, representing the node degree distribution and the facet size distribution, respectively. While the s-uniform variant of the problem is NP-complete when s geq 3, we identify two populations of input sequences, most of which can be solved in polynomial time using a recursive algorithm that we contribute. Combining with a sampler for the simplicial configuration model [J.-G. Young et al., Phys. Rev. E 96, 032312 (2017)], we facilitate the efficient sampling of simplicial ensembles from arbitrary degree and size distributions. We find that, contrary to expectations based on dyadic networks, increasing the nodes' degrees reduces the number of loops in simplicial complexes. Our work unveils a fundamental constraint on the degree-size sequences and sheds light on further analysis of higher-order phenomena based on local structures.
Sqrt(d) Dimension Dependence of Langevin Monte Carlo
This article considers the popular MCMC method of unadjusted Langevin Monte Carlo (LMC) and provides a non-asymptotic analysis of its sampling error in 2-Wasserstein distance. The proof is based on a refinement of mean-square analysis in Li et al. (2019), and this refined framework automates the analysis of a large class of sampling algorithms based on discretizations of contractive SDEs. Using this framework, we establish an O(d/epsilon) mixing time bound for LMC, without warm start, under the common log-smooth and log-strongly-convex conditions, plus a growth condition on the 3rd-order derivative of the potential of target measures. This bound improves the best previously known O(d/epsilon) result and is optimal (in terms of order) in both dimension d and accuracy tolerance epsilon for target measures satisfying the aforementioned assumptions. Our theoretical analysis is further validated by numerical experiments.
Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow
We present rectified flow, a surprisingly simple approach to learning (neural) ordinary differential equation (ODE) models to transport between two empirically observed distributions \pi_0 and \pi_1, hence providing a unified solution to generative modeling and domain transfer, among various other tasks involving distribution transport. The idea of rectified flow is to learn the ODE to follow the straight paths connecting the points drawn from \pi_0 and \pi_1 as much as possible. This is achieved by solving a straightforward nonlinear least squares optimization problem, which can be easily scaled to large models without introducing extra parameters beyond standard supervised learning. The straight paths are special and preferred because they are the shortest paths between two points, and can be simulated exactly without time discretization and hence yield computationally efficient models. We show that the procedure of learning a rectified flow from data, called rectification, turns an arbitrary coupling of \pi_0 and \pi_1 to a new deterministic coupling with provably non-increasing convex transport costs. In addition, recursively applying rectification allows us to obtain a sequence of flows with increasingly straight paths, which can be simulated accurately with coarse time discretization in the inference phase. In empirical studies, we show that rectified flow performs superbly on image generation, image-to-image translation, and domain adaptation. In particular, on image generation and translation, our method yields nearly straight flows that give high quality results even with a single Euler discretization step.
Multiscale Neural Operator: Learning Fast and Grid-independent PDE Solvers
Numerical simulations in climate, chemistry, or astrophysics are computationally too expensive for uncertainty quantification or parameter-exploration at high-resolution. Reduced-order or surrogate models are multiple orders of magnitude faster, but traditional surrogates are inflexible or inaccurate and pure machine learning (ML)-based surrogates too data-hungry. We propose a hybrid, flexible surrogate model that exploits known physics for simulating large-scale dynamics and limits learning to the hard-to-model term, which is called parametrization or closure and captures the effect of fine- onto large-scale dynamics. Leveraging neural operators, we are the first to learn grid-independent, non-local, and flexible parametrizations. Our multiscale neural operator is motivated by a rich literature in multiscale modeling, has quasilinear runtime complexity, is more accurate or flexible than state-of-the-art parametrizations and demonstrated on the chaotic equation multiscale Lorenz96.
Polyatomic Complexes: A topologically-informed learning representation for atomistic systems
Developing robust representations of chemical structures that enable models to learn topological inductive biases is challenging. In this manuscript, we present a representation of atomistic systems. We begin by proving that our representation satisfies all structural, geometric, efficiency, and generalizability constraints. Afterward, we provide a general algorithm to encode any atomistic system. Finally, we report performance comparable to state-of-the-art methods on numerous tasks. We open-source all code and datasets. The code and data are available at https://github.com/rahulkhorana/PolyatomicComplexes.
Multi-Grid Tensorized Fourier Neural Operator for High-Resolution PDEs
Memory complexity and data scarcity have so far prohibited learning solution operators of partial differential equations (PDEs) at high resolutions. We address these limitations by introducing a new data efficient and highly parallelizable operator learning approach with reduced memory requirement and better generalization, called multi-grid tensorized neural operator (MG-TFNO). MG-TFNO scales to large resolutions by leveraging local and global structures of full-scale, real-world phenomena, through a decomposition of both the input domain and the operator's parameter space. Our contributions are threefold: i) we enable parallelization over input samples with a novel multi-grid-based domain decomposition, ii) we represent the parameters of the model in a high-order latent subspace of the Fourier domain, through a global tensor factorization, resulting in an extreme reduction in the number of parameters and improved generalization, and iii) we propose architectural improvements to the backbone FNO. Our approach can be used in any operator learning setting. We demonstrate superior performance on the turbulent Navier-Stokes equations where we achieve less than half the error with over 150x compression. The tensorization combined with the domain decomposition, yields over 150x reduction in the number of parameters and 7x reduction in the domain size without losses in accuracy, while slightly enabling parallelism.
Minimum Width of Leaky-ReLU Neural Networks for Uniform Universal Approximation
The study of universal approximation properties (UAP) for neural networks (NN) has a long history. When the network width is unlimited, only a single hidden layer is sufficient for UAP. In contrast, when the depth is unlimited, the width for UAP needs to be not less than the critical width w^*_{min}=max(d_x,d_y), where d_x and d_y are the dimensions of the input and output, respectively. Recently, cai2022achieve shows that a leaky-ReLU NN with this critical width can achieve UAP for L^p functions on a compact domain K, i.e., the UAP for L^p(K,R^{d_y}). This paper examines a uniform UAP for the function class C(K,R^{d_y}) and gives the exact minimum width of the leaky-ReLU NN as w_{min}=max(d_x+1,d_y)+1_{d_y=d_x+1}, which involves the effects of the output dimensions. To obtain this result, we propose a novel lift-flow-discretization approach that shows that the uniform UAP has a deep connection with topological theory.
EquiNO: A Physics-Informed Neural Operator for Multiscale Simulations
Multiscale problems are ubiquitous in physics. Numerical simulations of such problems by solving partial differential equations (PDEs) at high resolution are computationally too expensive for many-query scenarios, e.g., uncertainty quantification, remeshing applications, topology optimization, and so forth. This limitation has motivated the application of data-driven surrogate models, where the microscale computations are substituted with a surrogate, usually acting as a black-box mapping between macroscale quantities. These models offer significant speedups but struggle with incorporating microscale physical constraints, such as the balance of linear momentum and constitutive models. In this contribution, we propose Equilibrium Neural Operator (EquiNO) as a complementary physics-informed PDE surrogate for predicting microscale physics and compare it with variational physics-informed neural and operator networks. Our framework, applicable to the so-called multiscale FE^{,2}, computations, introduces the FE-OL approach by integrating the finite element (FE) method with operator learning (OL). We apply the proposed FE-OL approach to quasi-static problems of solid mechanics. The results demonstrate that FE-OL can yield accurate solutions even when confronted with a restricted dataset during model development. Our results show that EquiNO achieves speedup factors exceeding 8000-fold compared to traditional methods and offers an optimal balance between data-driven and physics-based strategies.
Learning the Solution Operator of Boundary Value Problems using Graph Neural Networks
As an alternative to classical numerical solvers for partial differential equations (PDEs) subject to boundary value constraints, there has been a surge of interest in investigating neural networks that can solve such problems efficiently. In this work, we design a general solution operator for two different time-independent PDEs using graph neural networks (GNNs) and spectral graph convolutions. We train the networks on simulated data from a finite elements solver on a variety of shapes and inhomogeneities. In contrast to previous works, we focus on the ability of the trained operator to generalize to previously unseen scenarios. Specifically, we test generalization to meshes with different shapes and superposition of solutions for a different number of inhomogeneities. We find that training on a diverse dataset with lots of variation in the finite element meshes is a key ingredient for achieving good generalization results in all cases. With this, we believe that GNNs can be used to learn solution operators that generalize over a range of properties and produce solutions much faster than a generic solver. Our dataset, which we make publicly available, can be used and extended to verify the robustness of these models under varying conditions.
