Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeFlowing from Words to Pixels: A Framework for Cross-Modality Evolution
Diffusion models, and their generalization, flow matching, have had a remarkable impact on the field of media generation. Here, the conventional approach is to learn the complex mapping from a simple source distribution of Gaussian noise to the target media distribution. For cross-modal tasks such as text-to-image generation, this same mapping from noise to image is learnt whilst including a conditioning mechanism in the model. One key and thus far relatively unexplored feature of flow matching is that, unlike Diffusion models, they are not constrained for the source distribution to be noise. Hence, in this paper, we propose a paradigm shift, and ask the question of whether we can instead train flow matching models to learn a direct mapping from the distribution of one modality to the distribution of another, thus obviating the need for both the noise distribution and conditioning mechanism. We present a general and simple framework, CrossFlow, for cross-modal flow matching. We show the importance of applying Variational Encoders to the input data, and introduce a method to enable Classifier-free guidance. Surprisingly, for text-to-image, CrossFlow with a vanilla transformer without cross attention slightly outperforms standard flow matching, and we show that it scales better with training steps and model size, while also allowing for interesting latent arithmetic which results in semantically meaningful edits in the output space. To demonstrate the generalizability of our approach, we also show that CrossFlow is on par with or outperforms the state-of-the-art for various cross-modal / intra-modal mapping tasks, viz. image captioning, depth estimation, and image super-resolution. We hope this paper contributes to accelerating progress in cross-modal media generation.
Educating Text Autoencoders: Latent Representation Guidance via Denoising
Generative autoencoders offer a promising approach for controllable text generation by leveraging their latent sentence representations. However, current models struggle to maintain coherent latent spaces required to perform meaningful text manipulations via latent vector operations. Specifically, we demonstrate by example that neural encoders do not necessarily map similar sentences to nearby latent vectors. A theoretical explanation for this phenomenon establishes that high capacity autoencoders can learn an arbitrary mapping between sequences and associated latent representations. To remedy this issue, we augment adversarial autoencoders with a denoising objective where original sentences are reconstructed from perturbed versions (referred to as DAAE). We prove that this simple modification guides the latent space geometry of the resulting model by encouraging the encoder to map similar texts to similar latent representations. In empirical comparisons with various types of autoencoders, our model provides the best trade-off between generation quality and reconstruction capacity. Moreover, the improved geometry of the DAAE latent space enables zero-shot text style transfer via simple latent vector arithmetic.
Latent Chain-of-Thought? Decoding the Depth-Recurrent Transformer
Chain-of-thought (CoT) reasoning has enabled transformer-based language models to excel at complex mathematics and multi-step planning. However, in standard decoder-only architectures, these reasoning steps are externalized in natural language, improving interpretability at the cost of efficiency. To capture reasoning that is not easily represented in words, many works have explored recurrent architectures that aim to internalize reasoning in latent space, potentially supporting latent CoT. In this paper, we investigate whether such reasoning structures emerge in Huginn-3.5B, a depth-recurrent Transformer that reuses layers at inference time without increasing parameter count. We examine the model's internal behavior on arithmetic tasks using a suite of probing techniques including the Logit Lens and Coda Lens. Our findings reveal limited evidence of interpretable latent CoT by tracking rank trajectories of final and intermediate result tokens. Furthermore, we uncover significant probing inconsistencies across recurrent blocks, where the interpretability of hidden states depends heavily on both the layer index and the decoding method. Finally, we empirically show that increasing recurrence depth yields only marginal gains and falls well short of models that explicitly externalize reasoning steps. The code is available at https://github.com/wenquanlu/huginn-latent-cot.
Extracting Latent Steering Vectors from Pretrained Language Models
Prior work on controllable text generation has focused on learning how to control language models through trainable decoding, smart-prompt design, or fine-tuning based on a desired objective. We hypothesize that the information needed to steer the model to generate a target sentence is already encoded within the model. Accordingly, we explore a different approach altogether: extracting latent vectors directly from pretrained language model decoders without fine-tuning. Experiments show that there exist steering vectors, which, when added to the hidden states of the language model, generate a target sentence nearly perfectly (> 99 BLEU) for English sentences from a variety of domains. We show that vector arithmetic can be used for unsupervised sentiment transfer on the Yelp sentiment benchmark, with performance comparable to models tailored to this task. We find that distances between steering vectors reflect sentence similarity when evaluated on a textual similarity benchmark (STS-B), outperforming pooled hidden states of models. Finally, we present an analysis of the intrinsic properties of the steering vectors. Taken together, our results suggest that frozen LMs can be effectively controlled through their latent steering space.
LAC: Latent Action Composition for Skeleton-based Action Segmentation
Skeleton-based action segmentation requires recognizing composable actions in untrimmed videos. Current approaches decouple this problem by first extracting local visual features from skeleton sequences and then processing them by a temporal model to classify frame-wise actions. However, their performances remain limited as the visual features cannot sufficiently express composable actions. In this context, we propose Latent Action Composition (LAC), a novel self-supervised framework aiming at learning from synthesized composable motions for skeleton-based action segmentation. LAC is composed of a novel generation module towards synthesizing new sequences. Specifically, we design a linear latent space in the generator to represent primitive motion. New composed motions can be synthesized by simply performing arithmetic operations on latent representations of multiple input skeleton sequences. LAC leverages such synthesized sequences, which have large diversity and complexity, for learning visual representations of skeletons in both sequence and frame spaces via contrastive learning. The resulting visual encoder has a high expressive power and can be effectively transferred onto action segmentation tasks by end-to-end fine-tuning without the need for additional temporal models. We conduct a study focusing on transfer-learning and we show that representations learned from pre-trained LAC outperform the state-of-the-art by a large margin on TSU, Charades, PKU-MMD datasets.
The New LLM Bottleneck: A Systems Perspective on Latent Attention and Mixture-of-Experts
Computational workloads composing traditional Transformer models are starkly bifurcated. Multi-Head Attention (MHA) is memory-bound, with low arithmetic intensity, while feedforward layers are compute-bound. This dichotomy has long motivated research into specialized hardware to mitigate the MHA bottleneck. This paper argues that recent architectural shifts, namely Multi-head Latent Attention (MLA) and Mixture-of-Experts (MoE), challenge the premise of specialized attention hardware. We make two key observations. First, the arithmetic intensity of MLA is over two orders of magnitude greater than that of MHA, shifting it close to a compute-bound regime well-suited for modern accelerators like GPUs. Second, by distributing MoE experts across a pool of accelerators, their arithmetic intensity can be tuned through batching to match that of the dense layers, creating a more balanced computational profile. These findings reveal a diminishing need for specialized attention hardware. The central challenge for next-generation Transformers is no longer accelerating a single memory-bound layer. Instead, the focus must shift to designing balanced systems with sufficient compute, memory capacity, memory bandwidth, and high-bandwidth interconnects to manage the diverse demands of large-scale models.
Optimizing the Latent Space of Generative Networks
Generative Adversarial Networks (GANs) have achieved remarkable results in the task of generating realistic natural images. In most successful applications, GAN models share two common aspects: solving a challenging saddle point optimization problem, interpreted as an adversarial game between a generator and a discriminator functions; and parameterizing the generator and the discriminator as deep convolutional neural networks. The goal of this paper is to disentangle the contribution of these two factors to the success of GANs. In particular, we introduce Generative Latent Optimization (GLO), a framework to train deep convolutional generators using simple reconstruction losses. Throughout a variety of experiments, we show that GLO enjoys many of the desirable properties of GANs: synthesizing visually-appealing samples, interpolating meaningfully between samples, and performing linear arithmetic with noise vectors; all of this without the adversarial optimization scheme.
Unlocking Out-of-Distribution Generalization in Transformers via Recursive Latent Space Reasoning
Systematic, compositional generalization beyond the training distribution remains a core challenge in machine learning -- and a critical bottleneck for the emergent reasoning abilities of modern language models. This work investigates out-of-distribution (OOD) generalization in Transformer networks using a GSM8K-style modular arithmetic on computational graphs task as a testbed. We introduce and explore a set of four architectural mechanisms aimed at enhancing OOD generalization: (i) input-adaptive recurrence; (ii) algorithmic supervision; (iii) anchored latent representations via a discrete bottleneck; and (iv) an explicit error-correction mechanism. Collectively, these mechanisms yield an architectural approach for native and scalable latent space reasoning in Transformer networks with robust algorithmic generalization capabilities. We complement these empirical results with a detailed mechanistic interpretability analysis that reveals how these mechanisms give rise to robust OOD generalization abilities.
In-context Vectors: Making In Context Learning More Effective and Controllable Through Latent Space Steering
Large language models (LLMs) demonstrate emergent in-context learning capabilities, where they adapt to new tasks based on example demonstrations. However, in-context learning has seen limited effectiveness in many settings, is difficult to quantitatively control and takes up context window space. To overcome these limitations, we propose an alternative approach that recasts in-context learning as in-context vectors (ICV). Using ICV has two steps. We first use a forward pass on demonstration examples to create the in-context vector from the latent embedding of the LLM. This vector captures essential information about the intended task. On a new query, instead of adding demonstrations to the prompt, we shift the latent states of the LLM using the ICV. The ICV approach has several benefits: 1) it enables the LLM to more effectively follow the demonstration examples; 2) it's easy to control by adjusting the magnitude of the ICV; 3) it reduces the length of the prompt by removing the in-context demonstrations; 4) ICV is computationally much more efficient than fine-tuning. We demonstrate that ICV achieves better performance compared to standard in-context learning and fine-tuning on diverse tasks including safety, style transfer, role-playing and formatting. Moreover, we show that we can flexibly teach LLM to simultaneously follow different types of instructions by simple vector arithmetics on the corresponding ICVs.
Singing Voice Conversion with Disentangled Representations of Singer and Vocal Technique Using Variational Autoencoders
We propose a flexible framework that deals with both singer conversion and singers vocal technique conversion. The proposed model is trained on non-parallel corpora, accommodates many-to-many conversion, and leverages recent advances of variational autoencoders. It employs separate encoders to learn disentangled latent representations of singer identity and vocal technique separately, with a joint decoder for reconstruction. Conversion is carried out by simple vector arithmetic in the learned latent spaces. Both a quantitative analysis as well as a visualization of the converted spectrograms show that our model is able to disentangle singer identity and vocal technique and successfully perform conversion of these attributes. To the best of our knowledge, this is the first work to jointly tackle conversion of singer identity and vocal technique based on a deep learning approach.
Scaling up GANs for Text-to-Image Synthesis
The recent success of text-to-image synthesis has taken the world by storm and captured the general public's imagination. From a technical standpoint, it also marked a drastic change in the favored architecture to design generative image models. GANs used to be the de facto choice, with techniques like StyleGAN. With DALL-E 2, auto-regressive and diffusion models became the new standard for large-scale generative models overnight. This rapid shift raises a fundamental question: can we scale up GANs to benefit from large datasets like LAION? We find that na\"Ively increasing the capacity of the StyleGAN architecture quickly becomes unstable. We introduce GigaGAN, a new GAN architecture that far exceeds this limit, demonstrating GANs as a viable option for text-to-image synthesis. GigaGAN offers three major advantages. First, it is orders of magnitude faster at inference time, taking only 0.13 seconds to synthesize a 512px image. Second, it can synthesize high-resolution images, for example, 16-megapixel pixels in 3.66 seconds. Finally, GigaGAN supports various latent space editing applications such as latent interpolation, style mixing, and vector arithmetic operations.
Speech Watermarking with Discrete Intermediate Representations
Speech watermarking techniques can proactively mitigate the potential harmful consequences of instant voice cloning techniques. These techniques involve the insertion of signals into speech that are imperceptible to humans but can be detected by algorithms. Previous approaches typically embed watermark messages into continuous space. However, intuitively, embedding watermark information into robust discrete latent space can significantly improve the robustness of watermarking systems. In this paper, we propose DiscreteWM, a novel speech watermarking framework that injects watermarks into the discrete intermediate representations of speech. Specifically, we map speech into discrete latent space with a vector-quantized autoencoder and inject watermarks by changing the modular arithmetic relation of discrete IDs. To ensure the imperceptibility of watermarks, we also propose a manipulator model to select the candidate tokens for watermark embedding. Experimental results demonstrate that our framework achieves state-of-the-art performance in robustness and imperceptibility, simultaneously. Moreover, our flexible frame-wise approach can serve as an efficient solution for both voice cloning detection and information hiding. Additionally, DiscreteWM can encode 1 to 150 bits of watermark information within a 1-second speech clip, indicating its encoding capacity. Audio samples are available at https://DiscreteWM.github.io/discrete_wm.
Seek in the Dark: Reasoning via Test-Time Instance-Level Policy Gradient in Latent Space
Reasoning ability, a core component of human intelligence, continues to pose a significant challenge for Large Language Models (LLMs) in the pursuit of AGI. Although model performance has improved under the training scaling law, significant challenges remain, particularly with respect to training algorithms, such as catastrophic forgetting, and the limited availability of novel training data. As an alternative, test-time scaling enhances reasoning performance by increasing test-time computation without parameter updating. Unlike prior methods in this paradigm focused on token space, we propose leveraging latent space for more effective reasoning and better adherence to the test-time scaling law. We introduce LatentSeek, a novel framework that enhances LLM reasoning through Test-Time Instance-level Adaptation (TTIA) within the model's latent space. Specifically, LatentSeek leverages policy gradient to iteratively update latent representations, guided by self-generated reward signals. LatentSeek is evaluated on a range of reasoning benchmarks, including GSM8K, MATH-500, and AIME2024, across multiple LLM architectures. Results show that LatentSeek consistently outperforms strong baselines, such as Chain-of-Thought prompting and fine-tuning-based methods. Furthermore, our analysis demonstrates that LatentSeek is highly efficient, typically converging within a few iterations for problems of average complexity, while also benefiting from additional iterations, thereby highlighting the potential of test-time scaling in the latent space. These findings position LatentSeek as a lightweight, scalable, and effective solution for enhancing the reasoning capabilities of LLMs.
GFlowNet-EM for learning compositional latent variable models
Latent variable models (LVMs) with discrete compositional latents are an important but challenging setting due to a combinatorially large number of possible configurations of the latents. A key tradeoff in modeling the posteriors over latents is between expressivity and tractable optimization. For algorithms based on expectation-maximization (EM), the E-step is often intractable without restrictive approximations to the posterior. We propose the use of GFlowNets, algorithms for sampling from an unnormalized density by learning a stochastic policy for sequential construction of samples, for this intractable E-step. By training GFlowNets to sample from the posterior over latents, we take advantage of their strengths as amortized variational inference algorithms for complex distributions over discrete structures. Our approach, GFlowNet-EM, enables the training of expressive LVMs with discrete compositional latents, as shown by experiments on non-context-free grammar induction and on images using discrete variational autoencoders (VAEs) without conditional independence enforced in the encoder.
Latent Reasoning in LLMs as a Vocabulary-Space Superposition
Large language models (LLMs) demonstrate strong reasoning abilities with chain-of-thought prompting, but explicit reasoning introduces substantial computational overhead. Recent work on latent reasoning reduces this cost by reasoning in latent space without explicit supervision, but performance drops significantly. Our preliminary experiments suggest that this degradation stems from the unstructured latent space, which makes fitting latent tokens difficult. To address this, we restrict the latent space to the column space of the LLM vocabulary, treating latent reasoning as a superposition over vocabulary probabilities. Once latent reasoning concludes, it collapses into an eigenstate of explicit reasoning to yield the final answer. Based on this idea, we propose Latent-SFT, a two-stage learning framework. In the first stage, we design two specialized attention masks to guide the Latent Token Encoder in generating latent tokens, allowing the LLM to produce the correct answer conditioned on them. In the second stage, the Latent Token Encoder is discarded, and the LLM is directly trained to generate these latent tokens autonomously for latent reasoning, optimized with KL and CE losses. Latent-SFT sets a new state of the art on GSM8k, matching explicit SFT performance while cutting reasoning chains by up to 4 times and outperforming prior latent methods. On Math500 and AIME24, lexical probability-based latent reasoning also clearly surpasses hidden-state-based approaches. Our metrics of effective compression rate and effective global parallelism further show that latent reasoning is both the compression of a single path and the superposition of multiple paths.
Parallel Test-Time Scaling for Latent Reasoning Models
Parallel test-time scaling (TTS) is a pivotal approach for enhancing large language models (LLMs), typically by sampling multiple token-based chains-of-thought in parallel and aggregating outcomes through voting or search. Recent advances in latent reasoning, where intermediate reasoning unfolds in continuous vector spaces, offer a more efficient alternative to explicit Chain-of-Thought, yet whether such latent models can similarly benefit from parallel TTS remains open, mainly due to the absence of sampling mechanisms in continuous space, and the lack of probabilistic signals for advanced trajectory aggregation. \ This work enables parallel TTS for latent reasoning models by addressing the above issues. For sampling, we introduce two uncertainty-inspired stochastic strategies: Monte Carlo Dropout and Additive Gaussian Noise. For aggregation, we design a Latent Reward Model (LatentRM) trained with step-wise contrastive objective to score and guide latent reasoning. Extensive experiments and visualization analyses show that both sampling strategies scale effectively with compute and exhibit distinct exploration dynamics, while LatentRM enables effective trajectory selection. Together, our explorations open a new direction for scalable inference in continuous spaces. Code released at https://github.com/YRYangang/LatentTTS.
Finding Manifolds With Bilinear Autoencoders
Sparse autoencoders are a standard tool for uncovering interpretable latent representations in neural networks. Yet, their interpretation depends on the inputs, making their isolated study incomplete. Polynomials offer a solution; they serve as algebraic primitives that can be analysed without reference to input and can describe structures ranging from linear concepts to complicated manifolds. This work uses bilinear autoencoders to efficiently decompose representations into quadratic polynomials. We discuss improvements that induce importance ordering, clustering, and activation sparsity. This is an initial step toward nonlinear yet analysable latents through their algebraic properties.
A Survey on Latent Reasoning
Large Language Models (LLMs) have demonstrated impressive reasoning capabilities, especially when guided by explicit chain-of-thought (CoT) reasoning that verbalizes intermediate steps. While CoT improves both interpretability and accuracy, its dependence on natural language reasoning limits the model's expressive bandwidth. Latent reasoning tackles this bottleneck by performing multi-step inference entirely in the model's continuous hidden state, eliminating token-level supervision. To advance latent reasoning research, this survey provides a comprehensive overview of the emerging field of latent reasoning. We begin by examining the foundational role of neural network layers as the computational substrate for reasoning, highlighting how hierarchical representations support complex transformations. Next, we explore diverse latent reasoning methodologies, including activation-based recurrence, hidden state propagation, and fine-tuning strategies that compress or internalize explicit reasoning traces. Finally, we discuss advanced paradigms such as infinite-depth latent reasoning via masked diffusion models, which enable globally consistent and reversible reasoning processes. By unifying these perspectives, we aim to clarify the conceptual landscape of latent reasoning and chart future directions for research at the frontier of LLM cognition. An associated GitHub repository collecting the latest papers and repos is available at: https://github.com/multimodal-art-projection/LatentCoT-Horizon/.
Language Models are Symbolic Learners in Arithmetic
Large Language Models (LLMs) are thought to struggle with arithmetic learning due to the inherent differences between language modeling and numerical computation, but concrete evidence has been lacking. This work responds to this claim through a two-side experiment. We first investigate whether LLMs leverage partial products during arithmetic learning. We find that although LLMs can identify some partial products after learning, they fail to leverage them for arithmetic tasks, conversely. We then explore how LLMs approach arithmetic symbolically by breaking tasks into subgroups, hypothesizing that difficulties arise from subgroup complexity and selection. Our results show that when subgroup complexity is fixed, LLMs treat a collection of different arithmetic operations similarly. By analyzing position-level accuracy across different training sizes, we further observe that it follows a U-shaped pattern: LLMs quickly learn the easiest patterns at the first and last positions, while progressively learning the more difficult patterns in the middle positions. This suggests that LLMs select subgroup following an easy-to-hard paradigm during learning. Our work confirms that LLMs are pure symbolic learners in arithmetic tasks and underscores the importance of understanding them deeply through subgroup-level quantification.