Elucidating the Design Space of FP4 training
The increasing computational demands of foundation models have spurred research into low-precision training, with 4-bit floating-point (FP4) formats emerging as a frontier for maximizing hardware throughput. While numerous techniques have been proposed to stabilize FP4 training, they often present isolated solutions with varying, and not always clear, computational overheads. This paper aims to provide a unified view of the design space of FP4 training. We introduce a comprehensive, quantisation gradient-based framework for microscaling quantization that allows for a theoretical analysis of the computational costs associated with different stabilization methods on both the forward and backward passes. Using a simulator built on this framework, we conduct an extensive empirical study across a wide range of machine learning tasks, including regression, image classification, diffusion models, and language models. By systematically evaluating thousands of combinations of techniques, such as novel gradient approximations, rounding strategies, and scaling methods, we identify which configurations offer the most favourable performance-to-overhead trade-off. We find that the techniques enabling the best trade-off involve carefully combining Hadamard transformations, tensor scaling and stochastic rounding. We further find that using UE5M3 as a scaling factor potentially offers a good compromise between range and precision with manageable computational overhead.
Mesh-robust stability and convergence of variable-step deferred correction methods based on the BDF2 formula
We provide a new theoretical framework for the variable-step deferred correction (DC) methods based on the well-known BDF2 formula. By using the discrete orthogonal convolution kernels, some high-order BDF2-DC methods are proven to be stable on arbitrary time grids according to the recent definition of stability (SINUM, 60: 2253-2272). It significantly relaxes the existing step-ratio restrictions for the BDF2-DC methods (BIT, 62: 1789-1822). The associated sharp error estimates are established by taking the numerical effects of the starting approximations into account, and they suggest that the BDF2-DC methods have no aftereffect, that is, the lower-order starting scheme for the BDF2 scheme will not cause a loss in the accuracy of the high-order BDF2-DC methods. Extensive tests on the graded and random time meshes are presented to support the new theory.
WyckoffDiff -- A Generative Diffusion Model for Crystal Symmetry
Crystalline materials often exhibit a high level of symmetry. However, most generative models do not account for symmetry, but rather model each atom without any constraints on its position or element. We propose a generative model, Wyckoff Diffusion (WyckoffDiff), which generates symmetry-based descriptions of crystals. This is enabled by considering a crystal structure representation that encodes all symmetry, and we design a novel neural network architecture which enables using this representation inside a discrete generative model framework. In addition to respecting symmetry by construction, the discrete nature of our model enables fast generation. We additionally present a new metric, Fr\'echet Wrenformer Distance, which captures the symmetry aspects of the materials generated, and we benchmark WyckoffDiff against recently proposed generative models for crystal generation. Code is available online at https://github.com/httk/wyckoffdiff
Improved Active Learning via Dependent Leverage Score Sampling
We show how to obtain improved active learning methods in the agnostic (adversarial noise) setting by combining marginal leverage score sampling with non-independent sampling strategies that promote spatial coverage. In particular, we propose an easily implemented method based on the pivotal sampling algorithm, which we test on problems motivated by learning-based methods for parametric PDEs and uncertainty quantification. In comparison to independent sampling, our method reduces the number of samples needed to reach a given target accuracy by up to 50%. We support our findings with two theoretical results. First, we show that any non-independent leverage score sampling method that obeys a weak one-sided ell_{infty} independence condition (which includes pivotal sampling) can actively learn d dimensional linear functions with O(dlog d) samples, matching independent sampling. This result extends recent work on matrix Chernoff bounds under ell_{infty} independence, and may be of interest for analyzing other sampling strategies beyond pivotal sampling. Second, we show that, for the important case of polynomial regression, our pivotal method obtains an improved bound of O(d) samples.
MDNS: Masked Diffusion Neural Sampler via Stochastic Optimal Control
We study the problem of learning a neural sampler to generate samples from discrete state spaces where the target probability mass function piproptoe^{-U} is known up to a normalizing constant, which is an important task in fields such as statistical physics, machine learning, combinatorial optimization, etc. To better address this challenging task when the state space has a large cardinality and the distribution is multi-modal, we propose Masked Diffusion Neural Sampler (MDNS), a novel framework for training discrete neural samplers by aligning two path measures through a family of learning objectives, theoretically grounded in the stochastic optimal control of the continuous-time Markov chains. We validate the efficiency and scalability of MDNS through extensive experiments on various distributions with distinct statistical properties, where MDNS learns to accurately sample from the target distributions despite the extremely high problem dimensions and outperforms other learning-based baselines by a large margin. A comprehensive study of ablations and extensions is also provided to demonstrate the efficacy and potential of the proposed framework.
MMGP: a Mesh Morphing Gaussian Process-based machine learning method for regression of physical problems under non-parameterized geometrical variability
When learning simulations for modeling physical phenomena in industrial designs, geometrical variabilities are of prime interest. While classical regression techniques prove effective for parameterized geometries, practical scenarios often involve the absence of shape parametrization during the inference stage, leaving us with only mesh discretizations as available data. Learning simulations from such mesh-based representations poses significant challenges, with recent advances relying heavily on deep graph neural networks to overcome the limitations of conventional machine learning approaches. Despite their promising results, graph neural networks exhibit certain drawbacks, including their dependency on extensive datasets and limitations in providing built-in predictive uncertainties or handling large meshes. In this work, we propose a machine learning method that do not rely on graph neural networks. Complex geometrical shapes and variations with fixed topology are dealt with using well-known mesh morphing onto a common support, combined with classical dimensionality reduction techniques and Gaussian processes. The proposed methodology can easily deal with large meshes without the need for explicit shape parameterization and provides crucial predictive uncertainties, which are essential for informed decision-making. In the considered numerical experiments, the proposed method is competitive with respect to existing graph neural networks, regarding training efficiency and accuracy of the predictions.
Learning to Discretize Denoising Diffusion ODEs
Diffusion Probabilistic Models (DPMs) are generative models showing competitive performance in various domains, including image synthesis and 3D point cloud generation. Sampling from pre-trained DPMs involves multiple neural function evaluations (NFEs) to transform Gaussian noise samples into images, resulting in higher computational costs compared to single-step generative models such as GANs or VAEs. Therefore, reducing the number of NFEs while preserving generation quality is crucial. To address this, we propose LD3, a lightweight framework designed to learn the optimal time discretization for sampling. LD3 can be combined with various samplers and consistently improves generation quality without having to retrain resource-intensive neural networks. We demonstrate analytically and empirically that LD3 improves sampling efficiency with much less computational overhead. We evaluate our method with extensive experiments on 7 pre-trained models, covering unconditional and conditional sampling in both pixel-space and latent-space DPMs. We achieve FIDs of 2.38 (10 NFE), and 2.27 (10 NFE) on unconditional CIFAR10 and AFHQv2 in 5-10 minutes of training. LD3 offers an efficient approach to sampling from pre-trained diffusion models. Code is available at https://github.com/vinhsuhi/LD3.
Improved Analysis of Score-based Generative Modeling: User-Friendly Bounds under Minimal Smoothness Assumptions
We give an improved theoretical analysis of score-based generative modeling. Under a score estimate with small L^2 error (averaged across timesteps), we provide efficient convergence guarantees for any data distribution with second-order moment, by either employing early stopping or assuming smoothness condition on the score function of the data distribution. Our result does not rely on any log-concavity or functional inequality assumption and has a logarithmic dependence on the smoothness. In particular, we show that under only a finite second moment condition, approximating the following in reverse KL divergence in epsilon-accuracy can be done in tilde Oleft(d log (1/delta){epsilon}right) steps: 1) the variance-delta Gaussian perturbation of any data distribution; 2) data distributions with 1/delta-smooth score functions. Our analysis also provides a quantitative comparison between different discrete approximations and may guide the choice of discretization points in practice.
FD-Bench: A Modular and Fair Benchmark for Data-driven Fluid Simulation
Data-driven modeling of fluid dynamics has advanced rapidly with neural PDE solvers, yet a fair and strong benchmark remains fragmented due to the absence of unified PDE datasets and standardized evaluation protocols. Although architectural innovations are abundant, fair assessment is further impeded by the lack of clear disentanglement between spatial, temporal and loss modules. In this paper, we introduce FD-Bench, the first fair, modular, comprehensive and reproducible benchmark for data-driven fluid simulation. FD-Bench systematically evaluates 85 baseline models across 10 representative flow scenarios under a unified experimental setup. It provides four key contributions: (1) a modular design enabling fair comparisons across spatial, temporal, and loss function modules; (2) the first systematic framework for direct comparison with traditional numerical solvers; (3) fine-grained generalization analysis across resolutions, initial conditions, and temporal windows; and (4) a user-friendly, extensible codebase to support future research. Through rigorous empirical studies, FD-Bench establishes the most comprehensive leaderboard to date, resolving long-standing issues in reproducibility and comparability, and laying a foundation for robust evaluation of future data-driven fluid models. The code is open-sourced at https://anonymous.4open.science/r/FD-Bench-15BC.
Training Deep Surrogate Models with Large Scale Online Learning
The spatiotemporal resolution of Partial Differential Equations (PDEs) plays important roles in the mathematical description of the world's physical phenomena. In general, scientists and engineers solve PDEs numerically by the use of computationally demanding solvers. Recently, deep learning algorithms have emerged as a viable alternative for obtaining fast solutions for PDEs. Models are usually trained on synthetic data generated by solvers, stored on disk and read back for training. This paper advocates that relying on a traditional static dataset to train these models does not allow the full benefit of the solver to be used as a data generator. It proposes an open source online training framework for deep surrogate models. The framework implements several levels of parallelism focused on simultaneously generating numerical simulations and training deep neural networks. This approach suppresses the I/O and storage bottleneck associated with disk-loaded datasets, and opens the way to training on significantly larger datasets. Experiments compare the offline and online training of four surrogate models, including state-of-the-art architectures. Results indicate that exposing deep surrogate models to more dataset diversity, up to hundreds of GB, can increase model generalization capabilities. Fully connected neural networks, Fourier Neural Operator (FNO), and Message Passing PDE Solver prediction accuracy is improved by 68%, 16% and 7%, respectively.
Momentum-based minimization of the Ginzburg-Landau functional on Euclidean spaces and graphs
We study the momentum-based minimization of a diffuse perimeter functional on Euclidean spaces and on graphs with applications to semi-supervised classification tasks in machine learning. While the gradient flow in the task at hand is a parabolic partial differential equation, the momentum-method corresponds to a damped hyperbolic PDE, leading to qualitatively and quantitatively different trajectories. Using a convex-concave splitting-based FISTA-type time discretization, we demonstrate empirically that momentum can lead to faster convergence if the time step size is large but not too large. With large time steps, the PDE analysis offers only limited insight into the geometric behavior of solutions and typical hyperbolic phenomena like loss of regularity are not be observed in sample simulations.
Differentiable Solver Search for Fast Diffusion Sampling
Diffusion models have demonstrated remarkable generation quality but at the cost of numerous function evaluations. Recently, advanced ODE-based solvers have been developed to mitigate the substantial computational demands of reverse-diffusion solving under limited sampling steps. However, these solvers, heavily inspired by Adams-like multistep methods, rely solely on t-related Lagrange interpolation. We show that t-related Lagrange interpolation is suboptimal for diffusion model and reveal a compact search space comprised of time steps and solver coefficients. Building on our analysis, we propose a novel differentiable solver search algorithm to identify more optimal solver. Equipped with the searched solver, rectified-flow models, e.g., SiT-XL/2 and FlowDCN-XL/2, achieve FID scores of 2.40 and 2.35, respectively, on ImageNet256 with only 10 steps. Meanwhile, DDPM model, DiT-XL/2, reaches a FID score of 2.33 with only 10 steps. Notably, our searched solver outperforms traditional solvers by a significant margin. Moreover, our searched solver demonstrates generality across various model architectures, resolutions, and model sizes.
Learning Mesh Representations via Binary Space Partitioning Tree Networks
Polygonal meshes are ubiquitous, but have only played a relatively minor role in the deep learning revolution. State-of-the-art neural generative models for 3D shapes learn implicit functions and generate meshes via expensive iso-surfacing. We overcome these challenges by employing a classical spatial data structure from computer graphics, Binary Space Partitioning (BSP), to facilitate 3D learning. The core operation of BSP involves recursive subdivision of 3D space to obtain convex sets. By exploiting this property, we devise BSP-Net, a network that learns to represent a 3D shape via convex decomposition without supervision. The network is trained to reconstruct a shape using a set of convexes obtained from a BSP-tree built over a set of planes, where the planes and convexes are both defined by learned network weights. BSP-Net directly outputs polygonal meshes from the inferred convexes. The generated meshes are watertight, compact (i.e., low-poly), and well suited to represent sharp geometry. We show that the reconstruction quality by BSP-Net is competitive with those from state-of-the-art methods while using much fewer primitives. We also explore variations to BSP-Net including using a more generic decoder for reconstruction, more general primitives than planes, as well as training a generative model with variational auto-encoders. Code is available at https://github.com/czq142857/BSP-NET-original.
A Unified Sampling Framework for Solver Searching of Diffusion Probabilistic Models
Recent years have witnessed the rapid progress and broad application of diffusion probabilistic models (DPMs). Sampling from DPMs can be viewed as solving an ordinary differential equation (ODE). Despite the promising performance, the generation of DPMs usually consumes much time due to the large number of function evaluations (NFE). Though recent works have accelerated the sampling to around 20 steps with high-order solvers, the sample quality with less than 10 NFE can still be improved. In this paper, we propose a unified sampling framework (USF) to study the optional strategies for solver. Under this framework, we further reveal that taking different solving strategies at different timesteps may help further decrease the truncation error, and a carefully designed solver schedule has the potential to improve the sample quality by a large margin. Therefore, we propose a new sampling framework based on the exponential integral formulation that allows free choices of solver strategy at each step and design specific decisions for the framework. Moreover, we propose S^3, a predictor-based search method that automatically optimizes the solver schedule to get a better time-quality trade-off of sampling. We demonstrate that S^3 can find outstanding solver schedules which outperform the state-of-the-art sampling methods on CIFAR-10, CelebA, ImageNet, and LSUN-Bedroom datasets. Specifically, we achieve 2.69 FID with 10 NFE and 6.86 FID with 5 NFE on CIFAR-10 dataset, outperforming the SOTA method significantly. We further apply S^3 to Stable-Diffusion model and get an acceleration ratio of 2times, showing the feasibility of sampling in very few steps without retraining the neural network.
Roughness Index for Loss Landscapes of Neural Network Models of Partial Differential Equations
Loss landscape is a useful tool to characterize and compare neural network models. The main challenge for analysis of loss landscape for the deep neural networks is that they are generally highly non-convex in very high dimensional space. In this paper, we develop "the roughness"concept for understanding such landscapes in high dimensions and apply this technique to study two neural network models arising from solving differential equations. Our main innovation is the proposal of a well-defined and easy-to-compute roughness index (RI) which is based on the mean and variance of the (normalized) total variation for one-dimensional functions projected on randomly sampled directions. A large RI at the local minimizer hints an oscillatory landscape profile and indicates a severe challenge for the first-order optimization method. Particularly, we observe the increasing-then-decreasing pattern for RI along the gradient descent path in most models. We apply our method to two types of loss functions used to solve partial differential equations (PDEs) when the solution of PDE is parametrized by neural networks. Our empirical results on these PDE problems reveal important and consistent observations that the landscapes from the deep Galerkin method around its local minimizers are less rough than the deep Ritz method.