LaDiR: Latent Diffusion Enhances LLMs for Text Reasoning
Large Language Models (LLMs) demonstrate their reasoning ability through chain-of-thought (CoT) generation. However, LLM's autoregressive decoding may limit the ability to revisit and refine earlier tokens in a holistic manner, which can also lead to inefficient exploration for diverse solutions. In this paper, we propose LaDiR (Latent Diffusion Reasoner), a novel reasoning framework that unifies the expressiveness of continuous latent representation with the iterative refinement capabilities of latent diffusion models for an existing LLM. We first construct a structured latent reasoning space using a Variational Autoencoder (VAE) that encodes text reasoning steps into blocks of thought tokens, preserving semantic information and interpretability while offering compact but expressive representations. Subsequently, we utilize a latent diffusion model that learns to denoise a block of latent thought tokens with a blockwise bidirectional attention mask, enabling longer horizon and iterative refinement with adaptive test-time compute. This design allows efficient parallel generation of diverse reasoning trajectories, allowing the model to plan and revise the reasoning process holistically. We conduct evaluations on a suite of mathematical reasoning and planning benchmarks. Empirical results show that LaDiR consistently improves accuracy, diversity, and interpretability over existing autoregressive, diffusion-based, and latent reasoning methods, revealing a new paradigm for text reasoning with latent diffusion.
Probabilistic Integral Circuits
Continuous latent variables (LVs) are a key ingredient of many generative models, as they allow modelling expressive mixtures with an uncountable number of components. In contrast, probabilistic circuits (PCs) are hierarchical discrete mixtures represented as computational graphs composed of input, sum and product units. Unlike continuous LV models, PCs provide tractable inference but are limited to discrete LVs with categorical (i.e. unordered) states. We bridge these model classes by introducing probabilistic integral circuits (PICs), a new language of computational graphs that extends PCs with integral units representing continuous LVs. In the first place, PICs are symbolic computational graphs and are fully tractable in simple cases where analytical integration is possible. In practice, we parameterise PICs with light-weight neural nets delivering an intractable hierarchical continuous mixture that can be approximated arbitrarily well with large PCs using numerical quadrature. On several distribution estimation benchmarks, we show that such PIC-approximating PCs systematically outperform PCs commonly learned via expectation-maximization or SGD.
Tracing the Traces: Latent Temporal Signals for Efficient and Accurate Reasoning
Reasoning models improve their problem-solving ability through inference-time scaling, allocating more compute via longer token budgets. Identifying which reasoning traces are likely to succeed remains a key opportunity: reliably predicting productive paths can substantially reduce wasted computation and improve overall efficiency. We introduce Latent-Trajectory signals that characterize the temporal evolution of a model's internal representations during the generation of intermediate reasoning tokens. By measuring the overall change in latent representations between the start and end of reasoning, the change accumulated across intermediate steps, and the extent to which these changes advance toward the final state, we show that these signals predict solution accuracy more reliably than both cross-layer metrics and output-based confidence measures. When used to guide answer selection across multiple sampled generations, Latent-Trajectory signals make test-time scaling more effective and efficient than majority voting, reducing token usage by up to 70% while preserving and even improving accuracy by 2.6% on average. Moreover, these predictive signals often emerge early in the reasoning trace, enabling early selection and allocation of compute to the most promising candidates. Our findings contribute not only practical strategies for inference-time efficiency, but also a deeper interpretability perspective on how reasoning processes are represented and differentiated in latent space.
Interventional Causal Representation Learning
Causal representation learning seeks to extract high-level latent factors from low-level sensory data. Most existing methods rely on observational data and structural assumptions (e.g., conditional independence) to identify the latent factors. However, interventional data is prevalent across applications. Can interventional data facilitate causal representation learning? We explore this question in this paper. The key observation is that interventional data often carries geometric signatures of the latent factors' support (i.e. what values each latent can possibly take). For example, when the latent factors are causally connected, interventions can break the dependency between the intervened latents' support and their ancestors'. Leveraging this fact, we prove that the latent causal factors can be identified up to permutation and scaling given data from perfect do interventions. Moreover, we can achieve block affine identification, namely the estimated latent factors are only entangled with a few other latents if we have access to data from imperfect interventions. These results highlight the unique power of interventional data in causal representation learning; they can enable provable identification of latent factors without any assumptions about their distributions or dependency structure.
Multimodal Latent Language Modeling with Next-Token Diffusion
Multimodal generative models require a unified approach to handle both discrete data (e.g., text and code) and continuous data (e.g., image, audio, video). In this work, we propose Latent Language Modeling (LatentLM), which seamlessly integrates continuous and discrete data using causal Transformers. Specifically, we employ a variational autoencoder (VAE) to represent continuous data as latent vectors and introduce next-token diffusion for autoregressive generation of these vectors. Additionally, we develop sigma-VAE to address the challenges of variance collapse, which is crucial for autoregressive modeling. Extensive experiments demonstrate the effectiveness of LatentLM across various modalities. In image generation, LatentLM surpasses Diffusion Transformers in both performance and scalability. When integrated into multimodal large language models, LatentLM provides a general-purpose interface that unifies multimodal generation and understanding. Experimental results show that LatentLM achieves favorable performance compared to Transfusion and vector quantized models in the setting of scaling up training tokens. In text-to-speech synthesis, LatentLM outperforms the state-of-the-art VALL-E 2 model in speaker similarity and robustness, while requiring 10x fewer decoding steps. The results establish LatentLM as a highly effective and scalable approach to advance large multimodal models.
Think Silently, Think Fast: Dynamic Latent Compression of LLM Reasoning Chains
Large Language Models (LLMs) achieve superior performance through Chain-of-Thought (CoT) reasoning, but these token-level reasoning chains are computationally expensive and inefficient. In this paper, we introduce Compressed Latent Reasoning (CoLaR), a novel framework that dynamically compresses reasoning processes in latent space through a two-stage training approach. First, during supervised fine-tuning, CoLaR extends beyond next-token prediction by incorporating an auxiliary next compressed embedding prediction objective. This process merges embeddings of consecutive tokens using a compression factor randomly sampled from a predefined range, and trains a specialized latent head to predict distributions of subsequent compressed embeddings. Second, we enhance CoLaR through reinforcement learning (RL) that leverages the latent head's non-deterministic nature to explore diverse reasoning paths and exploit more compact ones. This approach enables CoLaR to: i) perform reasoning at a dense latent level (i.e., silently), substantially reducing reasoning chain length, and ii) dynamically adjust reasoning speed at inference time by simply prompting the desired compression factor. Extensive experiments across four mathematical reasoning datasets demonstrate that CoLaR achieves 14.1% higher accuracy than latent-based baseline methods at comparable compression ratios, and reduces reasoning chain length by 53.3% with only 4.8% performance degradation compared to explicit CoT method. Moreover, when applied to more challenging mathematical reasoning tasks, our RL-enhanced CoLaR demonstrates performance gains of up to 5.4% while dramatically reducing latent reasoning chain length by 82.8%. The code and models will be released upon acceptance.
SAIF: A Sparse Autoencoder Framework for Interpreting and Steering Instruction Following of Language Models
The ability of large language models (LLMs) to follow instructions is crucial for their practical applications, yet the underlying mechanisms remain poorly understood. This paper presents a novel framework that leverages sparse autoencoders (SAE) to interpret how instruction following works in these models. We demonstrate how the features we identify can effectively steer model outputs to align with given instructions. Through analysis of SAE latent activations, we identify specific latents responsible for instruction following behavior. Our findings reveal that instruction following capabilities are encoded by a distinct set of instruction-relevant SAE latents. These latents both show semantic proximity to relevant instructions and demonstrate causal effects on model behavior. Our research highlights several crucial factors for achieving effective steering performance: precise feature identification, the role of final layer, and optimal instruction positioning. Additionally, we demonstrate that our methodology scales effectively across SAEs and LLMs of varying sizes.
Scalable Language Models with Posterior Inference of Latent Thought Vectors
We propose a novel family of language models, Latent-Thought Language Models (LTMs), which incorporate explicit latent thought vectors that follow an explicit prior model in latent space. These latent thought vectors guide the autoregressive generation of ground tokens through a Transformer decoder. Training employs a dual-rate optimization process within the classical variational Bayes framework: fast learning of local variational parameters for the posterior distribution of latent vectors, and slow learning of global decoder parameters. Empirical studies reveal that LTMs possess additional scaling dimensions beyond traditional LLMs, yielding a structured design space. Higher sample efficiency can be achieved by increasing training compute per token, with further gains possible by trading model size for more inference steps. Designed based on these scaling properties, LTMs demonstrate superior sample and parameter efficiency compared to conventional autoregressive models and discrete diffusion models. They significantly outperform these counterparts in validation perplexity and zero-shot language modeling. Additionally, LTMs exhibit emergent few-shot in-context reasoning capabilities that scale with model and latent size, and achieve competitive performance in conditional and unconditional text generation.
Improving latent variable descriptiveness with AutoGen
Powerful generative models, particularly in Natural Language Modelling, are commonly trained by maximizing a variational lower bound on the data log likelihood. These models often suffer from poor use of their latent variable, with ad-hoc annealing factors used to encourage retention of information in the latent variable. We discuss an alternative and general approach to latent variable modelling, based on an objective that combines the data log likelihood as well as the likelihood of a perfect reconstruction through an autoencoder. Tying these together ensures by design that the latent variable captures information about the observations, whilst retaining the ability to generate well. Interestingly, though this approach is a priori unrelated to VAEs, the lower bound attained is identical to the standard VAE bound but with the addition of a simple pre-factor; thus, providing a formal interpretation of the commonly used, ad-hoc pre-factors in training VAEs.
Attenuation Bias with Latent Predictors
Many political science theories relate to latent variables, but such quantities cannot be observed directly and must instead be estimated from data with inherent uncertainty. In regression models, when a variable is measured with error, its slope coefficient is known to be biased toward zero. We show how measurement error interacts with unique aspects of latent variable estimation, identification restrictions in particular, and demonstrate how common error adjustment strategies can worsen bias. We introduce a method for adjusting coefficients on latent predictors, which reduces bias and typically increases the magnitude of estimated coefficients, often dramatically. We illustrate these dynamics using several different estimation strategies for the latent predictors. Corrected estimates using our proposed method show stronger relationships -- sometimes up to 50% larger -- than those from naive regression. Our findings highlight the importance of considering measurement error in latent predictors and the inadequacy of many commonly used approaches for dealing with this issue.
Stabilize the Latent Space for Image Autoregressive Modeling: A Unified Perspective
Latent-based image generative models, such as Latent Diffusion Models (LDMs) and Mask Image Models (MIMs), have achieved notable success in image generation tasks. These models typically leverage reconstructive autoencoders like VQGAN or VAE to encode pixels into a more compact latent space and learn the data distribution in the latent space instead of directly from pixels. However, this practice raises a pertinent question: Is it truly the optimal choice? In response, we begin with an intriguing observation: despite sharing the same latent space, autoregressive models significantly lag behind LDMs and MIMs in image generation. This finding contrasts sharply with the field of NLP, where the autoregressive model GPT has established a commanding presence. To address this discrepancy, we introduce a unified perspective on the relationship between latent space and generative models, emphasizing the stability of latent space in image generative modeling. Furthermore, we propose a simple but effective discrete image tokenizer to stabilize the latent space for image generative modeling. Experimental results show that image autoregressive modeling with our tokenizer (DiGIT) benefits both image understanding and image generation with the next token prediction principle, which is inherently straightforward for GPT models but challenging for other generative models. Remarkably, for the first time, a GPT-style autoregressive model for images outperforms LDMs, which also exhibits substantial improvement akin to GPT when scaling up model size. Our findings underscore the potential of an optimized latent space and the integration of discrete tokenization in advancing the capabilities of image generative models. The code is available at https://github.com/DAMO-NLP-SG/DiGIT.
Nonlinear Multiple Response Regression and Learning of Latent Spaces
Identifying low-dimensional latent structures within high-dimensional data has long been a central topic in the machine learning community, driven by the need for data compression, storage, transmission, and deeper data understanding. Traditional methods, such as principal component analysis (PCA) and autoencoders (AE), operate in an unsupervised manner, ignoring label information even when it is available. In this work, we introduce a unified method capable of learning latent spaces in both unsupervised and supervised settings. We formulate the problem as a nonlinear multiple-response regression within an index model context. By applying the generalized Stein's lemma, the latent space can be estimated without knowing the nonlinear link functions. Our method can be viewed as a nonlinear generalization of PCA. Moreover, unlike AE and other neural network methods that operate as "black boxes", our approach not only offers better interpretability but also reduces computational complexity while providing strong theoretical guarantees. Comprehensive numerical experiments and real data analyses demonstrate the superior performance of our method.
Token Assorted: Mixing Latent and Text Tokens for Improved Language Model Reasoning
Large Language Models (LLMs) excel at reasoning and planning when trained on chainof-thought (CoT) data, where the step-by-step thought process is explicitly outlined by text tokens. However, this results in lengthy inputs where many words support textual coherence rather than core reasoning information, and processing these inputs consumes substantial computation resources. In this work, we propose a hybrid representation of the reasoning process, where we partially abstract away the initial reasoning steps using latent discrete tokens generated by VQ-VAE, significantly reducing the length of reasoning traces. We explore the use of latent trace abstractions in two scenarios: 1) training the model from scratch for the Keys-Finding Maze problem, 2) fine-tuning LLMs on this hybrid data with an extended vocabulary including unseen latent tokens, for both logical and mathematical reasoning problems. To facilitate effective learning, we introduce a simple training procedure that randomly mixes latent and text tokens, which enables fast adaptation to new latent tokens. Our approach consistently outperforms the baselines methods in various benchmarks.
FPGA Deployment of LFADS for Real-time Neuroscience Experiments
Large-scale recordings of neural activity are providing new opportunities to study neural population dynamics. A powerful method for analyzing such high-dimensional measurements is to deploy an algorithm to learn the low-dimensional latent dynamics. LFADS (Latent Factor Analysis via Dynamical Systems) is a deep learning method for inferring latent dynamics from high-dimensional neural spiking data recorded simultaneously in single trials. This method has shown a remarkable performance in modeling complex brain signals with an average inference latency in milliseconds. As our capacity of simultaneously recording many neurons is increasing exponentially, it is becoming crucial to build capacity for deploying low-latency inference of the computing algorithms. To improve the real-time processing ability of LFADS, we introduce an efficient implementation of the LFADS models onto Field Programmable Gate Arrays (FPGA). Our implementation shows an inference latency of 41.97 mus for processing the data in a single trial on a Xilinx U55C.
Reasoning to Learn from Latent Thoughts
Compute scaling for language model (LM) pretraining has outpaced the growth of human-written texts, leading to concerns that data will become the bottleneck to LM scaling. To continue scaling pretraining in this data-constrained regime, we propose that explicitly modeling and inferring the latent thoughts that underlie the text generation process can significantly improve pretraining data efficiency. Intuitively, our approach views web text as the compressed final outcome of a verbose human thought process and that the latent thoughts contain important contextual knowledge and reasoning steps that are critical to data-efficient learning. We empirically demonstrate the effectiveness of our approach through data-constrained continued pretraining for math. We first show that synthetic data approaches to inferring latent thoughts significantly improve data efficiency, outperforming training on the same amount of raw data (5.7\% rightarrow 25.4\% on MATH). Furthermore, we demonstrate latent thought inference without a strong teacher, where an LM bootstraps its own performance by using an EM algorithm to iteratively improve the capability of the trained LM and the quality of thought-augmented pretraining data. We show that a 1B LM can bootstrap its performance across at least three iterations and significantly outperform baselines trained on raw data, with increasing gains from additional inference compute when performing the E-step. The gains from inference scaling and EM iterations suggest new opportunities for scaling data-constrained pretraining.
Reasoning Beyond Language: A Comprehensive Survey on Latent Chain-of-Thought Reasoning
Large Language Models (LLMs) have achieved impressive performance on complex reasoning tasks with Chain-of-Thought (CoT) prompting. However, conventional CoT relies on reasoning steps explicitly verbalized in natural language, introducing inefficiencies and limiting its applicability to abstract reasoning. To address this, there has been growing research interest in latent CoT reasoning, where inference occurs within latent spaces. By decoupling reasoning from language, latent reasoning promises richer cognitive representations and more flexible, faster inference. Researchers have explored various directions in this promising field, including training methodologies, structural innovations, and internal reasoning mechanisms. This paper presents a comprehensive overview and analysis of this reasoning paradigm. We begin by proposing a unified taxonomy from four perspectives: token-wise strategies, internal mechanisms, analysis, and applications. We then provide in-depth discussions and comparative analyses of representative methods, highlighting their design patterns, strengths, and open challenges. We aim to provide a structured foundation for advancing this emerging direction in LLM reasoning. The relevant papers will be regularly updated at https://github.com/EIT-NLP/Awesome-Latent-CoT.
Hint Marginalization for Improved Reasoning in Large Language Models
Large Language Models (LLMs) have exhibited an impressive capability to perform reasoning tasks, especially if they are encouraged to generate a sequence of intermediate steps. Reasoning performance can be improved by suitably combining multiple LLM responses, generated either in parallel in a single query, or via sequential interactions with LLMs throughout the reasoning process. Existing strategies for combination, such as self-consistency and progressive-hint-prompting, make inefficient usage of the LLM responses. We present Hint Marginalization, a novel and principled algorithmic framework to enhance the reasoning capabilities of LLMs. Our approach can be viewed as an iterative sampling strategy for forming a Monte Carlo approximation of an underlying distribution of answers, with the goal of identifying the mode the most likely answer. Empirical evaluation on several benchmark datasets for arithmetic reasoning demonstrates the superiority of the proposed approach.
ARD-VAE: A Statistical Formulation to Find the Relevant Latent Dimensions of Variational Autoencoders
The variational autoencoder (VAE) is a popular, deep, latent-variable model (DLVM) due to its simple yet effective formulation for modeling the data distribution. Moreover, optimizing the VAE objective function is more manageable than other DLVMs. The bottleneck dimension of the VAE is a crucial design choice, and it has strong ramifications for the model's performance, such as finding the hidden explanatory factors of a dataset using the representations learned by the VAE. However, the size of the latent dimension of the VAE is often treated as a hyperparameter estimated empirically through trial and error. To this end, we propose a statistical formulation to discover the relevant latent factors required for modeling a dataset. In this work, we use a hierarchical prior in the latent space that estimates the variance of the latent axes using the encoded data, which identifies the relevant latent dimensions. For this, we replace the fixed prior in the VAE objective function with a hierarchical prior, keeping the remainder of the formulation unchanged. We call the proposed method the automatic relevancy detection in the variational autoencoder (ARD-VAE). We demonstrate the efficacy of the ARD-VAE on multiple benchmark datasets in finding the relevant latent dimensions and their effect on different evaluation metrics, such as FID score and disentanglement analysis.
Neural Arithmetic Logic Units
Neural networks can learn to represent and manipulate numerical information, but they seldom generalize well outside of the range of numerical values encountered during training. To encourage more systematic numerical extrapolation, we propose an architecture that represents numerical quantities as linear activations which are manipulated using primitive arithmetic operators, controlled by learned gates. We call this module a neural arithmetic logic unit (NALU), by analogy to the arithmetic logic unit in traditional processors. Experiments show that NALU-enhanced neural networks can learn to track time, perform arithmetic over images of numbers, translate numerical language into real-valued scalars, execute computer code, and count objects in images. In contrast to conventional architectures, we obtain substantially better generalization both inside and outside of the range of numerical values encountered during training, often extrapolating orders of magnitude beyond trained numerical ranges.
Controlling Latent Diffusion Using Latent CLIP
Instead of performing text-conditioned denoising in the image domain, latent diffusion models (LDMs) operate in latent space of a variational autoencoder (VAE), enabling more efficient processing at reduced computational costs. However, while the diffusion process has moved to the latent space, the contrastive language-image pre-training (CLIP) models, as used in many image processing tasks, still operate in pixel space. Doing so requires costly VAE-decoding of latent images before they can be processed. In this paper, we introduce Latent-CLIP, a CLIP model that operates directly in the latent space. We train Latent-CLIP on 2.7B pairs of latent images and descriptive texts, and show that it matches zero-shot classification performance of similarly sized CLIP models on both the ImageNet benchmark and a LDM-generated version of it, demonstrating its effectiveness in assessing both real and generated content. Furthermore, we construct Latent-CLIP rewards for reward-based noise optimization (ReNO) and show that they match the performance of their CLIP counterparts on GenEval and T2I-CompBench while cutting the cost of the total pipeline by 21%. Finally, we use Latent-CLIP to guide generation away from harmful content, achieving strong performance on the inappropriate image prompts (I2P) benchmark and a custom evaluation, without ever requiring the costly step of decoding intermediate images.