Learning Mesh-Based Simulation with Graph Networks
Mesh-based simulations are central to modeling complex physical systems in many disciplines across science and engineering. Mesh representations support powerful numerical integration methods and their resolution can be adapted to strike favorable trade-offs between accuracy and efficiency. However, high-dimensional scientific simulations are very expensive to run, and solvers and parameters must often be tuned individually to each system studied. Here we introduce MeshGraphNets, a framework for learning mesh-based simulations using graph neural networks. Our model can be trained to pass messages on a mesh graph and to adapt the mesh discretization during forward simulation. Our results show it can accurately predict the dynamics of a wide range of physical systems, including aerodynamics, structural mechanics, and cloth. The model's adaptivity supports learning resolution-independent dynamics and can scale to more complex state spaces at test time. Our method is also highly efficient, running 1-2 orders of magnitude faster than the simulation on which it is trained. Our approach broadens the range of problems on which neural network simulators can operate and promises to improve the efficiency of complex, scientific modeling tasks.
Policy Evaluation and Temporal-Difference Learning in Continuous Time and Space: A Martingale Approach
We propose a unified framework to study policy evaluation (PE) and the associated temporal difference (TD) methods for reinforcement learning in continuous time and space. We show that PE is equivalent to maintaining the martingale condition of a process. From this perspective, we find that the mean--square TD error approximates the quadratic variation of the martingale and thus is not a suitable objective for PE. We present two methods to use the martingale characterization for designing PE algorithms. The first one minimizes a "martingale loss function", whose solution is proved to be the best approximation of the true value function in the mean--square sense. This method interprets the classical gradient Monte-Carlo algorithm. The second method is based on a system of equations called the "martingale orthogonality conditions" with test functions. Solving these equations in different ways recovers various classical TD algorithms, such as TD(lambda), LSTD, and GTD. Different choices of test functions determine in what sense the resulting solutions approximate the true value function. Moreover, we prove that any convergent time-discretized algorithm converges to its continuous-time counterpart as the mesh size goes to zero, and we provide the convergence rate. We demonstrate the theoretical results and corresponding algorithms with numerical experiments and applications.
Efficient displacement convex optimization with particle gradient descent
Particle gradient descent, which uses particles to represent a probability measure and performs gradient descent on particles in parallel, is widely used to optimize functions of probability measures. This paper considers particle gradient descent with a finite number of particles and establishes its theoretical guarantees to optimize functions that are displacement convex in measures. Concretely, for Lipschitz displacement convex functions defined on probability over R^d, we prove that O(1/epsilon^2) particles and O(d/epsilon^4) computations are sufficient to find the epsilon-optimal solutions. We further provide improved complexity bounds for optimizing smooth displacement convex functions. We demonstrate the application of our results for function approximation with specific neural architectures with two-dimensional inputs.
MetricGrids: Arbitrary Nonlinear Approximation with Elementary Metric Grids based Implicit Neural Representation
This paper presents MetricGrids, a novel grid-based neural representation that combines elementary metric grids in various metric spaces to approximate complex nonlinear signals. While grid-based representations are widely adopted for their efficiency and scalability, the existing feature grids with linear indexing for continuous-space points can only provide degenerate linear latent space representations, and such representations cannot be adequately compensated to represent complex nonlinear signals by the following compact decoder. To address this problem while keeping the simplicity of a regular grid structure, our approach builds upon the standard grid-based paradigm by constructing multiple elementary metric grids as high-order terms to approximate complex nonlinearities, following the Taylor expansion principle. Furthermore, we enhance model compactness with hash encoding based on different sparsities of the grids to prevent detrimental hash collisions, and a high-order extrapolation decoder to reduce explicit grid storage requirements. experimental results on both 2D and 3D reconstructions demonstrate the superior fitting and rendering accuracy of the proposed method across diverse signal types, validating its robustness and generalizability. Code is available at https://github.com/wangshu31/MetricGrids}{https://github.com/wangshu31/MetricGrids.
Curvature-Informed SGD via General Purpose Lie-Group Preconditioners
We present a novel approach to accelerate stochastic gradient descent (SGD) by utilizing curvature information obtained from Hessian-vector products or finite differences of parameters and gradients, similar to the BFGS algorithm. Our approach involves two preconditioners: a matrix-free preconditioner and a low-rank approximation preconditioner. We update both preconditioners online using a criterion that is robust to stochastic gradient noise and does not require line search or damping. To preserve the corresponding symmetry or invariance, our preconditioners are constrained to certain connected Lie groups. The Lie group's equivariance property simplifies the preconditioner fitting process, while its invariance property eliminates the need for damping, which is commonly required in second-order optimizers. As a result, the learning rate for parameter updating and the step size for preconditioner fitting are naturally normalized, and their default values work well in most scenarios. Our proposed approach offers a promising direction for improving the convergence of SGD with low computational overhead. We demonstrate that Preconditioned SGD (PSGD) outperforms SoTA on Vision, NLP, and RL tasks across multiple modern deep-learning architectures. We have provided code for reproducing toy and large scale experiments in this paper.
Meta Learning of Interface Conditions for Multi-Domain Physics-Informed Neural Networks
Physics-informed neural networks (PINNs) are emerging as popular mesh-free solvers for partial differential equations (PDEs). Recent extensions decompose the domain, applying different PINNs to solve the equation in each subdomain and aligning the solution at the interface of the subdomains. Hence, they can further alleviate the problem complexity, reduce the computational cost, and allow parallelization. However, the performance of the multi-domain PINNs is sensitive to the choice of the interface conditions for solution alignment. While quite a few conditions have been proposed, there is no suggestion about how to select the conditions according to specific problems. To address this gap, we propose META Learning of Interface Conditions (METALIC), a simple, efficient yet powerful approach to dynamically determine the optimal interface conditions for solving a family of parametric PDEs. Specifically, we develop two contextual multi-arm bandit models. The first one applies to the entire training procedure, and online updates a Gaussian process (GP) reward surrogate that given the PDE parameters and interface conditions predicts the solution error. The second one partitions the training into two stages, one is the stochastic phase and the other deterministic phase; we update a GP surrogate for each phase to enable different condition selections at the two stages so as to further bolster the flexibility and performance. We have shown the advantage of METALIC on four bench-mark PDE families.
NeuralDEM -- Real-time Simulation of Industrial Particulate Flows
Advancements in computing power have made it possible to numerically simulate large-scale fluid-mechanical and/or particulate systems, many of which are integral to core industrial processes. Among the different numerical methods available, the discrete element method (DEM) provides one of the most accurate representations of a wide range of physical systems involving granular and discontinuous materials. Consequently, DEM has become a widely accepted approach for tackling engineering problems connected to granular flows and powder mechanics. Additionally, DEM can be integrated with grid-based computational fluid dynamics (CFD) methods, enabling the simulation of chemical processes taking place, e.g., in fluidized beds. However, DEM is computationally intensive because of the intrinsic multiscale nature of particulate systems, restricting simulation duration or number of particles. Towards this end, NeuralDEM presents an end-to-end approach to replace slow numerical DEM routines with fast, adaptable deep learning surrogates. NeuralDEM is capable of picturing long-term transport processes across different regimes using macroscopic observables without any reference to microscopic model parameters. First, NeuralDEM treats the Lagrangian discretization of DEM as an underlying continuous field, while simultaneously modeling macroscopic behavior directly as additional auxiliary fields. Second, NeuralDEM introduces multi-branch neural operators scalable to real-time modeling of industrially-sized scenarios - from slow and pseudo-steady to fast and transient. Such scenarios have previously posed insurmountable challenges for deep learning models. Notably, NeuralDEM faithfully models coupled CFD-DEM fluidized bed reactors of 160k CFD cells and 500k DEM particles for trajectories of 28s. NeuralDEM will open many new doors to advanced engineering and much faster process cycles.
Flow Matching Meets PDEs: A Unified Framework for Physics-Constrained Generation
Generative machine learning methods, such as diffusion models and flow matching, have shown great potential in modeling complex system behaviors and building efficient surrogate models. However, these methods typically learn the underlying physics implicitly from data. We propose Physics-Based Flow Matching (PBFM), a novel generative framework that explicitly embeds physical constraints, both PDE residuals and algebraic relations, into the flow matching objective. We also introduce temporal unrolling at training time that improves the accuracy of the final, noise-free sample prediction. Our method jointly minimizes the flow matching loss and the physics-based residual loss without requiring hyperparameter tuning of their relative weights. Additionally, we analyze the role of the minimum noise level, sigma_{min}, in the context of physical constraints and evaluate a stochastic sampling strategy that helps to reduce physical residuals. Through extensive benchmarks on three representative PDE problems, we show that our approach yields up to an 8times more accurate physical residuals compared to FM, while clearly outperforming existing algorithms in terms of distributional accuracy. PBFM thus provides a principled and efficient framework for surrogate modeling, uncertainty quantification, and accelerated simulation in physics and engineering applications.
Masked Diffusion Models are Secretly Time-Agnostic Masked Models and Exploit Inaccurate Categorical Sampling
Masked diffusion models (MDMs) have emerged as a popular research topic for generative modeling of discrete data, thanks to their superior performance over other discrete diffusion models, and are rivaling the auto-regressive models (ARMs) for language modeling tasks. The recent effort in simplifying the masked diffusion framework further leads to alignment with continuous-space diffusion models and more principled training and sampling recipes. In this paper, however, we reveal that both training and sampling of MDMs are theoretically free from the time variable, arguably the key signature of diffusion models, and are instead equivalent to masked models. The connection on the sampling aspect is drawn by our proposed first-hitting sampler (FHS). Specifically, we show that the FHS is theoretically equivalent to MDMs' original generation process while significantly alleviating the time-consuming categorical sampling and achieving a 20times speedup. In addition, our investigation raises doubts about whether MDMs can truly beat ARMs. We identify, for the first time, an underlying numerical issue, even with the commonly used 32-bit floating-point precision, which results in inaccurate categorical sampling. We show that the numerical issue lowers the effective temperature both theoretically and empirically, and the resulting decrease in token diversity makes previous evaluations, which assess the generation quality solely through the incomplete generative perplexity metric, somewhat unfair.
Mesh-Informed Neural Operator : A Transformer Generative Approach
Generative models in function spaces, situated at the intersection of generative modeling and operator learning, are attracting increasing attention due to their immense potential in diverse scientific and engineering applications. While functional generative models are theoretically domain- and discretization-agnostic, current implementations heavily rely on the Fourier Neural Operator (FNO), limiting their applicability to regular grids and rectangular domains. To overcome these critical limitations, we introduce the Mesh-Informed Neural Operator (MINO). By leveraging graph neural operators and cross-attention mechanisms, MINO offers a principled, domain- and discretization-agnostic backbone for generative modeling in function spaces. This advancement significantly expands the scope of such models to more diverse applications in generative, inverse, and regression tasks. Furthermore, MINO provides a unified perspective on integrating neural operators with general advanced deep learning architectures. Finally, we introduce a suite of standardized evaluation metrics that enable objective comparison of functional generative models, addressing another critical gap in the field.
A Simple Introduction to the SiMPL Method for Density-Based Topology Optimization
We introduce a novel method for solving density-based topology optimization problems: Sigmoidal Mirror descent with a Projected Latent variable (SiMPL). The SiMPL method (pronounced as ``the simple method'') optimizes a design using only first-order derivative information of the objective function. The bound constraints on the density field are enforced with the help of the (negative) Fermi--Dirac entropy, which is also used to define a non-symmetric distance function called a Bregman divergence on the set of admissible designs. This Bregman divergence leads to a simple update rule that is further simplified with the help of a so-called latent variable. Because the SiMPL method involves discretizing the latent variable, it produces a sequence of pointwise-feasible iterates, even when high-order finite elements are used in the discretization. Numerical experiments demonstrate that the method outperforms other popular first-order optimization algorithms. To outline the general applicability of the technique, we include examples with (self-load) compliance minimization and compliant mechanism optimization problems.
DreamPropeller: Supercharge Text-to-3D Generation with Parallel Sampling
Recent methods such as Score Distillation Sampling (SDS) and Variational Score Distillation (VSD) using 2D diffusion models for text-to-3D generation have demonstrated impressive generation quality. However, the long generation time of such algorithms significantly degrades the user experience. To tackle this problem, we propose DreamPropeller, a drop-in acceleration algorithm that can be wrapped around any existing text-to-3D generation pipeline based on score distillation. Our framework generalizes Picard iterations, a classical algorithm for parallel sampling an ODE path, and can account for non-ODE paths such as momentum-based gradient updates and changes in dimensions during the optimization process as in many cases of 3D generation. We show that our algorithm trades parallel compute for wallclock time and empirically achieves up to 4.7x speedup with a negligible drop in generation quality for all tested frameworks.
Learning Versatile 3D Shape Generation with Improved AR Models
Auto-Regressive (AR) models have achieved impressive results in 2D image generation by modeling joint distributions in the grid space. While this approach has been extended to the 3D domain for powerful shape generation, it still has two limitations: expensive computations on volumetric grids and ambiguous auto-regressive order along grid dimensions. To overcome these limitations, we propose the Improved Auto-regressive Model (ImAM) for 3D shape generation, which applies discrete representation learning based on a latent vector instead of volumetric grids. Our approach not only reduces computational costs but also preserves essential geometric details by learning the joint distribution in a more tractable order. Moreover, thanks to the simplicity of our model architecture, we can naturally extend it from unconditional to conditional generation by concatenating various conditioning inputs, such as point clouds, categories, images, and texts. Extensive experiments demonstrate that ImAM can synthesize diverse and faithful shapes of multiple categories, achieving state-of-the-art performance.
DPM-Solver-v3: Improved Diffusion ODE Solver with Empirical Model Statistics
Diffusion probabilistic models (DPMs) have exhibited excellent performance for high-fidelity image generation while suffering from inefficient sampling. Recent works accelerate the sampling procedure by proposing fast ODE solvers that leverage the specific ODE form of DPMs. However, they highly rely on specific parameterization during inference (such as noise/data prediction), which might not be the optimal choice. In this work, we propose a novel formulation towards the optimal parameterization during sampling that minimizes the first-order discretization error of the ODE solution. Based on such formulation, we propose DPM-Solver-v3, a new fast ODE solver for DPMs by introducing several coefficients efficiently computed on the pretrained model, which we call empirical model statistics. We further incorporate multistep methods and a predictor-corrector framework, and propose some techniques for improving sample quality at small numbers of function evaluations (NFE) or large guidance scales. Experiments show that DPM-Solver-v3 achieves consistently better or comparable performance in both unconditional and conditional sampling with both pixel-space and latent-space DPMs, especially in 5sim10 NFEs. We achieve FIDs of 12.21 (5 NFE), 2.51 (10 NFE) on unconditional CIFAR10, and MSE of 0.55 (5 NFE, 7.5 guidance scale) on Stable Diffusion, bringing a speed-up of 15\%sim30\% compared to previous state-of-the-art training-free methods. Code is available at https://github.com/thu-ml/DPM-Solver-v3.
4-bit Shampoo for Memory-Efficient Network Training
Second-order optimizers, maintaining a matrix termed a preconditioner, are superior to first-order optimizers in both theory and practice. The states forming the preconditioner and its inverse root restrict the maximum size of models trained by second-order optimizers. To address this, compressing 32-bit optimizer states to lower bitwidths has shown promise in reducing memory usage. However, current approaches only pertain to first-order optimizers. In this paper, we propose the first 4-bit second-order optimizers, exemplified by 4-bit Shampoo, maintaining performance similar to that of 32-bit ones. We show that quantizing the eigenvector matrix of the preconditioner in 4-bit Shampoo is remarkably better than quantizing the preconditioner itself both theoretically and experimentally. By rectifying the orthogonality of the quantized eigenvector matrix, we enhance the approximation of the preconditioner's eigenvector matrix, which also benefits the computation of its inverse 4-th root. Besides, we find that linear square quantization slightly outperforms dynamic tree quantization when quantizing second-order optimizer states. Evaluation on various networks for image classification demonstrates that our 4-bit Shampoo achieves comparable test accuracy to its 32-bit counterpart while being more memory-efficient. The source code will be made available.