Boosting Latent Diffusion with Perceptual Objectives
Latent diffusion models (LDMs) power state-of-the-art high-resolution generative image models. LDMs learn the data distribution in the latent space of an autoencoder (AE) and produce images by mapping the generated latents into RGB image space using the AE decoder. While this approach allows for efficient model training and sampling, it induces a disconnect between the training of the diffusion model and the decoder, resulting in a loss of detail in the generated images. To remediate this disconnect, we propose to leverage the internal features of the decoder to define a latent perceptual loss (LPL). This loss encourages the models to create sharper and more realistic images. Our loss can be seamlessly integrated with common autoencoders used in latent diffusion models, and can be applied to different generative modeling paradigms such as DDPM with epsilon and velocity prediction, as well as flow matching. Extensive experiments with models trained on three datasets at 256 and 512 resolution show improved quantitative -- with boosts between 6% and 20% in FID -- and qualitative results when using our perceptual loss.
Measuring Arithmetic Extrapolation Performance
The Neural Arithmetic Logic Unit (NALU) is a neural network layer that can learn exact arithmetic operations between the elements of a hidden state. The goal of NALU is to learn perfect extrapolation, which requires learning the exact underlying logic of an unknown arithmetic problem. Evaluating the performance of the NALU is non-trivial as one arithmetic problem might have many solutions. As a consequence, single-instance MSE has been used to evaluate and compare performance between models. However, it can be hard to interpret what magnitude of MSE represents a correct solution and models sensitivity to initialization. We propose using a success-criterion to measure if and when a model converges. Using a success-criterion we can summarize success-rate over many initialization seeds and calculate confidence intervals. We contribute a generalized version of the previous arithmetic benchmark to measure models sensitivity under different conditions. This is, to our knowledge, the first extensive evaluation with respect to convergence of the NALU and its sub-units. Using a success-criterion to summarize 4800 experiments we find that consistently learning arithmetic extrapolation is challenging, in particular for multiplication.
On the Importance of Conditioning for Privacy-Preserving Data Augmentation
Latent diffusion models can be used as a powerful augmentation method to artificially extend datasets for enhanced training. To the human eye, these augmented images look very different to the originals. Previous work has suggested to use this data augmentation technique for data anonymization. However, we show that latent diffusion models that are conditioned on features like depth maps or edges to guide the diffusion process are not suitable as a privacy preserving method. We use a contrastive learning approach to train a model that can correctly identify people out of a pool of candidates. Moreover, we demonstrate that anonymization using conditioned diffusion models is susceptible to black box attacks. We attribute the success of the described methods to the conditioning of the latent diffusion model in the anonymization process. The diffusion model is instructed to produce similar edges for the anonymized images. Hence, a model can learn to recognize these patterns for identification.
SoftCoT++: Test-Time Scaling with Soft Chain-of-Thought Reasoning
Test-Time Scaling (TTS) refers to approaches that improve reasoning performance by allocating extra computation during inference, without altering the model's parameters. While existing TTS methods operate in a discrete token space by generating more intermediate steps, recent studies in Coconut and SoftCoT have demonstrated that thinking in the continuous latent space can further enhance the reasoning performance. Such latent thoughts encode informative thinking without the information loss associated with autoregressive token generation, sparking increased interest in continuous-space reasoning. Unlike discrete decoding, where repeated sampling enables exploring diverse reasoning paths, latent representations in continuous space are fixed for a given input, which limits diverse exploration, as all decoded paths originate from the same latent thought. To overcome this limitation, we introduce SoftCoT++ to extend SoftCoT to the Test-Time Scaling paradigm by enabling diverse exploration of thinking paths. Specifically, we perturb latent thoughts via multiple specialized initial tokens and apply contrastive learning to promote diversity among soft thought representations. Experiments across five reasoning benchmarks and two distinct LLM architectures demonstrate that SoftCoT++ significantly boosts SoftCoT and also outperforms SoftCoT with self-consistency scaling. Moreover, it shows strong compatibility with conventional scaling techniques such as self-consistency. Source code is available at https://github.com/xuyige/SoftCoT.
Pre-trained Large Language Models Use Fourier Features to Compute Addition
Pre-trained large language models (LLMs) exhibit impressive mathematical reasoning capabilities, yet how they compute basic arithmetic, such as addition, remains unclear. This paper shows that pre-trained LLMs add numbers using Fourier features -- dimensions in the hidden state that represent numbers via a set of features sparse in the frequency domain. Within the model, MLP and attention layers use Fourier features in complementary ways: MLP layers primarily approximate the magnitude of the answer using low-frequency features, while attention layers primarily perform modular addition (e.g., computing whether the answer is even or odd) using high-frequency features. Pre-training is crucial for this mechanism: models trained from scratch to add numbers only exploit low-frequency features, leading to lower accuracy. Introducing pre-trained token embeddings to a randomly initialized model rescues its performance. Overall, our analysis demonstrates that appropriate pre-trained representations (e.g., Fourier features) can unlock the ability of Transformers to learn precise mechanisms for algorithmic tasks.
Understanding the Distillation Process from Deep Generative Models to Tractable Probabilistic Circuits
Probabilistic Circuits (PCs) are a general and unified computational framework for tractable probabilistic models that support efficient computation of various inference tasks (e.g., computing marginal probabilities). Towards enabling such reasoning capabilities in complex real-world tasks, Liu et al. (2022) propose to distill knowledge (through latent variable assignments) from less tractable but more expressive deep generative models. However, it is still unclear what factors make this distillation work well. In this paper, we theoretically and empirically discover that the performance of a PC can exceed that of its teacher model. Therefore, instead of performing distillation from the most expressive deep generative model, we study what properties the teacher model and the PC should have in order to achieve good distillation performance. This leads to a generic algorithmic improvement as well as other data-type-specific ones over the existing latent variable distillation pipeline. Empirically, we outperform SoTA TPMs by a large margin on challenging image modeling benchmarks. In particular, on ImageNet32, PCs achieve 4.06 bits-per-dimension, which is only 0.34 behind variational diffusion models (Kingma et al., 2021).
Multi-modal Gaussian Process Variational Autoencoders for Neural and Behavioral Data
Characterizing the relationship between neural population activity and behavioral data is a central goal of neuroscience. While latent variable models (LVMs) are successful in describing high-dimensional time-series data, they are typically only designed for a single type of data, making it difficult to identify structure shared across different experimental data modalities. Here, we address this shortcoming by proposing an unsupervised LVM which extracts temporally evolving shared and independent latents for distinct, simultaneously recorded experimental modalities. We do this by combining Gaussian Process Factor Analysis (GPFA), an interpretable LVM for neural spiking data with temporally smooth latent space, with Gaussian Process Variational Autoencoders (GP-VAEs), which similarly use a GP prior to characterize correlations in a latent space, but admit rich expressivity due to a deep neural network mapping to observations. We achieve interpretability in our model by partitioning latent variability into components that are either shared between or independent to each modality. We parameterize the latents of our model in the Fourier domain, and show improved latent identification using this approach over standard GP-VAE methods. We validate our model on simulated multi-modal data consisting of Poisson spike counts and MNIST images that scale and rotate smoothly over time. We show that the multi-modal GP-VAE (MM-GPVAE) is able to not only identify the shared and independent latent structure across modalities accurately, but provides good reconstructions of both images and neural rates on held-out trials. Finally, we demonstrate our framework on two real world multi-modal experimental settings: Drosophila whole-brain calcium imaging alongside tracked limb positions, and Manduca sexta spike train measurements from ten wing muscles as the animal tracks a visual stimulus.
Interpreting and Improving Large Language Models in Arithmetic Calculation
Large language models (LLMs) have demonstrated remarkable potential across numerous applications and have shown an emergent ability to tackle complex reasoning tasks, such as mathematical computations. However, even for the simplest arithmetic calculations, the intrinsic mechanisms behind LLMs remain mysterious, making it challenging to ensure reliability. In this work, we delve into uncovering a specific mechanism by which LLMs execute calculations. Through comprehensive experiments, we find that LLMs frequently involve a small fraction (< 5%) of attention heads, which play a pivotal role in focusing on operands and operators during calculation processes. Subsequently, the information from these operands is processed through multi-layer perceptrons (MLPs), progressively leading to the final solution. These pivotal heads/MLPs, though identified on a specific dataset, exhibit transferability across different datasets and even distinct tasks. This insight prompted us to investigate the potential benefits of selectively fine-tuning these essential heads/MLPs to boost the LLMs' computational performance. We empirically find that such precise tuning can yield notable enhancements on mathematical prowess, without compromising the performance on non-mathematical tasks. Our work serves as a preliminary exploration into the arithmetic calculation abilities inherent in LLMs, laying a solid foundation to reveal more intricate mathematical tasks.
Neural Arithmetic Units
Neural networks can approximate complex functions, but they struggle to perform exact arithmetic operations over real numbers. The lack of inductive bias for arithmetic operations leaves neural networks without the underlying logic necessary to extrapolate on tasks such as addition, subtraction, and multiplication. We present two new neural network components: the Neural Addition Unit (NAU), which can learn exact addition and subtraction; and the Neural Multiplication Unit (NMU) that can multiply subsets of a vector. The NMU is, to our knowledge, the first arithmetic neural network component that can learn to multiply elements from a vector, when the hidden size is large. The two new components draw inspiration from a theoretical analysis of recently proposed arithmetic components. We find that careful initialization, restricting parameter space, and regularizing for sparsity is important when optimizing the NAU and NMU. Our proposed units NAU and NMU, compared with previous neural units, converge more consistently, have fewer parameters, learn faster, can converge for larger hidden sizes, obtain sparse and meaningful weights, and can extrapolate to negative and small values.
Unveiling the Latent Space Geometry of Push-Forward Generative Models
Many deep generative models are defined as a push-forward of a Gaussian measure by a continuous generator, such as Generative Adversarial Networks (GANs) or Variational Auto-Encoders (VAEs). This work explores the latent space of such deep generative models. A key issue with these models is their tendency to output samples outside of the support of the target distribution when learning disconnected distributions. We investigate the relationship between the performance of these models and the geometry of their latent space. Building on recent developments in geometric measure theory, we prove a sufficient condition for optimality in the case where the dimension of the latent space is larger than the number of modes. Through experiments on GANs, we demonstrate the validity of our theoretical results and gain new insights into the latent space geometry of these models. Additionally, we propose a truncation method that enforces a simplicial cluster structure in the latent space and improves the performance of GANs.
Hopping Too Late: Exploring the Limitations of Large Language Models on Multi-Hop Queries
Large language models (LLMs) can solve complex multi-step problems, but little is known about how these computations are implemented internally. Motivated by this, we study how LLMs answer multi-hop queries such as "The spouse of the performer of Imagine is". These queries require two information extraction steps: a latent one for resolving the first hop ("the performer of Imagine") into the bridge entity (John Lennon), and one for resolving the second hop ("the spouse of John Lennon") into the target entity (Yoko Ono). Understanding how the latent step is computed internally is key to understanding the overall computation. By carefully analyzing the internal computations of transformer-based LLMs, we discover that the bridge entity is resolved in the early layers of the model. Then, only after this resolution, the two-hop query is solved in the later layers. Because the second hop commences in later layers, there could be cases where these layers no longer encode the necessary knowledge for correctly predicting the answer. Motivated by this, we propose a novel "back-patching" analysis method whereby a hidden representation from a later layer is patched back to an earlier layer. We find that in up to 57% of previously incorrect cases there exists a back-patch that results in the correct generation of the answer, showing that the later layers indeed sometimes lack the needed functionality. Overall our methods and findings open further opportunities for understanding and improving latent reasoning in transformer-based LLMs.
Executing Arithmetic: Fine-Tuning Large Language Models as Turing Machines
Large Language Models (LLMs) have demonstrated remarkable capabilities across a wide range of natural language processing and reasoning tasks. However, their performance in the foundational domain of arithmetic remains unsatisfactory. When dealing with arithmetic tasks, LLMs often memorize specific examples rather than learning the underlying computational logic, limiting their ability to generalize to new problems. In this paper, we propose a Composable Arithmetic Execution Framework (CAEF) that enables LLMs to learn to execute step-by-step computations by emulating Turing Machines, thereby gaining a genuine understanding of computational logic. Moreover, the proposed framework is highly scalable, allowing composing learned operators to significantly reduce the difficulty of learning complex operators. In our evaluation, CAEF achieves nearly 100% accuracy across seven common mathematical operations on the LLaMA 3.1-8B model, effectively supporting computations involving operands with up to 100 digits, a level where GPT-4o falls short noticeably in some settings.
Relative representations enable zero-shot latent space communication
Neural networks embed the geometric structure of a data manifold lying in a high-dimensional space into latent representations. Ideally, the distribution of the data points in the latent space should depend only on the task, the data, the loss, and other architecture-specific constraints. However, factors such as the random weights initialization, training hyperparameters, or other sources of randomness in the training phase may induce incoherent latent spaces that hinder any form of reuse. Nevertheless, we empirically observe that, under the same data and modeling choices, the angles between the encodings within distinct latent spaces do not change. In this work, we propose the latent similarity between each sample and a fixed set of anchors as an alternative data representation, demonstrating that it can enforce the desired invariances without any additional training. We show how neural architectures can leverage these relative representations to guarantee, in practice, invariance to latent isometries and rescalings, effectively enabling latent space communication: from zero-shot model stitching to latent space comparison between diverse settings. We extensively validate the generalization capability of our approach on different datasets, spanning various modalities (images, text, graphs), tasks (e.g., classification, reconstruction) and architectures (e.g., CNNs, GCNs, transformers).
Teaching Arithmetic to Small Transformers
Large language models like GPT-4 exhibit emergent capabilities across general-purpose tasks, such as basic arithmetic, when trained on extensive text data, even though these tasks are not explicitly encoded by the unsupervised, next-token prediction objective. This study investigates how small transformers, trained from random initialization, can efficiently learn arithmetic operations such as addition, multiplication, and elementary functions like square root, using the next-token prediction objective. We first demonstrate that conventional training data is not the most effective for arithmetic learning, and simple formatting changes can significantly improve accuracy. This leads to sharp phase transitions as a function of training data scale, which, in some cases, can be explained through connections to low-rank matrix completion. Building on prior work, we then train on chain-of-thought style data that includes intermediate step results. Even in the complete absence of pretraining, this approach significantly and simultaneously improves accuracy, sample complexity, and convergence speed. We also study the interplay between arithmetic and text data during training and examine the effects of few-shot prompting, pretraining, and model scale. Additionally, we discuss length generalization challenges. Our work highlights the importance of high-quality, instructive data that considers the particular characteristics of the next-word prediction objective for rapidly eliciting arithmetic capabilities.
Exploring Representation-Aligned Latent Space for Better Generation
Generative models serve as powerful tools for modeling the real world, with mainstream diffusion models, particularly those based on the latent diffusion model paradigm, achieving remarkable progress across various tasks, such as image and video synthesis. Latent diffusion models are typically trained using Variational Autoencoders (VAEs), interacting with VAE latents rather than the real samples. While this generative paradigm speeds up training and inference, the quality of the generated outputs is limited by the latents' quality. Traditional VAE latents are often seen as spatial compression in pixel space and lack explicit semantic representations, which are essential for modeling the real world. In this paper, we introduce ReaLS (Representation-Aligned Latent Space), which integrates semantic priors to improve generation performance. Extensive experiments show that fundamental DiT and SiT trained on ReaLS can achieve a 15% improvement in FID metric. Furthermore, the enhanced semantic latent space enables more perceptual downstream tasks, such as segmentation and depth estimation.
AROMA: Preserving Spatial Structure for Latent PDE Modeling with Local Neural Fields
We present AROMA (Attentive Reduced Order Model with Attention), a framework designed to enhance the modeling of partial differential equations (PDEs) using local neural fields. Our flexible encoder-decoder architecture can obtain smooth latent representations of spatial physical fields from a variety of data types, including irregular-grid inputs and point clouds. This versatility eliminates the need for patching and allows efficient processing of diverse geometries. The sequential nature of our latent representation can be interpreted spatially and permits the use of a conditional transformer for modeling the temporal dynamics of PDEs. By employing a diffusion-based formulation, we achieve greater stability and enable longer rollouts compared to conventional MSE training. AROMA's superior performance in simulating 1D and 2D equations underscores the efficacy of our approach in capturing complex dynamical behaviors.
latent-GLAT: Glancing at Latent Variables for Parallel Text Generation
Recently, parallel text generation has received widespread attention due to its success in generation efficiency. Although many advanced techniques are proposed to improve its generation quality, they still need the help of an autoregressive model for training to overcome the one-to-many multi-modal phenomenon in the dataset, limiting their applications. In this paper, we propose latent-GLAT, which employs the discrete latent variables to capture word categorical information and invoke an advanced curriculum learning technique, alleviating the multi-modality problem. Experiment results show that our method outperforms strong baselines without the help of an autoregressive model, which further broadens the application scenarios of the parallel decoding paradigm.
Hybrid Latent Reasoning via Reinforcement Learning
Recent advances in large language models (LLMs) have introduced latent reasoning as a promising alternative to autoregressive reasoning. By performing internal computation with hidden states from previous steps, latent reasoning benefit from more informative features rather than sampling a discrete chain-of-thought (CoT) path. Yet latent reasoning approaches are often incompatible with LLMs, as their continuous paradigm conflicts with the discrete nature of autoregressive generation. Moreover, these methods rely on CoT traces for training and thus fail to exploit the inherent reasoning patterns of LLMs. In this work, we explore latent reasoning by leveraging the intrinsic capabilities of LLMs via reinforcement learning (RL). To this end, we introduce hybrid reasoning policy optimization (HRPO), an RL-based hybrid latent reasoning approach that (1) integrates prior hidden states into sampled tokens with a learnable gating mechanism, and (2) initializes training with predominantly token embeddings while progressively incorporating more hidden features. This design maintains LLMs' generative capabilities and incentivizes hybrid reasoning using both discrete and continuous representations. In addition, the hybrid HRPO introduces stochasticity into latent reasoning via token sampling, thereby enabling RL-based optimization without requiring CoT trajectories. Extensive evaluations across diverse benchmarks show that HRPO outperforms prior methods in both knowledge- and reasoning-intensive tasks. Furthermore, HRPO-trained LLMs remain interpretable and exhibit intriguing behaviors like cross-lingual patterns and shorter completion lengths, highlighting the potential of our RL-based approach and offer insights for future work in latent reasoning.
A Mechanistic Interpretation of Arithmetic Reasoning in Language Models using Causal Mediation Analysis
Mathematical reasoning in large language models (LMs) has garnered significant attention in recent work, but there is a limited understanding of how these models process and store information related to arithmetic tasks within their architecture. In order to improve our understanding of this aspect of language models, we present a mechanistic interpretation of Transformer-based LMs on arithmetic questions using a causal mediation analysis framework. By intervening on the activations of specific model components and measuring the resulting changes in predicted probabilities, we identify the subset of parameters responsible for specific predictions. This provides insights into how information related to arithmetic is processed by LMs. Our experimental results indicate that LMs process the input by transmitting the information relevant to the query from mid-sequence early layers to the final token using the attention mechanism. Then, this information is processed by a set of MLP modules, which generate result-related information that is incorporated into the residual stream. To assess the specificity of the observed activation dynamics, we compare the effects of different model components on arithmetic queries with other tasks, including number retrieval from prompts and factual knowledge questions.