Exact Coset Sampling for Quantum Lattice Algorithms
We give a simple, fully correct, and assumption-light replacement for the contested "domain-extension" in Step 9 of a recent windowed-QFT lattice algorithm with complex-Gaussian windows~chen2024quantum. The published Step~9 suffers from a periodicity/support mismatch. We present a pair-shift difference construction that coherently cancels all unknown offsets, produces an exact uniform CRT-coset state over Z_{P}, and then uses the QFT to enforce the intended modular linear relation. The unitary is reversible, uses poly(log M_2) gates, and preserves the algorithm's asymptotics. Project Page: https://github.com/yifanzhang-pro/quantum-lattice.
NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with Spatial-temporal Decomposition
Neural networks have shown great potential in accelerating the solution of partial differential equations (PDEs). Recently, there has been a growing interest in introducing physics constraints into training neural PDE solvers to reduce the use of costly data and improve the generalization ability. However, these physics constraints, based on certain finite dimensional approximations over the function space, must resolve the smallest scaled physics to ensure the accuracy and stability of the simulation, resulting in high computational costs from large input, output, and neural networks. This paper proposes a general acceleration methodology called NeuralStagger by spatially and temporally decomposing the original learning tasks into several coarser-resolution subtasks. We define a coarse-resolution neural solver for each subtask, which requires fewer computational resources, and jointly train them with the vanilla physics-constrained loss by simply arranging their outputs to reconstruct the original solution. Due to the perfect parallelism between them, the solution is achieved as fast as a coarse-resolution neural solver. In addition, the trained solvers bring the flexibility of simulating with multiple levels of resolution. We demonstrate the successful application of NeuralStagger on 2D and 3D fluid dynamics simulations, which leads to an additional 10sim100times speed-up. Moreover, the experiment also shows that the learned model could be well used for optimal control.
Dense Hebbian neural networks: a replica symmetric picture of supervised learning
We consider dense, associative neural-networks trained by a teacher (i.e., with supervision) and we investigate their computational capabilities analytically, via statistical-mechanics of spin glasses, and numerically, via Monte Carlo simulations. In particular, we obtain a phase diagram summarizing their performance as a function of the control parameters such as quality and quantity of the training dataset, network storage and noise, that is valid in the limit of large network size and structureless datasets: these networks may work in a ultra-storage regime (where they can handle a huge amount of patterns, if compared with shallow neural networks) or in a ultra-detection regime (where they can perform pattern recognition at prohibitive signal-to-noise ratios, if compared with shallow neural networks). Guided by the random theory as a reference framework, we also test numerically learning, storing and retrieval capabilities shown by these networks on structured datasets as MNist and Fashion MNist. As technical remarks, from the analytic side, we implement large deviations and stability analysis within Guerra's interpolation to tackle the not-Gaussian distributions involved in the post-synaptic potentials while, from the computational counterpart, we insert Plefka approximation in the Monte Carlo scheme, to speed up the evaluation of the synaptic tensors, overall obtaining a novel and broad approach to investigate supervised learning in neural networks, beyond the shallow limit, in general.
Lattice models of random advection and diffusion and their statistics
We study in detail a one-dimensional lattice model of a continuum, conserved field (mass) that is transferred deterministically between neighbouring random sites. The model falls in a wider class of lattice models capturing the joint effect of random advection and diffusion and encompassing as specific cases, some models studied in the literature, like the Kang-Redner, Kipnis-Marchioro-Presutti, Takayasu-Taguchi, etc. The motivation for our setup comes from a straightforward interpretation as advection of particles in one-dimensional turbulence, but it is also related to a problem of synchronization of dynamical systems driven by common noise. For finite lattices, we study both the coalescence of an initially spread field (interpreted as roughening), and the statistical steady-state properties. We distinguish two main size-dependent regimes, depending on the strength of the diffusion term and on the lattice size. Using numerical simulations and mean-field approach, we study the statistics of the field. For weak diffusion, we unveil a characteristic hierarchical structure of the field. We also connect the model and the iterated function systems concept.
QMCPy: A Python Software for Randomized Low-Discrepancy Sequences, Quasi-Monte Carlo, and Fast Kernel Methods
Low-discrepancy (LD) sequences have been extensively used as efficient experimental designs across many scientific disciplines. QMCPy (https://qmcsoftware.github.io/QMCSoftware/) is an accessible Python library which provides a unified implementation of randomized LD sequences, automatic variable transformations, adaptive Quasi-Monte Carlo error estimation algorithms, and fast kernel methods. This article focuses on recent updates to QMCPy which broaden support for randomized LD sequences and add new tools to enable fast kernel methods using LD sequences. Specifically, we give a unified description of the supported LD lattices, digital nets, and Halton point sets, along with randomization options including random permutations / shifts, linear matrix scrambling (LMS), and nested uniform scrambling (NUS). We also support higher-order digital nets, higher-order scrambling with LMS or NUS, and Halton scrambling with LMS or NUS. For fast kernel methods, we provide shift-invariant (SI) and digitally-shift-invariant (DSI) kernels, including a new set of higher-order smoothness DSI kernels. When SI and DSI kernels are respectively paired with n LD lattice and digital net points, the resulting Gram matrices permit multiplication and inversion at only O(n log n) cost. These fast operations utilize QMCPy's implementation of the fast Fourier transform in bit-reversed order (FFTBR), inverse FFTBR (IFFTBR), and fast Walsh--Hadamard transform (FWHT).
Regularized Langevin Dynamics for Combinatorial Optimization
This work proposes a simple yet effective sampling framework for combinatorial optimization (CO). Our method builds on discrete Langevin dynamics (LD), an efficient gradient-guided generative paradigm. However, we observe that directly applying LD often leads to limited exploration. To overcome this limitation, we propose the Regularized Langevin Dynamics (RLD), which enforces an expected distance between the sampled and current solutions, effectively avoiding local minima. We develop two CO solvers on top of RLD, one based on simulated annealing (SA), and the other one based on neural network (NN). Empirical results on three classic CO problems demonstrate that both of our methods can achieve comparable or better performance against the previous state-of-the-art (SOTA) SA- and NN-based solvers. In particular, our SA algorithm reduces the runtime of the previous SOTA SA method by up to 80\%, while achieving equal or superior performance. In summary, RLD offers a promising framework for enhancing both traditional heuristics and NN models to solve CO problems. Our code is available at https://github.com/Shengyu-Feng/RLD4CO.
Massive-scale Decoding for Text Generation using Lattices
Conditional neural text generation models generate high-quality outputs, but often concentrate around a mode when what we really want is a diverse set of options. We present a search algorithm to construct lattices encoding a massive number of generation options. First, we restructure decoding as a best-first search, which explores the space differently than beam search and improves efficiency by avoiding pruning paths. Second, we revisit the idea of hypothesis recombination: we can identify pairs of similar generation candidates during search and merge them as an approximation. On both summarization and machine translation, we show that our algorithm encodes thousands of diverse options that remain grammatical and high-quality into one lattice. This algorithm provides a foundation for building downstream generation applications on top of massive-scale diverse outputs.
Feynman-Kac Correctors in Diffusion: Annealing, Guidance, and Product of Experts
While score-based generative models are the model of choice across diverse domains, there are limited tools available for controlling inference-time behavior in a principled manner, e.g. for composing multiple pretrained models. Existing classifier-free guidance methods use a simple heuristic to mix conditional and unconditional scores to approximately sample from conditional distributions. However, such methods do not approximate the intermediate distributions, necessitating additional 'corrector' steps. In this work, we provide an efficient and principled method for sampling from a sequence of annealed, geometric-averaged, or product distributions derived from pretrained score-based models. We derive a weighted simulation scheme which we call Feynman-Kac Correctors (FKCs) based on the celebrated Feynman-Kac formula by carefully accounting for terms in the appropriate partial differential equations (PDEs). To simulate these PDEs, we propose Sequential Monte Carlo (SMC) resampling algorithms that leverage inference-time scaling to improve sampling quality. We empirically demonstrate the utility of our methods by proposing amortized sampling via inference-time temperature annealing, improving multi-objective molecule generation using pretrained models, and improving classifier-free guidance for text-to-image generation. Our code is available at https://github.com/martaskrt/fkc-diffusion.