Latent Consistency Models: Synthesizing High-Resolution Images with Few-Step Inference
Latent Diffusion models (LDMs) have achieved remarkable results in synthesizing high-resolution images. However, the iterative sampling process is computationally intensive and leads to slow generation. Inspired by Consistency Models (song et al.), we propose Latent Consistency Models (LCMs), enabling swift inference with minimal steps on any pre-trained LDMs, including Stable Diffusion (rombach et al). Viewing the guided reverse diffusion process as solving an augmented probability flow ODE (PF-ODE), LCMs are designed to directly predict the solution of such ODE in latent space, mitigating the need for numerous iterations and allowing rapid, high-fidelity sampling. Efficiently distilled from pre-trained classifier-free guided diffusion models, a high-quality 768 x 768 2~4-step LCM takes only 32 A100 GPU hours for training. Furthermore, we introduce Latent Consistency Fine-tuning (LCF), a novel method that is tailored for fine-tuning LCMs on customized image datasets. Evaluation on the LAION-5B-Aesthetics dataset demonstrates that LCMs achieve state-of-the-art text-to-image generation performance with few-step inference. Project Page: https://latent-consistency-models.github.io/
Masked Autoencoders Are Effective Tokenizers for Diffusion Models
Recent advances in latent diffusion models have demonstrated their effectiveness for high-resolution image synthesis. However, the properties of the latent space from tokenizer for better learning and generation of diffusion models remain under-explored. Theoretically and empirically, we find that improved generation quality is closely tied to the latent distributions with better structure, such as the ones with fewer Gaussian Mixture modes and more discriminative features. Motivated by these insights, we propose MAETok, an autoencoder (AE) leveraging mask modeling to learn semantically rich latent space while maintaining reconstruction fidelity. Extensive experiments validate our analysis, demonstrating that the variational form of autoencoders is not necessary, and a discriminative latent space from AE alone enables state-of-the-art performance on ImageNet generation using only 128 tokens. MAETok achieves significant practical improvements, enabling a gFID of 1.69 with 76x faster training and 31x higher inference throughput for 512x512 generation. Our findings show that the structure of the latent space, rather than variational constraints, is crucial for effective diffusion models. Code and trained models are released.
Multi-modal Latent Diffusion
Multi-modal data-sets are ubiquitous in modern applications, and multi-modal Variational Autoencoders are a popular family of models that aim to learn a joint representation of the different modalities. However, existing approaches suffer from a coherence-quality tradeoff, where models with good generation quality lack generative coherence across modalities, and vice versa. We discuss the limitations underlying the unsatisfactory performance of existing methods, to motivate the need for a different approach. We propose a novel method that uses a set of independently trained, uni-modal, deterministic autoencoders. Individual latent variables are concatenated into a common latent space, which is fed to a masked diffusion model to enable generative modeling. We also introduce a new multi-time training method to learn the conditional score network for multi-modal diffusion. Our methodology substantially outperforms competitors in both generation quality and coherence, as shown through an extensive experimental campaign.
Can sparse autoencoders make sense of latent representations?
Sparse autoencoders (SAEs) have lately been used to uncover interpretable latent features in large language models. Here, we explore their potential for decomposing latent representations in complex and high-dimensional biological data, where the underlying variables are often unknown. On simulated data we show that generative hidden variables can be captured in learned representations in the form of superpositions. The degree to which they are learned depends on the completeness of the representations. Superpositions, however, are not identifiable if these generative variables are unknown. SAEs can to some extent recover these variables, yielding interpretable features. Applied to single-cell multi-omics data, we show that an SAE can uncover key biological processes such as carbon dioxide transport and ion homeostasis, which are crucial for red blood cell differentiation and immune function. Our findings highlight how SAEs can be used in advancing interpretability in biological and other scientific domains.
GPT Can Solve Mathematical Problems Without a Calculator
Previous studies have typically assumed that large language models are unable to accurately perform arithmetic operations, particularly multiplication of >8 digits, and operations involving decimals and fractions, without the use of calculator tools. This paper aims to challenge this misconception. With sufficient training data, a 2 billion-parameter language model can accurately perform multi-digit arithmetic operations with almost 100% accuracy without data leakage, significantly surpassing GPT-4 (whose multi-digit multiplication accuracy is only 4.3%). We also demonstrate that our MathGLM, fine-tuned from GLM-10B on a dataset with additional multi-step arithmetic operations and math problems described in text, achieves similar performance to GPT-4 on a 5,000-samples Chinese math problem test set.
Encode, Think, Decode: Scaling test-time reasoning with recursive latent thoughts
Most efforts to improve the reasoning capabilities of large language models (LLMs) involve either scaling the number of parameters and the size of training data, or scaling inference computation by letting models generate complex chains of thought. Motivated by interpretability studies showing that the crucial computation required for reasoning tasks is concentrated in a limited range of layers, we introduce Encode-Think-Decode (ETD), a method that enhances the reasoning capabilities of a base model by training it to iterate over a small subset of reasoning-relevant layers during the mid-training stage. ETD amplifies latent reasoning while preserving the original architecture, parameter count, hyperparameters, and training data composition. When iterating on the selected layers at inference time, ETD models yield substantial gains on 17 reasoning benchmarks, including +28.4% relative accuracy improvement on GSM8K and +36% on MATH with the OLMo-2 1B Base model. We also explore an adaptive depth strategy that adjusts the computation per input token. Our results show that recursive latent reasoning offers a simple and effective path to stronger LLM reasoning.
Understanding and Improving Adversarial Attacks on Latent Diffusion Model
Latent Diffusion Model (LDM) achieves state-of-the-art performances in image generation yet raising copyright and privacy concerns. Adversarial attacks on LDM are then born to protect unauthorized images from being used in LDM-driven few-shot generation. However, these attacks suffer from moderate performance and excessive computational cost, especially in GPU memory. In this paper, we propose an effective adversarial attack on LDM that shows superior performance against state-of-the-art few-shot generation pipeline of LDM, for example, LoRA. We implement the attack with memory efficiency by introducing several mechanisms and decrease the memory cost of the attack to less than 6GB, which allows individual users to run the attack on a majority of consumer GPUs. Our proposed attack can be a practical tool for people facing the copyright and privacy risk brought by LDM to protect themselves.
IGC: Integrating a Gated Calculator into an LLM to Solve Arithmetic Tasks Reliably and Efficiently
Solving arithmetic tasks is a simple and fundamental skill, yet modern Large Language Models (LLMs) have great difficulty with them. We introduce the Integrated Gated Calculator (IGC), a module that enables LLMs to perform arithmetic by emulating a calculator on the GPU. We finetune a Llama model with our module and test it on the BigBench Arithmetic benchmark, where it beats the State of the Art, outperforming all models on the benchmark, including models almost two orders of magnitude larger. Our approach takes only a single iteration to run and requires no external tools. It performs arithmetic operations entirely inside the LLM without the need to produce intermediate tokens. It is computationally efficient, interpretable, and avoids side-effects on tasks that do not require arithmetic operations. It reliably achieves 98\% to 99\% accuracy across multiple training runs and for all subtasks, including the substantially harder subtask of multiplication, which was previously unsolved.
Implicit Reasoning in Large Language Models: A Comprehensive Survey
Large Language Models (LLMs) have demonstrated strong generalization across a wide range of tasks. Reasoning with LLMs is central to solving multi-step problems and complex decision-making. To support efficient reasoning, recent studies have shifted attention from explicit chain-of-thought prompting toward implicit reasoning, where reasoning occurs silently via latent structures without emitting intermediate textual steps. Implicit reasoning brings advantages such as lower generation cost, faster inference, and better alignment with internal computation. Although prior surveys have discussed latent representations in the context of reasoning, a dedicated and mechanism-level examination of how reasoning unfolds internally within LLMs remains absent. This survey fills that gap by introducing a taxonomy centered on execution paradigms, shifting the focus from representational forms to computational strategies. We organize existing methods into three execution paradigms based on \textit{how and where internal computation unfolds}: latent optimization, signal-guided control, and layer-recurrent execution. We also review structural, behavioral and representation-based evidence that supports the presence of implicit reasoning in LLMs. We further provide a structured overview of the evaluation metrics and benchmarks used in existing works to assess the effectiveness and reliability of implicit reasoning. We maintain a continuously updated project at: https://github.com/digailab/awesome-llm-implicit-reasoning.
LTA-thinker: Latent Thought-Augmented Training Framework for Large Language Models on Complex Reasoning
Complex Reasoning in Large Language Models can be dynamically optimized using Test-Time Scaling (TTS) to mitigate Overthinking. Methods such as Coconut, SoftCoT and its variant are effective in continuous latent space inference, the core bottleneck still lies in the efficient generation and utilization of high-quality Latent Thought. Drawing from the theory of SoftCoT++ that a larger variance in the generated Latent Thought distribution more closely approximates the golden truth distribution, we propose a Latent Thought-Augmented Training Framework--LTA-Thinker, which improves distributional variance and enhances reasoning performance from two perspectives. First, LTA-Thinker constructs a Latent Thought generation architecture based on a learnable prior. This architecture aims to increase the variance distribution of generated Latent Thought Vectors in order to simplify the overall structure and raise the performance ceiling. Second, LTA-Thinker introduces a distribution-based directional optimization paradigm that jointly constrains both distribution locality and distribution scale. This mechanism improves information efficiency and computational cost through a multi-objective co-training strategy, which combines standard Supervised Fine-Tuning (SFT) loss with two novel losses: Semantic Alignment Loss, which utilizes KL divergence to ensure that the Latent Thought is highly relevant to the semantics of the question; Reasoning Focus Loss, which utilizes a contrastive learning mechanism to guide the model to focus on the most critical reasoning steps. Experiments show that LTA-thinker achieves state-of-the-art (SOTA) performance among various baselines and demonstrates a higher performance ceiling and better scaling effects.
Solving High-Dimensional PDEs with Latent Spectral Models
Deep models have achieved impressive progress in solving partial differential equations (PDEs). A burgeoning paradigm is learning neural operators to approximate the input-output mappings of PDEs. While previous deep models have explored the multiscale architectures and various operator designs, they are limited to learning the operators as a whole in the coordinate space. In real physical science problems, PDEs are complex coupled equations with numerical solvers relying on discretization into high-dimensional coordinate space, which cannot be precisely approximated by a single operator nor efficiently learned due to the curse of dimensionality. We present Latent Spectral Models (LSM) toward an efficient and precise solver for high-dimensional PDEs. Going beyond the coordinate space, LSM enables an attention-based hierarchical projection network to reduce the high-dimensional data into a compact latent space in linear time. Inspired by classical spectral methods in numerical analysis, we design a neural spectral block to solve PDEs in the latent space that approximates complex input-output mappings via learning multiple basis operators, enjoying nice theoretical guarantees for convergence and approximation. Experimentally, LSM achieves consistent state-of-the-art and yields a relative gain of 11.5% averaged on seven benchmarks covering both solid and fluid physics. Code is available at https://github.com/thuml/Latent-Spectral-Models.
Small Language Models are Equation Reasoners
Chain-of-Thought (CoT) reasoning has enabled Large Language Model (LLM) to achieve remarkable performance in various NLP tasks, including arithmetic problem-solving. However, this success does not generalize to small language model (sLM) like T5, due to their limited capacity and absence of emergent abilities associated with larger models. Recent works to enhance sLM through knowledge distillation have yielded some improvements but still face significant limitations, particularly high ambiguity from the variability in natural language expressions and substantial computational costs. In this paper, we investigate why sLM perform poorly on arithmetic reasoning tasks and hypothesize that natural language format variability introduces high ambiguity for these smaller models. Based on this hypothesis, we conduct experiments with equation-only format, which is a reasoning format that unifies arithmetic reasoning previously expressed in natural language formats into mathematical equations. Experiment results demonstrate that equation-only format effectively boosts the arithmetic reasoning abilities of sLM, especially in very small models like T5-Tiny.
On the Statistical Capacity of Deep Generative Models
Deep generative models are routinely used in generating samples from complex, high-dimensional distributions. Despite their apparent successes, their statistical properties are not well understood. A common assumption is that with enough training data and sufficiently large neural networks, deep generative model samples will have arbitrarily small errors in sampling from any continuous target distribution. We set up a unifying framework that debunks this belief. We demonstrate that broad classes of deep generative models, including variational autoencoders and generative adversarial networks, are not universal generators. Under the predominant case of Gaussian latent variables, these models can only generate concentrated samples that exhibit light tails. Using tools from concentration of measure and convex geometry, we give analogous results for more general log-concave and strongly log-concave latent variable distributions. We extend our results to diffusion models via a reduction argument. We use the Gromov--Levy inequality to give similar guarantees when the latent variables lie on manifolds with positive Ricci curvature. These results shed light on the limited capacity of common deep generative models to handle heavy tails. We illustrate the empirical relevance of our work with simulations and financial data.
Task Arithmetic in the Tangent Space: Improved Editing of Pre-Trained Models
Task arithmetic has recently emerged as a cost-effective and scalable approach to edit pre-trained models directly in weight space: By adding the fine-tuned weights of different tasks, the model's performance can be improved on these tasks, while negating them leads to task forgetting. Yet, our understanding of the effectiveness of task arithmetic and its underlying principles remains limited. We present a comprehensive study of task arithmetic in vision-language models and show that weight disentanglement is the crucial factor that makes it effective. This property arises during pre-training and manifests when distinct directions in weight space govern separate, localized regions in function space associated with the tasks. Notably, we show that fine-tuning models in their tangent space by linearizing them amplifies weight disentanglement. This leads to substantial performance improvements across multiple task arithmetic benchmarks and diverse models. Building on these findings, we provide theoretical and empirical analyses of the neural tangent kernel (NTK) of these models and establish a compelling link between task arithmetic and the spatial localization of the NTK eigenfunctions. Overall, our work uncovers novel insights into the fundamental mechanisms of task arithmetic and offers a more reliable and effective approach to edit pre-trained models through the NTK linearization.
Train Sparse Autoencoders Efficiently by Utilizing Features Correlation
Sparse Autoencoders (SAEs) have demonstrated significant promise in interpreting the hidden states of language models by decomposing them into interpretable latent directions. However, training SAEs at scale remains challenging, especially when large dictionary sizes are used. While decoders can leverage sparse-aware kernels for efficiency, encoders still require computationally intensive linear operations with large output dimensions. To address this, we propose KronSAE, a novel architecture that factorizes the latent representation via Kronecker product decomposition, drastically reducing memory and computational overhead. Furthermore, we introduce mAND, a differentiable activation function approximating the binary AND operation, which improves interpretability and performance in our factorized framework.
How Do Transformers Learn Topic Structure: Towards a Mechanistic Understanding
While the successes of transformers across many domains are indisputable, accurate understanding of the learning mechanics is still largely lacking. Their capabilities have been probed on benchmarks which include a variety of structured and reasoning tasks -- but mathematical understanding is lagging substantially behind. Recent lines of work have begun studying representational aspects of this question: that is, the size/depth/complexity of attention-based networks to perform certain tasks. However, there is no guarantee the learning dynamics will converge to the constructions proposed. In our paper, we provide fine-grained mechanistic understanding of how transformers learn "semantic structure", understood as capturing co-occurrence structure of words. Precisely, we show, through a combination of experiments on synthetic data modeled by Latent Dirichlet Allocation (LDA), Wikipedia data, and mathematical analysis that the embedding layer and the self-attention layer encode the topical structure. In the former case, this manifests as higher average inner product of embeddings between same-topic words. In the latter, it manifests as higher average pairwise attention between same-topic words. The mathematical results involve several assumptions to make the analysis tractable, which we verify on data, and might be of independent interest as well.
Teaching Algorithmic Reasoning via In-context Learning
Large language models (LLMs) have shown increasing in-context learning capabilities through scaling up model and data size. Despite this progress, LLMs are still unable to solve algorithmic reasoning problems. While providing a rationale with the final answer has led to further improvements in multi-step reasoning problems, Anil et al. 2022 showed that even simple algorithmic reasoning tasks such as parity are far from solved. In this work, we identify and study four key stages for successfully teaching algorithmic reasoning to LLMs: (1) formulating algorithms as skills, (2) teaching multiple skills simultaneously (skill accumulation), (3) teaching how to combine skills (skill composition) and (4) teaching how to use skills as tools. We show that it is possible to teach algorithmic reasoning to LLMs via in-context learning, which we refer to as algorithmic prompting. We evaluate our approach on a variety of arithmetic and quantitative reasoning tasks, and demonstrate significant boosts in performance over existing prompting techniques. In particular, for long parity, addition, multiplication and subtraction, we achieve an error reduction of approximately 10x, 9x, 5x and 2x respectively compared to the best available baselines.
Positional Description Matters for Transformers Arithmetic
Transformers, central to the successes in modern Natural Language Processing, often falter on arithmetic tasks despite their vast capabilities --which paradoxically include remarkable coding abilities. We observe that a crucial challenge is their naive reliance on positional information to solve arithmetic problems with a small number of digits, leading to poor performance on larger numbers. Herein, we delve deeper into the role of positional encoding, and propose several ways to fix the issue, either by modifying the positional encoding directly, or by modifying the representation of the arithmetic task to leverage standard positional encoding differently. We investigate the value of these modifications for three tasks: (i) classical multiplication, (ii) length extrapolation in addition, and (iii) addition in natural language context. For (i) we train a small model on a small dataset (100M parameters and 300k samples) with remarkable aptitude in (direct, no scratchpad) 15 digits multiplication and essentially perfect up to 12 digits, while usual training in this context would give a model failing at 4 digits multiplication. In the experiments on addition, we use a mere 120k samples to demonstrate: for (ii) extrapolation from 10 digits to testing on 12 digits numbers while usual training would have no extrapolation, and for (iii) almost perfect accuracy up to 5 digits while usual training would be correct only up to 3 digits (which is essentially memorization with a training set of 120k samples).
Gradient Origin Networks
This paper proposes a new type of generative model that is able to quickly learn a latent representation without an encoder. This is achieved using empirical Bayes to calculate the expectation of the posterior, which is implemented by initialising a latent vector with zeros, then using the gradient of the log-likelihood of the data with respect to this zero vector as new latent points. The approach has similar characteristics to autoencoders, but with a simpler architecture, and is demonstrated in a variational autoencoder equivalent that permits sampling. This also allows implicit representation networks to learn a space of implicit functions without requiring a hypernetwork, retaining their representation advantages across datasets. The experiments show that the proposed method converges faster, with significantly lower reconstruction error than autoencoders, while requiring half the parameters.
Forward χ^2 Divergence Based Variational Importance Sampling
Maximizing the log-likelihood is a crucial aspect of learning latent variable models, and variational inference (VI) stands as the commonly adopted method. However, VI can encounter challenges in achieving a high log-likelihood when dealing with complicated posterior distributions. In response to this limitation, we introduce a novel variational importance sampling (VIS) approach that directly estimates and maximizes the log-likelihood. VIS leverages the optimal proposal distribution, achieved by minimizing the forward chi^2 divergence, to enhance log-likelihood estimation. We apply VIS to various popular latent variable models, including mixture models, variational auto-encoders, and partially observable generalized linear models. Results demonstrate that our approach consistently outperforms state-of-the-art baselines, both in terms of log-likelihood and model parameter estimation.
Language Models Do Hard Arithmetic Tasks Easily and Hardly Do Easy Arithmetic Tasks
The ability (and inability) of large language models (LLMs) to perform arithmetic tasks has been the subject of much theoretical and practical debate. We show that LLMs are frequently able to correctly and confidently predict the first digit of n-digit by m-digit multiplication tasks without using chain of thought reasoning, despite these tasks require compounding operations to solve. Simultaneously, LLMs in practice often fail to correctly or confidently predict the last digit of an n-digit by m-digit multiplication, a task equivalent to 1-digit by 1-digit multiplication which can be easily learned or memorized. We show that the latter task can be solved more robustly when the LLM is conditioned on all of the correct higher-order digits, which on average increases the confidence of the correct last digit on 5-digit by 5-digit multiplication tasks using Llama 2-13B by over 230% (0.13 to 0.43) and Mistral-7B by 150% (0.22 to 0.55).
MathPrompter: Mathematical Reasoning using Large Language Models
Large Language Models (LLMs) have limited performance when solving arithmetic reasoning tasks and often provide incorrect answers. Unlike natural language understanding, math problems typically have a single correct answer, making the task of generating accurate solutions more challenging for LLMs. To the best of our knowledge, we are not aware of any LLMs that indicate their level of confidence in their responses which fuels a trust deficit in these models impeding their adoption. To address this deficiency, we propose `MathPrompter', a technique that improves performance of LLMs on arithmetic problems along with increased reliance in the predictions. MathPrompter uses the Zero-shot chain-of-thought prompting technique to generate multiple Algebraic expressions or Python functions to solve the same math problem in different ways and thereby raise the confidence level in the output results. This is in contrast to other prompt based CoT methods, where there is no check on the validity of the intermediate steps followed. Our technique improves over state-of-the-art on the MultiArith dataset (78.7%rightarrow92.5%) evaluated using 175B parameter GPT-based LLM.