Pyramid Diffusion for Fine 3D Large Scene Generation
Diffusion models have shown remarkable results in generating 2D images and small-scale 3D objects. However, their application to the synthesis of large-scale 3D scenes has been rarely explored. This is mainly due to the inherent complexity and bulky size of 3D scenery data, particularly outdoor scenes, and the limited availability of comprehensive real-world datasets, which makes training a stable scene diffusion model challenging. In this work, we explore how to effectively generate large-scale 3D scenes using the coarse-to-fine paradigm. We introduce a framework, the Pyramid Discrete Diffusion model (PDD), which employs scale-varied diffusion models to progressively generate high-quality outdoor scenes. Experimental results of PDD demonstrate our successful exploration in generating 3D scenes both unconditionally and conditionally. We further showcase the data compatibility of the PDD model, due to its multi-scale architecture: a PDD model trained on one dataset can be easily fine-tuned with another dataset. Code is available at https://github.com/yuhengliu02/pyramid-discrete-diffusion.
Asymptotic Analysis of Stochastic Splitting Methods for Multivariate Monotone Inclusions
We propose an abstract framework to establish the convergence of the iterates of stochastic versions of a broad range of monotone operator splitting methods in Hilbert spaces. This framework allows for the introduction of stochasticity at several levels: approximation of operators, selection of coordinates and operators in block-iterative implementations, and relaxation parameters. The proposed analysis involves a reduced inclusion model with two operators. At each iteration, stochastic approximations to points in the graphs of these two operators are used to form the update. The results are applied to derive the almost sure and L^2 convergence of stochastic versions of the proximal point algorithm, as well as of randomized block-iterative projective splitting methods for solving systems of coupled inclusions involving a mix of set-valued, cocoercive, and Lipschitzian monotone operators combined via various monotonicity-preserving operations.
Split Gibbs Discrete Diffusion Posterior Sampling
We study the problem of posterior sampling in discrete-state spaces using discrete diffusion models. While posterior sampling methods for continuous diffusion models have achieved remarkable progress, analogous methods for discrete diffusion models remain challenging. In this work, we introduce a principled plug-and-play discrete diffusion posterior sampling algorithm based on split Gibbs sampling, which we call SG-DPS. Our algorithm enables reward-guided generation and solving inverse problems in discrete-state spaces. We demonstrate that SG-DPS converges to the true posterior distribution on synthetic benchmarks, and enjoys state-of-the-art posterior sampling performance on a range of benchmarks for discrete data, achieving up to 2x improved performance compared to existing baselines.
Lagrangian PINNs: A causality-conforming solution to failure modes of physics-informed neural networks
Physics-informed neural networks (PINNs) leverage neural-networks to find the solutions of partial differential equation (PDE)-constrained optimization problems with initial conditions and boundary conditions as soft constraints. These soft constraints are often considered to be the sources of the complexity in the training phase of PINNs. Here, we demonstrate that the challenge of training (i) persists even when the boundary conditions are strictly enforced, and (ii) is closely related to the Kolmogorov n-width associated with problems demonstrating transport, convection, traveling waves, or moving fronts. Given this realization, we describe the mechanism underlying the training schemes such as those used in eXtended PINNs (XPINN), curriculum regularization, and sequence-to-sequence learning. For an important category of PDEs, i.e., governed by non-linear convection-diffusion equation, we propose reformulating PINNs on a Lagrangian frame of reference, i.e., LPINNs, as a PDE-informed solution. A parallel architecture with two branches is proposed. One branch solves for the state variables on the characteristics, and the second branch solves for the low-dimensional characteristics curves. The proposed architecture conforms to the causality innate to the convection, and leverages the direction of travel of the information in the domain. Finally, we demonstrate that the loss landscapes of LPINNs are less sensitive to the so-called "complexity" of the problems, compared to those in the traditional PINNs in the Eulerian framework.
Neural Network Approximations of PDEs Beyond Linearity: A Representational Perspective
A burgeoning line of research leverages deep neural networks to approximate the solutions to high dimensional PDEs, opening lines of theoretical inquiry focused on explaining how it is that these models appear to evade the curse of dimensionality. However, most prior theoretical analyses have been limited to linear PDEs. In this work, we take a step towards studying the representational power of neural networks for approximating solutions to nonlinear PDEs. We focus on a class of PDEs known as nonlinear elliptic variational PDEs, whose solutions minimize an Euler-Lagrange energy functional E(u) = int_Omega L(x, u(x), nabla u(x)) - f(x) u(x)dx. We show that if composing a function with Barron norm b with partial derivatives of L produces a function of Barron norm at most B_L b^p, the solution to the PDE can be epsilon-approximated in the L^2 sense by a function with Barron norm Oleft(left(dB_Lright)^{max{p log(1/ epsilon), p^{log(1/epsilon)}}}right). By a classical result due to Barron [1993], this correspondingly bounds the size of a 2-layer neural network needed to approximate the solution. Treating p, epsilon, B_L as constants, this quantity is polynomial in dimension, thus showing neural networks can evade the curse of dimensionality. Our proof technique involves neurally simulating (preconditioned) gradient in an appropriate Hilbert space, which converges exponentially fast to the solution of the PDE, and such that we can bound the increase of the Barron norm at each iterate. Our results subsume and substantially generalize analogous prior results for linear elliptic PDEs over a unit hypercube.
Let's Make Block Coordinate Descent Converge Faster: Faster Greedy Rules, Message-Passing, Active-Set Complexity, and Superlinear Convergence
Block coordinate descent (BCD) methods are widely used for large-scale numerical optimization because of their cheap iteration costs, low memory requirements, amenability to parallelization, and ability to exploit problem structure. Three main algorithmic choices influence the performance of BCD methods: the block partitioning strategy, the block selection rule, and the block update rule. In this paper we explore all three of these building blocks and propose variations for each that can significantly improve the progress made by each BCD iteration. We (i) propose new greedy block-selection strategies that guarantee more progress per iteration than the Gauss-Southwell rule; (ii) explore practical issues like how to implement the new rules when using "variable" blocks; (iii) explore the use of message-passing to compute matrix or Newton updates efficiently on huge blocks for problems with sparse dependencies between variables; and (iv) consider optimal active manifold identification, which leads to bounds on the "active-set complexity" of BCD methods and leads to superlinear convergence for certain problems with sparse solutions (and in some cases finite termination at an optimal solution). We support all of our findings with numerical results for the classic machine learning problems of least squares, logistic regression, multi-class logistic regression, label propagation, and L1-regularization.
LatticeWorld: A Multimodal Large Language Model-Empowered Framework for Interactive Complex World Generation
Recent research has been increasingly focusing on developing 3D world models that simulate complex real-world scenarios. World models have found broad applications across various domains, including embodied AI, autonomous driving, entertainment, etc. A more realistic simulation with accurate physics will effectively narrow the sim-to-real gap and allow us to gather rich information about the real world conveniently. While traditional manual modeling has enabled the creation of virtual 3D scenes, modern approaches have leveraged advanced machine learning algorithms for 3D world generation, with most recent advances focusing on generative methods that can create virtual worlds based on user instructions. This work explores such a research direction by proposing LatticeWorld, a simple yet effective 3D world generation framework that streamlines the industrial production pipeline of 3D environments. LatticeWorld leverages lightweight LLMs (LLaMA-2-7B) alongside the industry-grade rendering engine (e.g., Unreal Engine 5) to generate a dynamic environment. Our proposed framework accepts textual descriptions and visual instructions as multimodal inputs and creates large-scale 3D interactive worlds with dynamic agents, featuring competitive multi-agent interaction, high-fidelity physics simulation, and real-time rendering. We conduct comprehensive experiments to evaluate LatticeWorld, showing that it achieves superior accuracy in scene layout generation and visual fidelity. Moreover, LatticeWorld achieves over a 90times increase in industrial production efficiency while maintaining high creative quality compared with traditional manual production methods. Our demo video is available at https://youtu.be/8VWZXpERR18
Kolmogorov--Arnold networks in molecular dynamics
We explore the integration of Kolmogorov Networks (KANs) into molecular dynamics (MD) simulations to improve interatomic potentials. We propose that widely used potentials, such as the Lennard-Jones (LJ) potential, the embedded atom model (EAM), and artificial neural network (ANN) potentials, can be interpreted within the KAN framework. Specifically, we demonstrate that the descriptors for ANN potentials, typically constructed using polynomials, can be redefined using KAN's non-linear functions. By employing linear or cubic spline interpolations for these KAN functions, we show that the computational cost of evaluating ANN potentials and their derivatives is reduced.