LatentEvolve: Self-Evolving Test-Time Scaling in Latent Space
Test-time Scaling (TTS) has been demonstrated to significantly enhance the reasoning capabilities of Large Language Models (LLMs) during the inference phase without altering model parameters. However, existing TTS methods are largely independent, implying that LLMs have not yet evolved to progressively learn how to scale more effectively. With the objective of evolving LLMs to learn ``how to scale test-time computation,'' we propose LatentEvolve, a self-evolving latent TTS framework inspired by the complementary learning system (CLS) theory. Analogous to the human brain's dual system of a fast-recall hippocampus and a slow-consolidating neocortex, LatentEvolve comprises two evolutionary components: daytime scaling, which rapidly retrieves historical latent representations to better guide current LLM reasoning; and nighttime scaling, which integrates past latent optimizations in a manner akin to the human brain's consolidation of experiences during sleep. The alternation of daytime and nighttime processes facilitates a fast and slow evolution of LLM TTS, mirroring human cognitive dynamics in a fully unsupervised manner. Extensive experiments across eight benchmarks and five model backbones demonstrate that our LatentEvolve surpasses state-of-the-art TTS methods such as LatentSeek and TTRL by up to 13.33% and exhibits exceptional cross-domain and cross-backbone generalization.
DisCo-Diff: Enhancing Continuous Diffusion Models with Discrete Latents
Diffusion models (DMs) have revolutionized generative learning. They utilize a diffusion process to encode data into a simple Gaussian distribution. However, encoding a complex, potentially multimodal data distribution into a single continuous Gaussian distribution arguably represents an unnecessarily challenging learning problem. We propose Discrete-Continuous Latent Variable Diffusion Models (DisCo-Diff) to simplify this task by introducing complementary discrete latent variables. We augment DMs with learnable discrete latents, inferred with an encoder, and train DM and encoder end-to-end. DisCo-Diff does not rely on pre-trained networks, making the framework universally applicable. The discrete latents significantly simplify learning the DM's complex noise-to-data mapping by reducing the curvature of the DM's generative ODE. An additional autoregressive transformer models the distribution of the discrete latents, a simple step because DisCo-Diff requires only few discrete variables with small codebooks. We validate DisCo-Diff on toy data, several image synthesis tasks as well as molecular docking, and find that introducing discrete latents consistently improves model performance. For example, DisCo-Diff achieves state-of-the-art FID scores on class-conditioned ImageNet-64/128 datasets with ODE sampler.
Efficient Quantization Strategies for Latent Diffusion Models
Latent Diffusion Models (LDMs) capture the dynamic evolution of latent variables over time, blending patterns and multimodality in a generative system. Despite the proficiency of LDM in various applications, such as text-to-image generation, facilitated by robust text encoders and a variational autoencoder, the critical need to deploy large generative models on edge devices compels a search for more compact yet effective alternatives. Post Training Quantization (PTQ), a method to compress the operational size of deep learning models, encounters challenges when applied to LDM due to temporal and structural complexities. This study proposes a quantization strategy that efficiently quantize LDMs, leveraging Signal-to-Quantization-Noise Ratio (SQNR) as a pivotal metric for evaluation. By treating the quantization discrepancy as relative noise and identifying sensitive part(s) of a model, we propose an efficient quantization approach encompassing both global and local strategies. The global quantization process mitigates relative quantization noise by initiating higher-precision quantization on sensitive blocks, while local treatments address specific challenges in quantization-sensitive and time-sensitive modules. The outcomes of our experiments reveal that the implementation of both global and local treatments yields a highly efficient and effective Post Training Quantization (PTQ) of LDMs.
Scaling Up Probabilistic Circuits by Latent Variable Distillation
Probabilistic Circuits (PCs) are a unified framework for tractable probabilistic models that support efficient computation of various probabilistic queries (e.g., marginal probabilities). One key challenge is to scale PCs to model large and high-dimensional real-world datasets: we observe that as the number of parameters in PCs increases, their performance immediately plateaus. This phenomenon suggests that the existing optimizers fail to exploit the full expressive power of large PCs. We propose to overcome such bottleneck by latent variable distillation: we leverage the less tractable but more expressive deep generative models to provide extra supervision over the latent variables of PCs. Specifically, we extract information from Transformer-based generative models to assign values to latent variables of PCs, providing guidance to PC optimizers. Experiments on both image and language modeling benchmarks (e.g., ImageNet and WikiText-2) show that latent variable distillation substantially boosts the performance of large PCs compared to their counterparts without latent variable distillation. In particular, on the image modeling benchmarks, PCs achieve competitive performance against some of the widely-used deep generative models, including variational autoencoders and flow-based models, opening up new avenues for tractable generative modeling.
All for One: LLMs Solve Mental Math at the Last Token With Information Transferred From Other Tokens
Large language models (LLMs) demonstrate proficiency across numerous computational tasks, yet their inner workings remain unclear. In theory, the combination of causal self-attention and multilayer perceptron layers allows every token to access and compute information based on all preceding tokens. In practice, to what extent are such operations present? In this paper, on mental math tasks (i.e., direct math calculation via next-token prediction without explicit reasoning), we investigate this question in three steps: inhibiting input-specific token computations in the initial layers, restricting the routes of information transfer across token positions in the next few layers, and forcing all computation to happen at the last token in the remaining layers. With two proposed techniques, Context-Aware Mean Ablation (CAMA) and Attention-Based Peeking (ABP), we identify an All-for-One subgraph (AF1) with high accuracy on a wide variety of mental math tasks, where meaningful computation occurs very late (in terms of layer depth) and only at the last token, which receives information of other tokens in few specific middle layers. Experiments on a variety of models and arithmetic expressions show that this subgraph is sufficient and necessary for high model performance, transfers across different models, and works on a variety of input styles. Ablations on different CAMA and ABP alternatives reveal their unique advantages over other methods, which may be of independent interest.
Discovering Hierarchical Latent Capabilities of Language Models via Causal Representation Learning
Faithful evaluation of language model capabilities is crucial for deriving actionable insights that can inform model development. However, rigorous causal evaluations in this domain face significant methodological challenges, including complex confounding effects and prohibitive computational costs associated with extensive retraining. To tackle these challenges, we propose a causal representation learning framework wherein observed benchmark performance is modeled as a linear transformation of a few latent capability factors. Crucially, these latent factors are identified as causally interrelated after appropriately controlling for the base model as a common confounder. Applying this approach to a comprehensive dataset encompassing over 1500 models evaluated across six benchmarks from the Open LLM Leaderboard, we identify a concise three-node linear causal structure that reliably explains the observed performance variations. Further interpretation of this causal structure provides substantial scientific insights beyond simple numerical rankings: specifically, we reveal a clear causal direction starting from general problem-solving capabilities, advancing through instruction-following proficiency, and culminating in mathematical reasoning ability. Our results underscore the essential role of carefully controlling base model variations during evaluation, a step critical to accurately uncovering the underlying causal relationships among latent model capabilities.
Inference-Time Decomposition of Activations (ITDA): A Scalable Approach to Interpreting Large Language Models
Sparse autoencoders (SAEs) are a popular method for decomposing Large Langage Models (LLM) activations into interpretable latents. However, due to their substantial training cost, most academic research uses open-source SAEs which are only available for a restricted set of models of up to 27B parameters. SAE latents are also learned from a dataset of activations, which means they do not transfer between models. Motivated by relative representation similarity measures, we introduce Inference-Time Decomposition of Activations (ITDA) models, an alternative method for decomposing language model activations. To train an ITDA, we greedily construct a dictionary of language model activations on a dataset of prompts, selecting those activations which were worst approximated by matching pursuit on the existing dictionary. ITDAs can be trained in just 1% of the time required for SAEs, using 1% of the data. This allowed us to train ITDAs on Llama-3.1 70B and 405B on a single consumer GPU. ITDAs can achieve similar reconstruction performance to SAEs on some target LLMs, but generally incur a performance penalty. However, ITDA dictionaries enable cross-model comparisons, and a simple Jaccard similarity index on ITDA dictionaries outperforms existing methods like CKA, SVCCA, and relative representation similarity metrics. ITDAs provide a cheap alternative to SAEs where computational resources are limited, or when cross model comparisons are necessary. Code available at https://github.com/pleask/itda.
Loopholing Discrete Diffusion: Deterministic Bypass of the Sampling Wall
Discrete diffusion models offer a promising alternative to autoregressive generation through parallel decoding, but they suffer from a sampling wall: once categorical sampling occurs, rich distributional information collapses into one-hot vectors and cannot be propagated across steps, forcing subsequent steps to operate with limited information. To mitigate this problem, we introduce Loopholing, a novel and simple mechanism that preserves this information via a deterministic latent pathway, leading to Loopholing Discrete Diffusion Models (LDDMs). Trained efficiently with a self-conditioning strategy, LDDMs achieve substantial gains-reducing generative perplexity by up to 61% over prior baselines, closing (and in some cases surpassing) the gap with autoregressive models, and producing more coherent text. Applied to reasoning tasks, LDDMs also improve performance on arithmetic benchmarks such as Countdown and Game of 24. These results also indicate that loopholing mitigates idle steps and oscillations, providing a scalable path toward high-quality non-autoregressive text generation.
Beyond Surface Statistics: Scene Representations in a Latent Diffusion Model
Latent diffusion models (LDMs) exhibit an impressive ability to produce realistic images, yet the inner workings of these models remain mysterious. Even when trained purely on images without explicit depth information, they typically output coherent pictures of 3D scenes. In this work, we investigate a basic interpretability question: does an LDM create and use an internal representation of simple scene geometry? Using linear probes, we find evidence that the internal activations of the LDM encode linear representations of both 3D depth data and a salient-object / background distinction. These representations appear surprisingly early in the denoising process-well before a human can easily make sense of the noisy images. Intervention experiments further indicate these representations play a causal role in image synthesis, and may be used for simple high-level editing of an LDM's output. Project page: https://yc015.github.io/scene-representation-diffusion-model/
ChatGPT as a Math Questioner? Evaluating ChatGPT on Generating Pre-university Math Questions
Mathematical questioning is crucial for assessing students problem-solving skills. Since manually creating such questions requires substantial effort, automatic methods have been explored. Existing state-of-the-art models rely on fine-tuning strategies and struggle to generate questions that heavily involve multiple steps of logical and arithmetic reasoning. Meanwhile, large language models(LLMs) such as ChatGPT have excelled in many NLP tasks involving logical and arithmetic reasoning. Nonetheless, their applications in generating educational questions are underutilized, especially in the field of mathematics. To bridge this gap, we take the first step to conduct an in-depth analysis of ChatGPT in generating pre-university math questions. Our analysis is categorized into two main settings: context-aware and context-unaware. In the context-aware setting, we evaluate ChatGPT on existing math question-answering benchmarks covering elementary, secondary, and ternary classes. In the context-unaware setting, we evaluate ChatGPT in generating math questions for each lesson from pre-university math curriculums that we crawl. Our crawling results in TopicMath, a comprehensive and novel collection of pre-university math curriculums collected from 121 math topics and 428 lessons from elementary, secondary, and tertiary classes. Through this analysis, we aim to provide insight into the potential of ChatGPT as a math questioner.
A Novel Predictive-Coding-Inspired Variational RNN Model for Online Prediction and Recognition
This study introduces PV-RNN, a novel variational RNN inspired by the predictive-coding ideas. The model learns to extract the probabilistic structures hidden in fluctuating temporal patterns by dynamically changing the stochasticity of its latent states. Its architecture attempts to address two major concerns of variational Bayes RNNs: how can latent variables learn meaningful representations and how can the inference model transfer future observations to the latent variables. PV-RNN does both by introducing adaptive vectors mirroring the training data, whose values can then be adapted differently during evaluation. Moreover, prediction errors during backpropagation, rather than external inputs during the forward computation, are used to convey information to the network about the external data. For testing, we introduce error regression for predicting unseen sequences as inspired by predictive coding that leverages those mechanisms. The model introduces a weighting parameter, the meta-prior, to balance the optimization pressure placed on two terms of a lower bound on the marginal likelihood of the sequential data. We test the model on two datasets with probabilistic structures and show that with high values of the meta-prior the network develops deterministic chaos through which the data's randomness is imitated. For low values, the model behaves as a random process. The network performs best on intermediate values, and is able to capture the latent probabilistic structure with good generalization. Analyzing the meta-prior's impact on the network allows to precisely study the theoretical value and practical benefits of incorporating stochastic dynamics in our model. We demonstrate better prediction performance on a robot imitation task with our model using error regression compared to a standard variational Bayes model lacking such a procedure.
Do PhD-level LLMs Truly Grasp Elementary Addition? Probing Rule Learning vs. Memorization in Large Language Models
Despite high benchmark scores, Large Language Models (LLMs) often fail simple problem, raising a critical question: Do LLMs learn mathematical principles or merely memorize patterns? Rather than designing increasingly complex benchmarks like recent works, we investigate this using elementary two-integer addition (0 to 2^{64}), probing two core properties: commutativity (A+B=B+A) and compositional generalization (via isomorphic symbolic mappings, e.g., 7 rightarrow y). While state-of-the-art LLMs achieve 73.8-99.8\% accuracy on numerical addition, performance collapses to leq7.5\% under symbolic mapping, indicating failure to generalize learned rules. Non-monotonic performance scaling with digit count and frequent commutativity violations (over 1,700 cases of A+B neq B+A) further support this. Explicitly providing addition rules degrades performance by 81.2\% on average, while self-explanation maintains baseline accuracy, suggesting LLM arithmetic processing is misaligned with human-defined principles. Our findings indicate current LLMs rely on memory pattern over genuine rule learning, highlighting architectural limitations and the need for new approaches to achieve true mathematical reasoning.
Interpreting Arithmetic Mechanism in Large Language Models through Comparative Neuron Analysis
We find arithmetic ability resides within a limited number of attention heads, with each head specializing in distinct operations. To delve into the reason, we introduce the Comparative Neuron Analysis (CNA) method, which identifies an internal logic chain consisting of four distinct stages from input to prediction: feature enhancing with shallow FFN neurons, feature transferring by shallow attention layers, feature predicting by arithmetic heads, and prediction enhancing among deep FFN neurons. Moreover, we identify the human-interpretable FFN neurons within both feature-enhancing and feature-predicting stages. These findings lead us to investigate the mechanism of LoRA, revealing that it enhances prediction probabilities by amplifying the coefficient scores of FFN neurons related to predictions. Finally, we apply our method in model pruning for arithmetic tasks and model editing for reducing gender bias. Code is on https://github.com/zepingyu0512/arithmetic-mechanism.
Identifiable Latent Polynomial Causal Models Through the Lens of Change
Causal representation learning aims to unveil latent high-level causal representations from observed low-level data. One of its primary tasks is to provide reliable assurance of identifying these latent causal models, known as identifiability. A recent breakthrough explores identifiability by leveraging the change of causal influences among latent causal variables across multiple environments liu2022identifying. However, this progress rests on the assumption that the causal relationships among latent causal variables adhere strictly to linear Gaussian models. In this paper, we extend the scope of latent causal models to involve nonlinear causal relationships, represented by polynomial models, and general noise distributions conforming to the exponential family. Additionally, we investigate the necessity of imposing changes on all causal parameters and present partial identifiability results when part of them remains unchanged. Further, we propose a novel empirical estimation method, grounded in our theoretical finding, that enables learning consistent latent causal representations. Our experimental results, obtained from both synthetic and real-world data, validate our theoretical contributions concerning identifiability and consistency.
Number Cookbook: Number Understanding of Language Models and How to Improve It
Large language models (LLMs) can solve an increasing number of complex reasoning tasks while making surprising mistakes in basic numerical understanding and processing (such as 9.11 > 9.9). The latter ability is essential for tackling complex arithmetic and mathematical problems and serves as a foundation for most reasoning tasks, but previous work paid little attention to it or only discussed several restricted tasks (like integer addition). In this paper, we comprehensively investigate the numerical understanding and processing ability (NUPA) of LLMs. Firstly, we introduce a benchmark covering four common numerical representations and 17 distinct numerical tasks in four major categories, resulting in 41 meaningful combinations in total. These tasks are derived from primary and secondary education curricula, encompassing nearly all everyday numerical understanding and processing scenarios, and the rules of these tasks are very simple and clear. Through the benchmark, we find that current LLMs fail frequently in many of the tasks. To study the problem, we train small models with existing and potential techniques for enhancing NUPA (such as tokenizers, PEs, and number formats), comprehensively evaluating their effectiveness using our testbed. We also finetune practical-scale LLMs on our proposed NUPA tasks and find that 1) naive finetuning can improve NUPA a lot on many but not all tasks, and 2) surprisingly, techniques designed to enhance NUPA prove ineffective for finetuning pretrained models. We further explore the impact of chain-of-thought techniques on NUPA. Our work provides a more detailed and comprehensive understanding of NUPA in LLMs. Our benchmark and code are released at https://github.com/GraphPKU/number_cookbook.
Smooth Diffusion: Crafting Smooth Latent Spaces in Diffusion Models
Recently, diffusion models have made remarkable progress in text-to-image (T2I) generation, synthesizing images with high fidelity and diverse contents. Despite this advancement, latent space smoothness within diffusion models remains largely unexplored. Smooth latent spaces ensure that a perturbation on an input latent corresponds to a steady change in the output image. This property proves beneficial in downstream tasks, including image interpolation, inversion, and editing. In this work, we expose the non-smoothness of diffusion latent spaces by observing noticeable visual fluctuations resulting from minor latent variations. To tackle this issue, we propose Smooth Diffusion, a new category of diffusion models that can be simultaneously high-performing and smooth. Specifically, we introduce Step-wise Variation Regularization to enforce the proportion between the variations of an arbitrary input latent and that of the output image is a constant at any diffusion training step. In addition, we devise an interpolation standard deviation (ISTD) metric to effectively assess the latent space smoothness of a diffusion model. Extensive quantitative and qualitative experiments demonstrate that Smooth Diffusion stands out as a more desirable solution not only in T2I generation but also across various downstream tasks. Smooth Diffusion is implemented as a plug-and-play Smooth-LoRA to work with various community models. Code is available at https://github.com/SHI-Labs/Smooth-Diffusion.
Disentanglement via Latent Quantization
In disentangled representation learning, a model is asked to tease apart a dataset's underlying sources of variation and represent them independently of one another. Since the model is provided with no ground truth information about these sources, inductive biases take a paramount role in enabling disentanglement. In this work, we construct an inductive bias towards encoding to and decoding from an organized latent space. Concretely, we do this by (i) quantizing the latent space into discrete code vectors with a separate learnable scalar codebook per dimension and (ii) applying strong model regularization via an unusually high weight decay. Intuitively, the latent space design forces the encoder to combinatorially construct codes from a small number of distinct scalar values, which in turn enables the decoder to assign a consistent meaning to each value. Regularization then serves to drive the model towards this parsimonious strategy. We demonstrate the broad applicability of this approach by adding it to both basic data-reconstructing (vanilla autoencoder) and latent-reconstructing (InfoGAN) generative models. For reliable evaluation, we also propose InfoMEC, a new set of metrics for disentanglement that is cohesively grounded in information theory and fixes well-established shortcomings in previous metrics. Together with regularization, latent quantization dramatically improves the modularity and explicitness of learned representations on a representative suite of benchmark datasets. In particular, our quantized-latent autoencoder (QLAE) consistently outperforms strong methods from prior work in these key disentanglement properties without compromising data reconstruction.
A Plug-in Method for Representation Factorization in Connectionist Models
In this article, we focus on decomposing latent representations in generative adversarial networks or learned feature representations in deep autoencoders into semantically controllable factors in a semisupervised manner, without modifying the original trained models. Particularly, we propose factors' decomposer-entangler network (FDEN) that learns to decompose a latent representation into mutually independent factors. Given a latent representation, the proposed framework draws a set of interpretable factors, each aligned to independent factors of variations by minimizing their total correlation in an information-theoretic means. As a plug-in method, we have applied our proposed FDEN to the existing networks of adversarially learned inference and pioneer network and performed computer vision tasks of image-to-image translation in semantic ways, e.g., changing styles, while keeping the identity of a subject, and object classification in a few-shot learning scheme. We have also validated the effectiveness of the proposed method with various ablation studies in the qualitative, quantitative, and statistical examination.
Fuse It More Deeply! A Variational Transformer with Layer-Wise Latent Variable Inference for Text Generation
The past several years have witnessed Variational Auto-Encoder's superiority in various text generation tasks. However, due to the sequential nature of the text, auto-regressive decoders tend to ignore latent variables and then reduce to simple language models, known as the KL vanishing problem, which would further deteriorate when VAE is combined with Transformer-based structures. To ameliorate this problem, we propose DELLA, a novel variational Transformer framework. DELLA learns a series of layer-wise latent variables with each inferred from those of lower layers and tightly coupled with the hidden states by low-rank tensor product. In this way, DELLA forces these posterior latent variables to be fused deeply with the whole computation path and hence incorporate more information. We theoretically demonstrate that our method can be regarded as entangling latent variables to avoid posterior information decrease through layers, enabling DELLA to get higher non-zero KL values even without any annealing or thresholding tricks. Experiments on four unconditional and three conditional generation tasks show that DELLA could better alleviate KL vanishing and improve both quality and diversity compared to several strong baselines.
Causal Discovery with Latent Confounders Based on Higher-Order Cumulants
Causal discovery with latent confounders is an important but challenging task in many scientific areas. Despite the success of some overcomplete independent component analysis (OICA) based methods in certain domains, they are computationally expensive and can easily get stuck into local optima. We notice that interestingly, by making use of higher-order cumulants, there exists a closed-form solution to OICA in specific cases, e.g., when the mixing procedure follows the One-Latent-Component structure. In light of the power of the closed-form solution to OICA corresponding to the One-Latent-Component structure, we formulate a way to estimate the mixing matrix using the higher-order cumulants, and further propose the testable One-Latent-Component condition to identify the latent variables and determine causal orders. By iteratively removing the share identified latent components, we successfully extend the results on the One-Latent-Component structure to the Multi-Latent-Component structure and finally provide a practical and asymptotically correct algorithm to learn the causal structure with latent variables. Experimental results illustrate the asymptotic correctness and effectiveness of the proposed method.
Trajectory Consistency Distillation
Latent Consistency Model (LCM) extends the Consistency Model to the latent space and leverages the guided consistency distillation technique to achieve impressive performance in accelerating text-to-image synthesis. However, we observed that LCM struggles to generate images with both clarity and detailed intricacy. To address this limitation, we initially delve into and elucidate the underlying causes. Our investigation identifies that the primary issue stems from errors in three distinct areas. Consequently, we introduce Trajectory Consistency Distillation (TCD), which encompasses trajectory consistency function and strategic stochastic sampling. The trajectory consistency function diminishes the distillation errors by broadening the scope of the self-consistency boundary condition and endowing the TCD with the ability to accurately trace the entire trajectory of the Probability Flow ODE. Additionally, strategic stochastic sampling is specifically designed to circumvent the accumulated errors inherent in multi-step consistency sampling, which is meticulously tailored to complement the TCD model. Experiments demonstrate that TCD not only significantly enhances image quality at low NFEs but also yields more detailed results compared to the teacher model at high NFEs.
Math-PUMA: Progressive Upward Multimodal Alignment to Enhance Mathematical Reasoning
Multimodal Large Language Models (MLLMs) excel in solving text-based mathematical problems, but they struggle with mathematical diagrams since they are primarily trained on natural scene images. For humans, visual aids generally enhance problem-solving, but MLLMs perform worse as information shifts from textual to visual modality. This decline is mainly due to their shortcomings in aligning images and text. To tackle aforementioned challenges, we propose Math-PUMA, a methodology focused on Progressive Upward Multimodal Alignment. This approach is designed to improve the mathematical reasoning skills of MLLMs through a three-stage training process, with the second stage being the critical alignment stage. We first enhance the language model's mathematical reasoning capabilities with extensive set of textual mathematical problems. We then construct a multimodal dataset with varying degrees of textual and visual information, creating data pairs by presenting each problem in at least two forms. By leveraging the Kullback-Leibler (KL) divergence of next-token prediction distributions to align visual and textual modalities, consistent problem-solving abilities are ensured. Finally, we utilize multimodal instruction tuning for MLLMs with high-quality multimodal data. Experimental results on multiple mathematical reasoning benchmarks demonstrate that the MLLMs trained with Math-PUMA surpass most open-source MLLMs. Our approach effectively narrows the performance gap for problems presented in different modalities. The code and data are available at: https://github.com/wwzhuang01/Math-PUMA.
DiffuseVAE: Efficient, Controllable and High-Fidelity Generation from Low-Dimensional Latents
Diffusion probabilistic models have been shown to generate state-of-the-art results on several competitive image synthesis benchmarks but lack a low-dimensional, interpretable latent space, and are slow at generation. On the other hand, standard Variational Autoencoders (VAEs) typically have access to a low-dimensional latent space but exhibit poor sample quality. We present DiffuseVAE, a novel generative framework that integrates VAE within a diffusion model framework, and leverage this to design novel conditional parameterizations for diffusion models. We show that the resulting model equips diffusion models with a low-dimensional VAE inferred latent code which can be used for downstream tasks like controllable synthesis. The proposed method also improves upon the speed vs quality tradeoff exhibited in standard unconditional DDPM/DDIM models (for instance, FID of 16.47 vs 34.36 using a standard DDIM on the CelebA-HQ-128 benchmark using T=10 reverse process steps) without having explicitly trained for such an objective. Furthermore, the proposed model exhibits synthesis quality comparable to state-of-the-art models on standard image synthesis benchmarks like CIFAR-10 and CelebA-64 while outperforming most existing VAE-based methods. Lastly, we show that the proposed method exhibits inherent generalization to different types of noise in the conditioning signal. For reproducibility, our source code is publicly available at https://github.com/kpandey008/DiffuseVAE.
Differentiable Causal Discovery For Latent Hierarchical Causal Models
Discovering causal structures with latent variables from observational data is a fundamental challenge in causal discovery. Existing methods often rely on constraint-based, iterative discrete searches, limiting their scalability to large numbers of variables. Moreover, these methods frequently assume linearity or invertibility, restricting their applicability to real-world scenarios. We present new theoretical results on the identifiability of nonlinear latent hierarchical causal models, relaxing previous assumptions in literature about the deterministic nature of latent variables and exogenous noise. Building on these insights, we develop a novel differentiable causal discovery algorithm that efficiently estimates the structure of such models. To the best of our knowledge, this is the first work to propose a differentiable causal discovery method for nonlinear latent hierarchical models. Our approach outperforms existing methods in both accuracy and scalability. We demonstrate its practical utility by learning interpretable hierarchical latent structures from high-dimensional image data and demonstrate its effectiveness on downstream tasks.
A Probabilistic End-To-End Task-Oriented Dialog Model with Latent Belief States towards Semi-Supervised Learning
Structured belief states are crucial for user goal tracking and database query in task-oriented dialog systems. However, training belief trackers often requires expensive turn-level annotations of every user utterance. In this paper we aim at alleviating the reliance on belief state labels in building end-to-end dialog systems, by leveraging unlabeled dialog data towards semi-supervised learning. We propose a probabilistic dialog model, called the LAtent BElief State (LABES) model, where belief states are represented as discrete latent variables and jointly modeled with system responses given user inputs. Such latent variable modeling enables us to develop semi-supervised learning under the principled variational learning framework. Furthermore, we introduce LABES-S2S, which is a copy-augmented Seq2Seq model instantiation of LABES. In supervised experiments, LABES-S2S obtains strong results on three benchmark datasets of different scales. In utilizing unlabeled dialog data, semi-supervised LABES-S2S significantly outperforms both supervised-only and semi-supervised baselines. Remarkably, we can reduce the annotation demands to 50% without performance loss on MultiWOZ.
MathFimer: Enhancing Mathematical Reasoning by Expanding Reasoning Steps through Fill-in-the-Middle Task
Mathematical reasoning represents a critical frontier in advancing large language models (LLMs). While step-by-step approaches have emerged as the dominant paradigm for mathematical problem-solving in LLMs, the quality of reasoning steps in training data fundamentally constrains the performance of the models. Recent studies has demonstrated that more detailed intermediate steps can enhance model performance, yet existing methods for step expansion either require more powerful external models or incur substantial computational costs. In this paper, we introduce MathFimer, a novel framework for mathematical reasoning step expansion inspired by the "Fill-in-the-middle" task from code completion. By decomposing solution chains into prefix-suffix pairs and training models to reconstruct missing intermediate steps, we develop a specialized model, MathFimer-7B, on our carefully curated NuminaMath-FIM dataset. We then apply these models to enhance existing mathematical reasoning datasets by inserting detailed intermediate steps into their solution chains, creating MathFimer-expanded versions. Through comprehensive experiments on multiple mathematical reasoning datasets, including MathInstruct, MetaMathQA and etc., we demonstrate that models trained on MathFimer-expanded data consistently outperform their counterparts trained on original data across various benchmarks such as GSM8K and MATH. Our approach offers a practical, scalable solution for enhancing mathematical reasoning capabilities in LLMs without relying on powerful external models or expensive inference procedures.
Beyond English-Centric LLMs: What Language Do Multilingual Language Models Think in?
In this study, we investigate whether non-English-centric LLMs, despite their strong performance, `think' in their respective dominant language: more precisely, `think' refers to how the representations of intermediate layers, when un-embedded into the vocabulary space, exhibit higher probabilities for certain dominant languages during generation. We term such languages as internal latent languages. We examine the latent language of three typical categories of models for Japanese processing: Llama2, an English-centric model; Swallow, an English-centric model with continued pre-training in Japanese; and LLM-jp, a model pre-trained on balanced English and Japanese corpora. Our empirical findings reveal that, unlike Llama2 which relies exclusively on English as the internal latent language, Japanese-specific Swallow and LLM-jp employ both Japanese and English, exhibiting dual internal latent languages. For any given target language, the model preferentially activates the latent language most closely related to it. In addition, we explore how intermediate layers respond to questions involving cultural conflicts between latent internal and target output languages. We further explore how the language identity shifts across layers while keeping consistent semantic meaning reflected in the intermediate layer representations. This study deepens the understanding of non-English-centric large language models, highlighting the intricate dynamics of language representation within their intermediate layers.
Unifying Diffusion Models' Latent Space, with Applications to CycleDiffusion and Guidance
Diffusion models have achieved unprecedented performance in generative modeling. The commonly-adopted formulation of the latent code of diffusion models is a sequence of gradually denoised samples, as opposed to the simpler (e.g., Gaussian) latent space of GANs, VAEs, and normalizing flows. This paper provides an alternative, Gaussian formulation of the latent space of various diffusion models, as well as an invertible DPM-Encoder that maps images into the latent space. While our formulation is purely based on the definition of diffusion models, we demonstrate several intriguing consequences. (1) Empirically, we observe that a common latent space emerges from two diffusion models trained independently on related domains. In light of this finding, we propose CycleDiffusion, which uses DPM-Encoder for unpaired image-to-image translation. Furthermore, applying CycleDiffusion to text-to-image diffusion models, we show that large-scale text-to-image diffusion models can be used as zero-shot image-to-image editors. (2) One can guide pre-trained diffusion models and GANs by controlling the latent codes in a unified, plug-and-play formulation based on energy-based models. Using the CLIP model and a face recognition model as guidance, we demonstrate that diffusion models have better coverage of low-density sub-populations and individuals than GANs. The code is publicly available at https://github.com/ChenWu98/cycle-diffusion.
KaVa: Latent Reasoning via Compressed KV-Cache Distillation
Large Language Models (LLMs) excel at multi-step reasoning problems with explicit chain-of-thought (CoT), but verbose traces incur significant computational costs and memory overhead, and often carry redundant, stylistic artifacts. Latent reasoning has emerged as an efficient alternative that internalizes the thought process, but it suffers from a critical lack of supervision, limiting its effectiveness on complex, natural-language reasoning traces. In this work, we propose KaVa, the first framework that bridges this gap by distilling knowledge directly from a compressed KV-cache of the teacher into a latent-reasoning student via self-distillation, leveraging the representational flexibility of continuous latent tokens to align stepwise KV trajectories. We show that the abstract, unstructured knowledge within compressed KV-cache, which lacks direct token correspondence, can serve as a rich supervisory signal for a latent reasoning student. Empirically, the approach consistently outperforms strong latent baselines, exhibits markedly smaller degradation from equation-only to natural-language traces, and scales to larger backbones while preserving efficiency. These results establish compressed KV-cache distillation as a scalable supervision signal for latent reasoning, combining the accuracy of CoT-trained teachers with the efficiency and deployability of latent inference.
Identifying Representations for Intervention Extrapolation
The premise of identifiable and causal representation learning is to improve the current representation learning paradigm in terms of generalizability or robustness. Despite recent progress in questions of identifiability, more theoretical results demonstrating concrete advantages of these methods for downstream tasks are needed. In this paper, we consider the task of intervention extrapolation: predicting how interventions affect an outcome, even when those interventions are not observed at training time, and show that identifiable representations can provide an effective solution to this task even if the interventions affect the outcome non-linearly. Our setup includes an outcome Y, observed features X, which are generated as a non-linear transformation of latent features Z, and exogenous action variables A, which influence Z. The objective of intervention extrapolation is to predict how interventions on A that lie outside the training support of A affect Y. Here, extrapolation becomes possible if the effect of A on Z is linear and the residual when regressing Z on A has full support. As Z is latent, we combine the task of intervention extrapolation with identifiable representation learning, which we call Rep4Ex: we aim to map the observed features X into a subspace that allows for non-linear extrapolation in A. We show that the hidden representation is identifiable up to an affine transformation in Z-space, which is sufficient for intervention extrapolation. The identifiability is characterized by a novel constraint describing the linearity assumption of A on Z. Based on this insight, we propose a method that enforces the linear invariance constraint and can be combined with any type of autoencoder. We validate our theoretical findings through synthetic experiments and show that our approach succeeds in predicting the effects of unseen interventions.
Distance-informed Neural Processes
We propose the Distance-informed Neural Process (DNP), a novel variant of Neural Processes that improves uncertainty estimation by combining global and distance-aware local latent structures. Standard Neural Processes (NPs) often rely on a global latent variable and struggle with uncertainty calibration and capturing local data dependencies. DNP addresses these limitations by introducing a global latent variable to model task-level variations and a local latent variable to capture input similarity within a distance-preserving latent space. This is achieved through bi-Lipschitz regularization, which bounds distortions in input relationships and encourages the preservation of relative distances in the latent space. This modeling approach allows DNP to produce better-calibrated uncertainty estimates and more effectively distinguish in- from out-of-distribution data. Empirical results demonstrate that DNP achieves strong predictive performance and improved uncertainty calibration across regression and classification tasks.
A is for Absorption: Studying Feature Splitting and Absorption in Sparse Autoencoders
Sparse Autoencoders (SAEs) have emerged as a promising approach to decompose the activations of Large Language Models (LLMs) into human-interpretable latents. In this paper, we pose two questions. First, to what extent do SAEs extract monosemantic and interpretable latents? Second, to what extent does varying the sparsity or the size of the SAE affect monosemanticity / interpretability? By investigating these questions in the context of a simple first-letter identification task where we have complete access to ground truth labels for all tokens in the vocabulary, we are able to provide more detail than prior investigations. Critically, we identify a problematic form of feature-splitting we call feature absorption where seemingly monosemantic latents fail to fire in cases where they clearly should. Our investigation suggests that varying SAE size or sparsity is insufficient to solve this issue, and that there are deeper conceptual issues in need of resolution.
Neural Snowflakes: Universal Latent Graph Inference via Trainable Latent Geometries
The inductive bias of a graph neural network (GNN) is largely encoded in its specified graph. Latent graph inference relies on latent geometric representations to dynamically rewire or infer a GNN's graph to maximize the GNN's predictive downstream performance, but it lacks solid theoretical foundations in terms of embedding-based representation guarantees. This paper addresses this issue by introducing a trainable deep learning architecture, coined neural snowflake, that can adaptively implement fractal-like metrics on R^d. We prove that any given finite weights graph can be isometrically embedded by a standard MLP encoder. Furthermore, when the latent graph can be represented in the feature space of a sufficiently regular kernel, we show that the combined neural snowflake and MLP encoder do not succumb to the curse of dimensionality by using only a low-degree polynomial number of parameters in the number of nodes. This implementation enables a low-dimensional isometric embedding of the latent graph. We conduct synthetic experiments to demonstrate the superior metric learning capabilities of neural snowflakes when compared to more familiar spaces like Euclidean space. Additionally, we carry out latent graph inference experiments on graph benchmarks. Consistently, the neural snowflake model achieves predictive performance that either matches or surpasses that of the state-of-the-art latent graph inference models. Importantly, this performance improvement is achieved without requiring random search for optimal latent geometry. Instead, the neural snowflake model achieves this enhancement in a differentiable manner.
LCM-LoRA: A Universal Stable-Diffusion Acceleration Module
Latent Consistency Models (LCMs) have achieved impressive performance in accelerating text-to-image generative tasks, producing high-quality images with minimal inference steps. LCMs are distilled from pre-trained latent diffusion models (LDMs), requiring only ~32 A100 GPU training hours. This report further extends LCMs' potential in two aspects: First, by applying LoRA distillation to Stable-Diffusion models including SD-V1.5, SSD-1B, and SDXL, we have expanded LCM's scope to larger models with significantly less memory consumption, achieving superior image generation quality. Second, we identify the LoRA parameters obtained through LCM distillation as a universal Stable-Diffusion acceleration module, named LCM-LoRA. LCM-LoRA can be directly plugged into various Stable-Diffusion fine-tuned models or LoRAs without training, thus representing a universally applicable accelerator for diverse image generation tasks. Compared with previous numerical PF-ODE solvers such as DDIM, DPM-Solver, LCM-LoRA can be viewed as a plug-in neural PF-ODE solver that possesses strong generalization abilities. Project page: https://github.com/luosiallen/latent-consistency-model.
Frame Interpolation with Consecutive Brownian Bridge Diffusion
Recent work in Video Frame Interpolation (VFI) tries to formulate VFI as a diffusion-based conditional image generation problem, synthesizing the intermediate frame given a random noise and neighboring frames. Due to the relatively high resolution of videos, Latent Diffusion Models (LDMs) are employed as the conditional generation model, where the autoencoder compresses images into latent representations for diffusion and then reconstructs images from these latent representations. Such a formulation poses a crucial challenge: VFI expects that the output is deterministically equal to the ground truth intermediate frame, but LDMs randomly generate a diverse set of different images when the model runs multiple times. The reason for the diverse generation is that the cumulative variance (variance accumulated at each step of generation) of generated latent representations in LDMs is large. This makes the sampling trajectory random, resulting in diverse rather than deterministic generations. To address this problem, we propose our unique solution: Frame Interpolation with Consecutive Brownian Bridge Diffusion. Specifically, we propose consecutive Brownian Bridge diffusion that takes a deterministic initial value as input, resulting in a much smaller cumulative variance of generated latent representations. Our experiments suggest that our method can improve together with the improvement of the autoencoder and achieve state-of-the-art performance in VFI, leaving strong potential for further enhancement.
The Free Transformer
We propose an extension of the decoder Transformer that conditions its generative process on random latent variables which are learned without supervision thanks to a variational procedure. Experimental evaluations show that allowing such a conditioning translates into substantial improvements on downstream tasks.
LightCache: Memory-Efficient, Training-Free Acceleration for Video Generation
Training-free acceleration has emerged as an advanced research area in video generation based on diffusion models. The redundancy of latents in diffusion model inference provides a natural entry point for acceleration. In this paper, we decompose the inference process into the encoding, denoising, and decoding stages, and observe that cache-based acceleration methods often lead to substantial memory surges in the latter two stages. To address this problem, we analyze the characteristics of inference across different stages and propose stage-specific strategies for reducing memory consumption: 1) Asynchronous Cache Swapping. 2) Feature chunk. 3) Slicing latents to decode. At the same time, we ensure that the time overhead introduced by these three strategies remains lower than the acceleration gains themselves. Compared with the baseline, our approach achieves faster inference speed and lower memory usage, while maintaining quality degradation within an acceptable range. The Code is available at https://github.com/NKUShaw/LightCache .
Determination of Latent Dimensionality in International Trade Flow
Currently, high-dimensional data is ubiquitous in data science, which necessitates the development of techniques to decompose and interpret such multidimensional (aka tensor) datasets. Finding a low dimensional representation of the data, that is, its inherent structure, is one of the approaches that can serve to understand the dynamics of low dimensional latent features hidden in the data. Nonnegative RESCAL is one such technique, particularly well suited to analyze self-relational data, such as dynamic networks found in international trade flows. Nonnegative RESCAL computes a low dimensional tensor representation by finding the latent space containing multiple modalities. Estimating the dimensionality of this latent space is crucial for extracting meaningful latent features. Here, to determine the dimensionality of the latent space with nonnegative RESCAL, we propose a latent dimension determination method which is based on clustering of the solutions of multiple realizations of nonnegative RESCAL decompositions. We demonstrate the performance of our model selection method on synthetic data and then we apply our method to decompose a network of international trade flows data from International Monetary Fund and validate the resulting features against empirical facts from economic literature.