MLMC: Machine Learning Monte Carlo for Lattice Gauge Theory
We present a trainable framework for efficiently generating gauge configurations, and discuss ongoing work in this direction. In particular, we consider the problem of sampling configurations from a 4D SU(3) lattice gauge theory, and consider a generalized leapfrog integrator in the molecular dynamics update that can be trained to improve sampling efficiency. Code is available online at https://github.com/saforem2/l2hmc-qcd.
Generative Sliced MMD Flows with Riesz Kernels
Maximum mean discrepancy (MMD) flows suffer from high computational costs in large scale computations. In this paper, we show that MMD flows with Riesz kernels K(x,y) = - |x-y|^r, r in (0,2) have exceptional properties which allow their efficient computation. We prove that the MMD of Riesz kernels, which is also known as energy distance, coincides with the MMD of their sliced version. As a consequence, the computation of gradients of MMDs can be performed in the one-dimensional setting. Here, for r=1, a simple sorting algorithm can be applied to reduce the complexity from O(MN+N^2) to O((M+N)log(M+N)) for two measures with M and N support points. As another interesting follow-up result, the MMD of compactly supported measures can be estimated from above and below by the Wasserstein-1 distance. For the implementations we approximate the gradient of the sliced MMD by using only a finite number P of slices. We show that the resulting error has complexity O(d/P), where d is the data dimension. These results enable us to train generative models by approximating MMD gradient flows by neural networks even for image applications. We demonstrate the efficiency of our model by image generation on MNIST, FashionMNIST and CIFAR10.
Fast sampling from β-ensembles
We study sampling algorithms for β-ensembles with time complexity less than cubic in the cardinality of the ensemble. Following Dumitriu & Edelman (2002), we see the ensemble as the eigenvalues of a random tridiagonal matrix, namely a random Jacobi matrix. First, we provide a unifying and elementary treatment of the tridiagonal models associated to the three classical Hermite, Laguerre and Jacobi ensembles. For this purpose, we use simple changes of variables between successive reparametrizations of the coefficients defining the tridiagonal matrix. Second, we derive an approximate sampler for the simulation of β-ensembles, and illustrate how fast it can be for polynomial potentials. This method combines a Gibbs sampler on Jacobi matrices and the diagonalization of these matrices. In practice, even for large ensembles, only a few Gibbs passes suffice for the marginal distribution of the eigenvalues to fit the expected theoretical distribution. When the conditionals in the Gibbs sampler can be simulated exactly, the same fast empirical convergence is observed for the fluctuations of the largest eigenvalue. Our experimental results support a conjecture by Krishnapur et al. (2016), that the Gibbs chain on Jacobi matrices of size N mixes in O(log(N)).
Piecewise DMD for oscillatory and Turing spatio-temporal dynamics
Dynamic Mode Decomposition (DMD) is an equation-free method that aims at reconstructing the best linear fit from temporal datasets. In this paper, we show that DMD does not provide accurate approximation for datasets describing oscillatory dynamics, like spiral waves and relaxation oscillations, or spatio-temporal Turing instability. Inspired from the classical "divide and conquer" approach, we propose a piecewise version of DMD (pDMD) to overcome this problem. The main idea is to split the original dataset in N submatrices and then apply the exact (randomized) DMD method in each subset of the obtained partition. We describe the pDMD algorithm in detail and we introduce some error indicators to evaluate its performance when N is increased. Numerical experiments show that very accurate reconstructions are obtained by pDMD for datasets arising from time snapshots of some reaction-diffusion PDE systems, like the FitzHugh-Nagumo model, the lambda-omega system and the DIB morpho-chemical system for battery modeling.
High-performance symbolic-numerics via multiple dispatch
As mathematical computing becomes more democratized in high-level languages, high-performance symbolic-numeric systems are necessary for domain scientists and engineers to get the best performance out of their machine without deep knowledge of code optimization. Naturally, users need different term types either to have different algebraic properties for them, or to use efficient data structures. To this end, we developed Symbolics.jl, an extendable symbolic system which uses dynamic multiple dispatch to change behavior depending on the domain needs. In this work we detail an underlying abstract term interface which allows for speed without sacrificing generality. We show that by formalizing a generic API on actions independent of implementation, we can retroactively add optimized data structures to our system without changing the pre-existing term rewriters. We showcase how this can be used to optimize term construction and give a 113x acceleration on general symbolic transformations. Further, we show that such a generic API allows for complementary term-rewriting implementations. We demonstrate the ability to swap between classical term-rewriting simplifiers and e-graph-based term-rewriting simplifiers. We showcase an e-graph ruleset which minimizes the number of CPU cycles during expression evaluation, and demonstrate how it simplifies a real-world reaction-network simulation to halve the runtime. Additionally, we show a reaction-diffusion partial differential equation solver which is able to be automatically converted into symbolic expressions via multiple dispatch tracing, which is subsequently accelerated and parallelized to give a 157x simulation speedup. Together, this presents Symbolics.jl as a next-generation symbolic-numeric computing environment geared towards modeling and simulation.
VoroMesh: Learning Watertight Surface Meshes with Voronoi Diagrams
In stark contrast to the case of images, finding a concise, learnable discrete representation of 3D surfaces remains a challenge. In particular, while polygon meshes are arguably the most common surface representation used in geometry processing, their irregular and combinatorial structure often make them unsuitable for learning-based applications. In this work, we present VoroMesh, a novel and differentiable Voronoi-based representation of watertight 3D shape surfaces. From a set of 3D points (called generators) and their associated occupancy, we define our boundary representation through the Voronoi diagram of the generators as the subset of Voronoi faces whose two associated (equidistant) generators are of opposite occupancy: the resulting polygon mesh forms a watertight approximation of the target shape's boundary. To learn the position of the generators, we propose a novel loss function, dubbed VoroLoss, that minimizes the distance from ground truth surface samples to the closest faces of the Voronoi diagram which does not require an explicit construction of the entire Voronoi diagram. A direct optimization of the Voroloss to obtain generators on the Thingi32 dataset demonstrates the geometric efficiency of our representation compared to axiomatic meshing algorithms and recent learning-based mesh representations. We further use VoroMesh in a learning-based mesh prediction task from input SDF grids on the ABC dataset, and show comparable performance to state-of-the-art methods while guaranteeing closed output surfaces free of self-intersections.
Doubly Adaptive Scaled Algorithm for Machine Learning Using Second-Order Information
We present a novel adaptive optimization algorithm for large-scale machine learning problems. Equipped with a low-cost estimate of local curvature and Lipschitz smoothness, our method dynamically adapts the search direction and step-size. The search direction contains gradient information preconditioned by a well-scaled diagonal preconditioning matrix that captures the local curvature information. Our methodology does not require the tedious task of learning rate tuning, as the learning rate is updated automatically without adding an extra hyperparameter. We provide convergence guarantees on a comprehensive collection of optimization problems, including convex, strongly convex, and nonconvex problems, in both deterministic and stochastic regimes. We also conduct an extensive empirical evaluation on standard machine learning problems, justifying our algorithm's versatility and demonstrating its strong performance compared to other start-of-the-art first-order and second-order methods.