Variational Masked Diffusion Models
Masked diffusion models have recently emerged as a flexible framework for discrete generative modeling. However, a key limitation of standard masked diffusion is its inability to effectively capture dependencies among tokens that are predicted concurrently, leading to degraded generation quality when dependencies among tokens are important. To explicitly model dependencies among tokens, we propose Variational Masked Diffusion (VMD), a framework that introduces latent variables into the masked diffusion process. Through controlled experiments on synthetic datasets, we demonstrate that VMD successfully learns dependencies that conventional masked diffusion fails to capture. We further validate the effectiveness of our approach on Sudoku puzzles and text datasets, where learning of dependencies among tokens improves global consistency. Across these domains, VMD enhances both generation quality and dependency awareness, highlighting the value of integrating variational inference into masked diffusion. Our code is available at: https://riccizz.github.io/VMD.
SNIP: Bridging Mathematical Symbolic and Numeric Realms with Unified Pre-training
In an era where symbolic mathematical equations are indispensable for modeling complex natural phenomena, scientific inquiry often involves collecting observations and translating them into mathematical expressions. Recently, deep learning has emerged as a powerful tool for extracting insights from data. However, existing models typically specialize in either numeric or symbolic domains, and are usually trained in a supervised manner tailored to specific tasks. This approach neglects the substantial benefits that could arise from a task-agnostic unified understanding between symbolic equations and their numeric counterparts. To bridge the gap, we introduce SNIP, a Symbolic-Numeric Integrated Pre-training, which employs joint contrastive learning between symbolic and numeric domains, enhancing their mutual similarities in the pre-trained embeddings. By performing latent space analysis, we observe that SNIP provides cross-domain insights into the representations, revealing that symbolic supervision enhances the embeddings of numeric data and vice versa. We evaluate SNIP across diverse tasks, including symbolic-to-numeric mathematical property prediction and numeric-to-symbolic equation discovery, commonly known as symbolic regression. Results show that SNIP effectively transfers to various tasks, consistently outperforming fully supervised baselines and competing strongly with established task-specific methods, especially in few-shot learning scenarios where available data is limited.
Sparse Three-parameter Restricted Indian Buffet Process for Understanding International Trade
This paper presents a Bayesian nonparametric latent feature model specially suitable for exploratory analysis of high-dimensional count data. We perform a non-negative doubly sparse matrix factorization that has two main advantages: not only we are able to better approximate the row input distributions, but the inferred topics are also easier to interpret. By combining the three-parameter and restricted Indian buffet processes into a single prior, we increase the model flexibility, allowing for a full spectrum of sparse solutions in the latent space. We demonstrate the usefulness of our approach in the analysis of countries' economic structure. Compared to other approaches, empirical results show our model's ability to give easy-to-interpret information and better capture the underlying sparsity structure of data.
Fractional Reasoning via Latent Steering Vectors Improves Inference Time Compute
Test-time compute has emerged as a powerful paradigm for improving the performance of large language models (LLMs), where generating multiple outputs or refining individual chains can significantly boost answer accuracy. However, existing methods like Best-of-N, majority voting, and self-reflection typically apply reasoning in a uniform way across inputs, overlooking the fact that different problems may require different levels of reasoning depth. In this work, we propose Fractional Reasoning, a training-free and model-agnostic framework that enables continuous control over reasoning intensity at inference time, going beyond the limitations of fixed instructional prompts. Our method operates by extracting the latent steering vector associated with deeper reasoning and reapplying it with a tunable scaling factor, allowing the model to tailor its reasoning process to the complexity of each input. This supports two key modes of test-time scaling: (1) improving output quality in breadth-based strategies (e.g., Best-of-N, majority voting), and (2) enhancing the correctness of individual reasoning chains in depth-based strategies (e.g., self-reflection). Experiments on GSM8K, MATH500, and GPQA demonstrate that Fractional Reasoning consistently improves performance across diverse reasoning tasks and models.
Agentic-R1: Distilled Dual-Strategy Reasoning
Current long chain-of-thought (long-CoT) models excel at mathematical reasoning but rely on slow and error-prone natural language traces. Tool-augmented agents address arithmetic via code execution, but often falter on complex logical tasks. We introduce a fine-tuning framework, DualDistill, that distills complementary reasoning strategies from multiple teachers into a unified student model. Using this approach, we train Agentic-R1, which dynamically selects the optimal strategy for each query, invoking tools for arithmetic and algorithmic problems, and using text-based reasoning for abstract ones. Our method improves accuracy across a range of tasks, including both computation-intensive and standard benchmarks, demonstrating the effectiveness of multi-strategy distillation in achieving robust and efficient reasoning. Our project is available at https://github.com/StigLidu/DualDistill
Seq-VCR: Preventing Collapse in Intermediate Transformer Representations for Enhanced Reasoning
Decoder-only Transformers often struggle with complex reasoning tasks, particularly arithmetic reasoning requiring multiple sequential operations. In this work, we identify representation collapse in the model's intermediate layers as a key factor limiting their reasoning capabilities. To address this, we propose Sequential Variance-Covariance Regularization (Seq-VCR), which enhances the entropy of intermediate representations and prevents collapse. Combined with dummy pause tokens as substitutes for chain-of-thought (CoT) tokens, our method significantly improves performance in arithmetic reasoning problems. In the challenging 5 times 5 integer multiplication task, our approach achieves 99.5% exact match accuracy, outperforming models of the same size (which yield 0% accuracy) and GPT-4 with five-shot CoT prompting (44%). We also demonstrate superior results on arithmetic expression and longest increasing subsequence (LIS) datasets. Our findings highlight the importance of preventing intermediate layer representation collapse to enhance the reasoning capabilities of Transformers and show that Seq-VCR offers an effective solution without requiring explicit CoT supervision.
A Mutual Information Perspective on Multiple Latent Variable Generative Models for Positive View Generation
In image generation, Multiple Latent Variable Generative Models (MLVGMs) employ multiple latent variables to gradually shape the final images, from global characteristics to finer and local details (e.g., StyleGAN, NVAE), emerging as powerful tools for diverse applications. Yet their generative dynamics remain only empirically observed, without a systematic understanding of each latent variable's impact. In this work, we propose a novel framework that quantifies the contribution of each latent variable using Mutual Information (MI) as a metric. Our analysis reveals that current MLVGMs often underutilize some latent variables, and provides actionable insights for their use in downstream applications. With this foundation, we introduce a method for generating synthetic data for Self-Supervised Contrastive Representation Learning (SSCRL). By leveraging the hierarchical and disentangled variables of MLVGMs, our approach produces diverse and semantically meaningful views without the need for real image data. Additionally, we introduce a Continuous Sampling (CS) strategy, where the generator dynamically creates new samples during SSCRL training, greatly increasing data variability. Our comprehensive experiments demonstrate the effectiveness of these contributions, showing that MLVGMs' generated views compete on par with or even surpass views generated from real data. This work establishes a principled approach to understanding and exploiting MLVGMs, advancing both generative modeling and self-supervised learning. Code and pre-trained models at: https://github.com/SerezD/mi_ml_gen.
Embeddings to Diagnosis: Latent Fragility under Agentic Perturbations in Clinical LLMs
LLMs for clinical decision support often fail under small but clinically meaningful input shifts such as masking a symptom or negating a finding, despite high performance on static benchmarks. These reasoning failures frequently go undetected by standard NLP metrics, which are insensitive to latent representation shifts that drive diagnosis instability. We propose a geometry-aware evaluation framework, LAPD (Latent Agentic Perturbation Diagnostics), which systematically probes the latent robustness of clinical LLMs under structured adversarial edits. Within this framework, we introduce Latent Diagnosis Flip Rate (LDFR), a model-agnostic diagnostic signal that captures representational instability when embeddings cross decision boundaries in PCA-reduced latent space. Clinical notes are generated using a structured prompting pipeline grounded in diagnostic reasoning, then perturbed along four axes: masking, negation, synonym replacement, and numeric variation to simulate common ambiguities and omissions. We compute LDFR across both foundation and clinical LLMs, finding that latent fragility emerges even under minimal surface-level changes. Finally, we validate our findings on 90 real clinical notes from the DiReCT benchmark (MIMIC-IV), confirming the generalizability of LDFR beyond synthetic settings. Our results reveal a persistent gap between surface robustness and semantic stability, underscoring the importance of geometry-aware auditing in safety-critical clinical AI.
Tokenization counts: the impact of tokenization on arithmetic in frontier LLMs
Tokenization, the division of input text into input tokens, is an often overlooked aspect of the large language model (LLM) pipeline and could be the source of useful or harmful inductive biases. Historically, LLMs have relied on byte pair encoding, without care to specific input domains. With the increased use of LLMs for reasoning, various number-specific tokenization schemes have been adopted, with popular models like LLaMa and PaLM opting for single-digit tokenization while GPT-3.5 and GPT-4 have separate tokens for each 1-, 2-, and 3-digit numbers. In this work, we study the effect this choice has on numerical reasoning through the use of arithmetic tasks. We consider left-to-right and right-to-left tokenization for GPT-3.5 and -4, finding that right-to-left tokenization (enforced by comma separating numbers at inference time) leads to largely improved performance. Furthermore, we find that model errors when using standard left-to-right tokenization follow stereotyped error patterns, suggesting that model computations are systematic rather than approximate. We show that the model is able to convert between tokenizations easily, thus allowing chain-of-thought-inspired approaches to recover performance on left-to-right tokenized inputs. We also find the gap between tokenization directions decreases when models are scaled, possibly indicating that larger models are better able to override this tokenization-dependent inductive bias. In summary, our work performs the first study of how number tokenization choices lead to differences in model performance on arithmetic tasks, accompanied by a thorough analysis of error patterns. We hope this work inspires practitioners to more carefully ablate number tokenization-related choices when working towards general models of numerical reasoning.
PonderLM-2: Pretraining LLM with Latent Thoughts in Continuous Space
The remarkable success of Chain-of-Thought (CoT), which enhances performance by scaling generation steps at test-time, inspires us to ask: can we leverage a similar scaling of computational steps during pretraining to improve the generation of each individual token? To address this, we propose a novel pre-training methodology: Pretraining Language Models with Latent Thoughts (PonderLM-2). Our approach pretrains a language model (LM) to first generate an intermediate latent thought-the last hidden state of the current position-which is then used as input to predict the actual subsequent token. This additional computational step enables the LM to refine its prediction within unconstrained continuous space. Our experiments demonstrate that, at an identical inference cost, a LM that generates one additional latent thought per token outperforms a standard model with double the parameters. For instance, our PonderLM-2-Pythia-1.4B, pretrained on 300B tokens from the Pile, significantly surpasses the vanilla Pythia-2.8B trained on the same data on both language modeling and a range of general downstream tasks. Furthermore, increasing the number of latent thoughts generated before each actual token-forming a chain analogous to CoT-consistently improves the model's performance.
Reflection of Thought: Inversely Eliciting Numerical Reasoning in Language Models via Solving Linear Systems
Numerical reasoning over natural language has been a long-standing goal for the research community. However, cutting-edge language models have proven difficult to reliably generalize to a broad range of numbers, although they have shown proficiency in reasoning over common and simple numbers. In this paper, we propose a novel method to elicit and exploit the numerical reasoning knowledge hidden in pre-trained language models using simple anchor numbers. Concretely, we first leverage simple numbers as anchors to probe the implicitly inferred arithmetic expressions from language models, and then explicitly apply the expressions on complex numbers to get corresponding answers. To inversely elicit arithmetic expressions, we transform and formulate the task as an analytically solvable linear system. Experimental results on several numerical reasoning benchmarks demonstrate that our approach significantly improves numerical reasoning capabilities of existing LMs. More importantly, our approach is training-free and simply works in the inference phase, making it highly portable and achieving consistent performance benefits across a variety of language models (GPT-3, T5, BART, etc) in all zero-shot, few-shot, and fine-tuning scenarios.
Reward Guided Latent Consistency Distillation
Latent Consistency Distillation (LCD) has emerged as a promising paradigm for efficient text-to-image synthesis. By distilling a latent consistency model (LCM) from a pre-trained teacher latent diffusion model (LDM), LCD facilitates the generation of high-fidelity images within merely 2 to 4 inference steps. However, the LCM's efficient inference is obtained at the cost of the sample quality. In this paper, we propose compensating the quality loss by aligning LCM's output with human preference during training. Specifically, we introduce Reward Guided LCD (RG-LCD), which integrates feedback from a reward model (RM) into the LCD process by augmenting the original LCD loss with the objective of maximizing the reward associated with LCM's single-step generation. As validated through human evaluation, when trained with the feedback of a good RM, the 2-step generations from our RG-LCM are favored by humans over the 50-step DDIM samples from the teacher LDM, representing a 25 times inference acceleration without quality loss. As directly optimizing towards differentiable RMs can suffer from over-optimization, we overcome this difficulty by proposing the use of a latent proxy RM (LRM). This novel component serves as an intermediary, connecting our LCM with the RM. Empirically, we demonstrate that incorporating the LRM into our RG-LCD successfully avoids high-frequency noise in the generated images, contributing to both improved FID on MS-COCO and a higher HPSv2.1 score on HPSv2's test set, surpassing those achieved by the baseline LCM.
StreetMath: Study of LLMs' Approximation Behaviors
There is a substantial body of literature examining the mathematical reasoning capabilities of large language models (LLMs), particularly their performance on precise arithmetic operations in autoregressive architectures. However, their ability to perform approximate reasoning in informal, fast-paced mathematical operations has received far less attention, especially among non-autoregressive decoder models. Our work addresses this gap by introducing StreetMath, a benchmark designed to evaluate models' approximation abilities under real-world approximation scenarios. We conduct extensive evaluations across different LLM architectures: Qwen3-4B-Instruct-2507, Qwen3-4B-Thinking-2507, Dream-v0-Instruct-7B, Falcon-Mamba-7B-Instruct, and Mamba-GPT-3B. Furthermore, we apply mechanistic interpretability techniques to probe their internal computational states. Our analysis reveals that LLMs generally attempt to compute exact values or invoke external tools even in tasks that call for approximation. Moreover, while models sometimes reach the correct answer in early layers or steps, they still consume more tokens when solving approximation tasks. Additional experiments indicate that exact and approximate arithmetic operations rely on largely separate neural components. Drawing upon research on cognitive psychology, we argue that LLMs do not exhibit cognitive miserliness in the same way humans do in street math settings. We open source our work https://github.com/ctseng777/StreetMath
MathFusion: Enhancing Mathematic Problem-solving of LLM through Instruction Fusion
Large Language Models (LLMs) have shown impressive progress in mathematical reasoning. While data augmentation is promising to enhance mathematical problem-solving ability, current approaches are predominantly limited to instance-level modifications-such as rephrasing or generating syntactic variations-which fail to capture and leverage the intrinsic relational structures inherent in mathematical knowledge. Inspired by human learning processes, where mathematical proficiency develops through systematic exposure to interconnected concepts, we introduce MathFusion, a novel framework that enhances mathematical reasoning through cross-problem instruction synthesis. MathFusion implements this through three fusion strategies: (1) sequential fusion, which chains related problems to model solution dependencies; (2) parallel fusion, which combines analogous problems to reinforce conceptual understanding; and (3) conditional fusion, which creates context-aware selective problems to enhance reasoning flexibility. By applying these strategies, we generate a new dataset, MathFusionQA, followed by fine-tuning models (DeepSeekMath-7B, Mistral-7B, Llama3-8B) on it. Experimental results demonstrate that MathFusion achieves substantial improvements in mathematical reasoning while maintaining high data efficiency, boosting performance by 18.0 points in accuracy across diverse benchmarks while requiring only 45K additional synthetic instructions, representing a substantial improvement over traditional single-instruction approaches. Our datasets, models, and code are publicly available at https://github.com/QizhiPei/mathfusion.
Scaling Behavior for Large Language Models regarding Numeral Systems: An Example using Pythia
Though Large Language Models (LLMs) have shown remarkable abilities in mathematics reasoning, they are still struggling with performing numeric operations accurately, such as addition and multiplication. Numbers can be tokenized into tokens in various ways by different LLMs and affect the numeric operations performance. Currently, there are two representatives: 1) Tokenize into 1-digit, and 2) Tokenize into 1sim 3 digit. The difference is roughly equivalent to using different numeral systems (namely base 10 or base 10^{3}). In light of this, we study the scaling behavior of different numeral systems in the context of transformer-based large language models. We empirically show that a base 10 system is consistently more data-efficient than a base 10^{2} or 10^{3} system across training data scale, model sizes under from-scratch training settings, while different number systems have very similar fine-tuning performances. We attribute this to higher token frequencies of a base 10 system. Additionally, we reveal extrapolation behavior patterns on addition and multiplication. We identify that base 100 and base 1000 systems struggle on token-level discernment and token-level operations. We also sheds light on the mechanism learnt by the models.
SDE Matching: Scalable and Simulation-Free Training of Latent Stochastic Differential Equations
The Latent Stochastic Differential Equation (SDE) is a powerful tool for time series and sequence modeling. However, training Latent SDEs typically relies on adjoint sensitivity methods, which depend on simulation and backpropagation through approximate SDE solutions, which limit scalability. In this work, we propose SDE Matching, a new simulation-free method for training Latent SDEs. Inspired by modern Score- and Flow Matching algorithms for learning generative dynamics, we extend these ideas to the domain of stochastic dynamics for time series and sequence modeling, eliminating the need for costly numerical simulations. Our results demonstrate that SDE Matching achieves performance comparable to adjoint sensitivity methods while drastically reducing computational complexity.
Pixel-Space Post-Training of Latent Diffusion Models
Latent diffusion models (LDMs) have made significant advancements in the field of image generation in recent years. One major advantage of LDMs is their ability to operate in a compressed latent space, allowing for more efficient training and deployment. However, despite these advantages, challenges with LDMs still remain. For example, it has been observed that LDMs often generate high-frequency details and complex compositions imperfectly. We hypothesize that one reason for these flaws is due to the fact that all pre- and post-training of LDMs are done in latent space, which is typically 8 times 8 lower spatial-resolution than the output images. To address this issue, we propose adding pixel-space supervision in the post-training process to better preserve high-frequency details. Experimentally, we show that adding a pixel-space objective significantly improves both supervised quality fine-tuning and preference-based post-training by a large margin on a state-of-the-art DiT transformer and U-Net diffusion models in both visual quality and visual flaw metrics, while maintaining the same text alignment quality.
Phased Consistency Model
The consistency model (CM) has recently made significant progress in accelerating the generation of diffusion models. However, its application to high-resolution, text-conditioned image generation in the latent space (a.k.a., LCM) remains unsatisfactory. In this paper, we identify three key flaws in the current design of LCM. We investigate the reasons behind these limitations and propose the Phased Consistency Model (PCM), which generalizes the design space and addresses all identified limitations. Our evaluations demonstrate that PCM significantly outperforms LCM across 1--16 step generation settings. While PCM is specifically designed for multi-step refinement, it achieves even superior or comparable 1-step generation results to previously state-of-the-art specifically designed 1-step methods. Furthermore, we show that PCM's methodology is versatile and applicable to video generation, enabling us to train the state-of-the-art few-step text-to-video generator. More details are available at https://g-u-n.github.io/projects/pcm/.
LiteVAE: Lightweight and Efficient Variational Autoencoders for Latent Diffusion Models
Advances in latent diffusion models (LDMs) have revolutionized high-resolution image generation, but the design space of the autoencoder that is central to these systems remains underexplored. In this paper, we introduce LiteVAE, a family of autoencoders for LDMs that leverage the 2D discrete wavelet transform to enhance scalability and computational efficiency over standard variational autoencoders (VAEs) with no sacrifice in output quality. We also investigate the training methodologies and the decoder architecture of LiteVAE and propose several enhancements that improve the training dynamics and reconstruction quality. Our base LiteVAE model matches the quality of the established VAEs in current LDMs with a six-fold reduction in encoder parameters, leading to faster training and lower GPU memory requirements, while our larger model outperforms VAEs of comparable complexity across all evaluated metrics (rFID, LPIPS, PSNR, and SSIM).
Emergence of Hidden Capabilities: Exploring Learning Dynamics in Concept Space
Modern generative models demonstrate impressive capabilities, likely stemming from an ability to identify and manipulate abstract concepts underlying their training data. However, fundamental questions remain: what determines the concepts a model learns, the order in which it learns them, and its ability to manipulate those concepts? To address these questions, we propose analyzing a model's learning dynamics via a framework we call the concept space, where each axis represents an independent concept underlying the data generating process. By characterizing learning dynamics in this space, we identify how the speed at which a concept is learned, and hence the order of concept learning, is controlled by properties of the data we term concept signal. Further, we observe moments of sudden turns in the direction of a model's learning dynamics in concept space. Surprisingly, these points precisely correspond to the emergence of hidden capabilities, i.e., where latent interventions show the model possesses the capability to manipulate a concept, but these capabilities cannot yet be elicited via naive input prompting. While our results focus on synthetically defined toy datasets, we hypothesize a general claim on emergence of hidden capabilities may hold: generative models possess latent capabilities that emerge suddenly and consistently during training, though a model might not exhibit these capabilities under naive input prompting.
Domain Expansion of Image Generators
Can one inject new concepts into an already trained generative model, while respecting its existing structure and knowledge? We propose a new task - domain expansion - to address this. Given a pretrained generator and novel (but related) domains, we expand the generator to jointly model all domains, old and new, harmoniously. First, we note the generator contains a meaningful, pretrained latent space. Is it possible to minimally perturb this hard-earned representation, while maximally representing the new domains? Interestingly, we find that the latent space offers unused, "dormant" directions, which do not affect the output. This provides an opportunity: By "repurposing" these directions, we can represent new domains without perturbing the original representation. In fact, we find that pretrained generators have the capacity to add several - even hundreds - of new domains! Using our expansion method, one "expanded" model can supersede numerous domain-specific models, without expanding the model size. Additionally, a single expanded generator natively supports smooth transitions between domains, as well as composition of domains. Code and project page available at https://yotamnitzan.github.io/domain-expansion/.
SparseD: Sparse Attention for Diffusion Language Models
While diffusion language models (DLMs) offer a promising alternative to autoregressive models (ARs), existing open-source DLMs suffer from high inference latency. This bottleneck is mainly due to the attention's quadratic complexity with respect to context length in computing all query-key pairs. Intuitively, to reduce this complexity, a natural strategy is to restrict attention to sparse patterns that retain only the most relevant connections. Such approaches are well-established in ARs, where attention follows fixed and clearly defined sparse patterns. However, in DLMs, we observe distinct sparsity behaviors: (1) attention patterns vary across heads, (2) attention patterns in each head remain highly similar across denoising steps, and (3) early denoising steps are critical for generation. These findings render sparse attention methods designed for ARs largely incompatible with DLMs, as they fail to capture head-specific structures and risk degrading generation when applied in early denoising steps. To address these challenges, we propose SparseD, a novel sparse attention method for DLMs. Leveraging the observations, SparseD only requires pre-computing head-specific sparse patterns one time, and reuses them across all steps. This prevents recomputing sparse patterns at each denoising step. Meanwhile, SparseD uses full attention in the early steps, then switches to sparse attention later to maintain generation quality. Together, these establish SparseD as a practical and efficient solution for deploying DLMs in long-context applications. Experimental results demonstrate that SparseD achieves lossless acceleration, delivering up to 1.50times speedup over FlashAttention at a 64k context length with 1,024 denoising steps.
Why Can't Transformers Learn Multiplication? Reverse-Engineering Reveals Long-Range Dependency Pitfalls
Language models are increasingly capable, yet still fail at a seemingly simple task of multi-digit multiplication. In this work, we study why, by reverse-engineering a model that successfully learns multiplication via implicit chain-of-thought, and report three findings: (1) Evidence of long-range structure: Logit attributions and linear probes indicate that the model encodes the necessary long-range dependencies for multi-digit multiplication. (2) Mechanism: the model encodes long-range dependencies using attention to construct a directed acyclic graph to ``cache'' and ``retrieve'' pairwise partial products. (3) Geometry: the model implements partial products in attention heads by forming Minkowski sums between pairs of digits, and digits are represented using a Fourier basis, both of which are intuitive and efficient representations that the standard fine-tuning model lacks. With these insights, we revisit the learning dynamics of standard fine-tuning and find that the model converges to a local optimum that lacks the required long-range dependencies. We further validate this understanding by introducing an auxiliary loss that predicts the ``running sum'' via a linear regression probe, which provides an inductive bias that enables the model to successfully learn multi-digit multiplication. In summary, by reverse-engineering the mechanisms of an implicit chain-of-thought model we uncover a pitfall for learning long-range dependencies in Transformers and provide an example of how the correct inductive bias can address this issue.
Differentiable Causal Discovery Under Latent Interventions
Recent work has shown promising results in causal discovery by leveraging interventional data with gradient-based methods, even when the intervened variables are unknown. However, previous work assumes that the correspondence between samples and interventions is known, which is often unrealistic. We envision a scenario with an extensive dataset sampled from multiple intervention distributions and one observation distribution, but where we do not know which distribution originated each sample and how the intervention affected the system, i.e., interventions are entirely latent. We propose a method based on neural networks and variational inference that addresses this scenario by framing it as learning a shared causal graph among an infinite mixture (under a Dirichlet process prior) of intervention structural causal models. Experiments with synthetic and real data show that our approach and its semi-supervised variant are able to discover causal relations in this challenging scenario.
Sparse Autoencoders Reveal Universal Feature Spaces Across Large Language Models
We investigate feature universality in large language models (LLMs), a research field that aims to understand how different models similarly represent concepts in the latent spaces of their intermediate layers. Demonstrating feature universality allows discoveries about latent representations to generalize across several models. However, comparing features across LLMs is challenging due to polysemanticity, in which individual neurons often correspond to multiple features rather than distinct ones. This makes it difficult to disentangle and match features across different models. To address this issue, we employ a method known as dictionary learning by using sparse autoencoders (SAEs) to transform LLM activations into more interpretable spaces spanned by neurons corresponding to individual features. After matching feature neurons across models via activation correlation, we apply representational space similarity metrics like Singular Value Canonical Correlation Analysis to analyze these SAE features across different LLMs. Our experiments reveal significant similarities in SAE feature spaces across various LLMs, providing new evidence for feature universality.
Automatically Interpreting Millions of Features in Large Language Models
While the activations of neurons in deep neural networks usually do not have a simple human-understandable interpretation, sparse autoencoders (SAEs) can be used to transform these activations into a higher-dimensional latent space which may be more easily interpretable. However, these SAEs can have millions of distinct latent features, making it infeasible for humans to manually interpret each one. In this work, we build an open-source automated pipeline to generate and evaluate natural language explanations for SAE features using LLMs. We test our framework on SAEs of varying sizes, activation functions, and losses, trained on two different open-weight LLMs. We introduce five new techniques to score the quality of explanations that are cheaper to run than the previous state of the art. One of these techniques, intervention scoring, evaluates the interpretability of the effects of intervening on a feature, which we find explains features that are not recalled by existing methods. We propose guidelines for generating better explanations that remain valid for a broader set of activating contexts, and discuss pitfalls with existing scoring techniques. We use our explanations to measure the semantic similarity of independently trained SAEs, and find that SAEs trained on nearby layers of the residual stream are highly similar. Our large-scale analysis confirms that SAE latents are indeed much more interpretable than neurons, even when neurons are sparsified using top-k postprocessing. Our code is available at https://github.com/EleutherAI/sae-auto-interp, and our explanations are available at https://huggingface.co/datasets/EleutherAI/auto_interp_explanations.
Interpret the Internal States of Recommendation Model with Sparse Autoencoder
Explainable recommendation systems are important to enhance transparency, accuracy, and fairness. Beyond result-level explanations, model-level interpretations can provide valuable insights that allow developers to optimize system designs and implement targeted improvements. However, most current approaches depend on specialized model designs, which often lack generalization capabilities. Given the various kinds of recommendation models, existing methods have limited ability to effectively interpret them. To address this issue, we propose RecSAE, an automatic, generalizable probing method for interpreting the internal states of Recommendation models with Sparse AutoEncoder. RecSAE serves as a plug-in module that does not affect original models during interpretations, while also enabling predictable modifications to their behaviors based on interpretation results. Firstly, we train an autoencoder with sparsity constraints to reconstruct internal activations of recommendation models, making the RecSAE latents more interpretable and monosemantic than the original neuron activations. Secondly, we automated the construction of concept dictionaries based on the relationship between latent activations and input item sequences. Thirdly, RecSAE validates these interpretations by predicting latent activations on new item sequences using the concept dictionary and deriving interpretation confidence scores from precision and recall. We demonstrate RecSAE's effectiveness on two datasets, identifying hundreds of highly interpretable concepts from pure ID-based models. Latent ablation studies further confirm that manipulating latent concepts produces corresponding changes in model output behavior, underscoring RecSAE's utility for both understanding and targeted tuning recommendation models. Code and data are publicly available at https://github.com/Alice1998/RecSAE.
Obfuscated Activations Bypass LLM Latent-Space Defenses
Recent latent-space monitoring techniques have shown promise as defenses against LLM attacks. These defenses act as scanners that seek to detect harmful activations before they lead to undesirable actions. This prompts the question: Can models execute harmful behavior via inconspicuous latent states? Here, we study such obfuscated activations. We show that state-of-the-art latent-space defenses -- including sparse autoencoders, representation probing, and latent OOD detection -- are all vulnerable to obfuscated activations. For example, against probes trained to classify harmfulness, our attacks can often reduce recall from 100% to 0% while retaining a 90% jailbreaking rate. However, obfuscation has limits: we find that on a complex task (writing SQL code), obfuscation reduces model performance. Together, our results demonstrate that neural activations are highly malleable: we can reshape activation patterns in a variety of ways, often while preserving a network's behavior. This poses a fundamental challenge to latent-space defenses.
Parallelizing Autoregressive Generation with Variational State Space Models
Attention-based models such as Transformers and recurrent models like state space models (SSMs) have emerged as successful methods for autoregressive sequence modeling. Although both enable parallel training, none enable parallel generation due to their autoregressiveness. We propose the variational SSM (VSSM), a variational autoencoder (VAE) where both the encoder and decoder are SSMs. Since sampling the latent variables and decoding them with the SSM can be parallelized, both training and generation can be conducted in parallel. Moreover, the decoder recurrence allows generation to be resumed without reprocessing the whole sequence. Finally, we propose the autoregressive VSSM that can be conditioned on a partial realization of the sequence, as is common in language generation tasks. Interestingly, the autoregressive VSSM still enables parallel generation. We highlight on toy problems (MNIST, CIFAR) the empirical gains in speed-up and show that it competes with traditional models in terms of generation quality (Transformer, Mamba SSM).
Language Models Trained to do Arithmetic Predict Human Risky and Intertemporal Choice
The observed similarities in the behavior of humans and Large Language Models (LLMs) have prompted researchers to consider the potential of using LLMs as models of human cognition. However, several significant challenges must be addressed before LLMs can be legitimately regarded as cognitive models. For instance, LLMs are trained on far more data than humans typically encounter, and may have been directly trained on human data in specific cognitive tasks or aligned with human preferences. Consequently, the origins of these behavioral similarities are not well understood. In this paper, we propose a novel way to enhance the utility of LLMs as cognitive models. This approach involves (i) leveraging computationally equivalent tasks that both an LLM and a rational agent need to master for solving a cognitive problem and (ii) examining the specific task distributions required for an LLM to exhibit human-like behaviors. We apply this approach to decision-making -- specifically risky and intertemporal choice -- where the key computationally equivalent task is the arithmetic of expected value calculations. We show that an LLM pretrained on an ecologically valid arithmetic dataset, which we call Arithmetic-GPT, predicts human behavior better than many traditional cognitive models. Pretraining LLMs on ecologically valid arithmetic datasets is sufficient to produce a strong correspondence between these models and human decision-making. Our results also suggest that LLMs used as cognitive models should be carefully investigated via ablation studies of the pretraining data.
SwiReasoning: Switch-Thinking in Latent and Explicit for Pareto-Superior Reasoning LLMs
Recent work shows that, beyond discrete reasoning through explicit chain-of-thought steps, which are limited by the boundaries of natural languages, large language models (LLMs) can also reason continuously in latent space, allowing richer information per step and thereby improving token efficiency. Despite this promise, latent reasoning still faces two challenges, especially in training-free settings: 1) purely latent reasoning broadens the search distribution by maintaining multiple implicit paths, which diffuses probability mass, introduces noise, and impedes convergence to a single high-confidence solution, thereby hurting accuracy; and 2) overthinking persists even without explicit text, wasting tokens and degrading efficiency. To address these issues, we introduce SwiReasoning, a training-free framework for LLM reasoning which features two key innovations: 1) SwiReasoning dynamically switches between explicit and latent reasoning, guided by block-wise confidence estimated from entropy trends in next-token distributions, to balance exploration and exploitation and promote timely convergence. 2) By limiting the maximum number of thinking-block switches, SwiReasoning curbs overthinking and improves token efficiency across varying problem difficulties. On widely used mathematics and STEM benchmarks, SwiReasoning consistently improves average accuracy by 1.5%-2.8% across reasoning LLMs of different model families and scales. Furthermore, under constrained budgets, SwiReasoning improves average token efficiency by 56%-79%, with larger gains as budgets tighten.
A Latent Variable Model Approach to PMI-based Word Embeddings
Semantic word embeddings represent the meaning of a word via a vector, and are created by diverse methods. Many use nonlinear operations on co-occurrence statistics, and have hand-tuned hyperparameters and reweighting methods. This paper proposes a new generative model, a dynamic version of the log-linear topic model of~mnih2007three. The methodological novelty is to use the prior to compute closed form expressions for word statistics. This provides a theoretical justification for nonlinear models like PMI, word2vec, and GloVe, as well as some hyperparameter choices. It also helps explain why low-dimensional semantic embeddings contain linear algebraic structure that allows solution of word analogies, as shown by~mikolov2013efficient and many subsequent papers. Experimental support is provided for the generative model assumptions, the most important of which is that latent word vectors are fairly uniformly dispersed in space.
Goat: Fine-tuned LLaMA Outperforms GPT-4 on Arithmetic Tasks
We introduce Goat, a fine-tuned LLaMA model that significantly outperforms GPT-4 on a range of arithmetic tasks. Fine-tuned on a synthetically generated dataset, Goat achieves state-of-the-art performance on BIG-bench arithmetic sub-task. In particular, the zero-shot Goat-7B matches or even surpasses the accuracy achieved by the few-shot PaLM-540B. Surprisingly, Goat can achieve near-perfect accuracy on large-number addition and subtraction through supervised fine-tuning only, which is almost impossible with previous pretrained language models, such as Bloom, OPT, GPT-NeoX, etc. We attribute Goat's exceptional performance to LLaMA's consistent tokenization of numbers. To tackle more challenging tasks like large-number multiplication and division, we propose an approach that classifies tasks based on their learnability, and subsequently decomposes unlearnable tasks, such as multi-digit multiplication and division, into a series of learnable tasks by leveraging basic arithmetic principles. We thoroughly examine the performance of our model, offering a comprehensive evaluation of the effectiveness of our proposed decomposition steps. Additionally, Goat-7B can be easily trained using LoRA on a 24GB VRAM GPU, facilitating reproducibility for other researchers. We release our model, dataset, and the Python script for dataset generation.
Data-to-text Generation with Variational Sequential Planning
We consider the task of data-to-text generation, which aims to create textual output from non-linguistic input. We focus on generating long-form text, i.e., documents with multiple paragraphs, and propose a neural model enhanced with a planning component responsible for organizing high-level information in a coherent and meaningful way. We infer latent plans sequentially with a structured variational model, while interleaving the steps of planning and generation. Text is generated by conditioning on previous variational decisions and previously generated text. Experiments on two data-to-text benchmarks (RotoWire and MLB) show that our model outperforms strong baselines and is sample efficient in the face of limited training data (e.g., a few hundred instances).
JiuZhang3.0: Efficiently Improving Mathematical Reasoning by Training Small Data Synthesis Models
Mathematical reasoning is an important capability of large language models~(LLMs) for real-world applications. To enhance this capability, existing work either collects large-scale math-related texts for pre-training, or relies on stronger LLMs (\eg GPT-4) to synthesize massive math problems. Both types of work generally lead to large costs in training or synthesis. To reduce the cost, based on open-source available texts, we propose an efficient way that trains a small LLM for math problem synthesis, to efficiently generate sufficient high-quality pre-training data. To achieve it, we create a dataset using GPT-4 to distill its data synthesis capability into the small LLM. Concretely, we craft a set of prompts based on human education stages to guide GPT-4, to synthesize problems covering diverse math knowledge and difficulty levels. Besides, we adopt the gradient-based influence estimation method to select the most valuable math-related texts. The both are fed into GPT-4 for creating the knowledge distillation dataset to train the small LLM. We leverage it to synthesize 6 million math problems for pre-training our JiuZhang3.0 model, which only needs to invoke GPT-4 API 9.3k times and pre-train on 4.6B data. Experimental results have shown that JiuZhang3.0 achieves state-of-the-art performance on several mathematical reasoning datasets, under both natural language reasoning and tool manipulation settings. Our code and data will be publicly released in https://github.com/RUCAIBox/JiuZhang3.0.
NumGLUE: A Suite of Fundamental yet Challenging Mathematical Reasoning Tasks
Given the ubiquitous nature of numbers in text, reasoning with numbers to perform simple calculations is an important skill of AI systems. While many datasets and models have been developed to this end, state-of-the-art AI systems are brittle; failing to perform the underlying mathematical reasoning when they appear in a slightly different scenario. Drawing inspiration from GLUE that was proposed in the context of natural language understanding, we propose NumGLUE, a multi-task benchmark that evaluates the performance of AI systems on eight different tasks, that at their core require simple arithmetic understanding. We show that this benchmark is far from being solved with neural models including state-of-the-art large-scale language models performing significantly worse than humans (lower by 46.4%). Further, NumGLUE promotes sharing knowledge across tasks, especially those with limited training data as evidenced by the superior performance (average gain of 3.4% on each task) when a model is jointly trained on all the tasks as opposed to task-specific modeling. Finally, we hope that NumGLUE will encourage systems that perform robust and general arithmetic reasoning within language, a first step towards being able to perform more complex mathematical reasoning.
Lost in Latent Space: An Empirical Study of Latent Diffusion Models for Physics Emulation
The steep computational cost of diffusion models at inference hinders their use as fast physics emulators. In the context of image and video generation, this computational drawback has been addressed by generating in the latent space of an autoencoder instead of the pixel space. In this work, we investigate whether a similar strategy can be effectively applied to the emulation of dynamical systems and at what cost. We find that the accuracy of latent-space emulation is surprisingly robust to a wide range of compression rates (up to 1000x). We also show that diffusion-based emulators are consistently more accurate than non-generative counterparts and compensate for uncertainty in their predictions with greater diversity. Finally, we cover practical design choices, spanning from architectures to optimizers, that we found critical to train latent-space emulators.
Language Models Use Trigonometry to Do Addition
Mathematical reasoning is an increasingly important indicator of large language model (LLM) capabilities, yet we lack understanding of how LLMs process even simple mathematical tasks. To address this, we reverse engineer how three mid-sized LLMs compute addition. We first discover that numbers are represented in these LLMs as a generalized helix, which is strongly causally implicated for the tasks of addition and subtraction, and is also causally relevant for integer division, multiplication, and modular arithmetic. We then propose that LLMs compute addition by manipulating this generalized helix using the "Clock" algorithm: to solve a+b, the helices for a and b are manipulated to produce the a+b answer helix which is then read out to model logits. We model influential MLP outputs, attention head outputs, and even individual neuron preactivations with these helices and verify our understanding with causal interventions. By demonstrating that LLMs represent numbers on a helix and manipulate this helix to perform addition, we present the first representation-level explanation of an LLM's mathematical capability.
Dissecting Multiplication in Transformers: Insights into LLMs
Transformer-based large language models have achieved remarkable performance across various natural language processing tasks. However, they often struggle with seemingly easy tasks like arithmetic despite their vast capabilities. This stark disparity raise human's concerns about their safe and ethical use, hinder their widespread adoption.In this paper, we focus on a typical arithmetic task, integer multiplication, to explore and explain the imperfection of transformers in this domain. We provide comprehensive analysis of a vanilla transformer trained to perform n-digit integer multiplication. Our observations indicate that the model decomposes multiplication task into multiple parallel subtasks, sequentially optimizing each subtask for each digit to complete the final multiplication. Based on observation and analysis, we infer the reasons of transformers deficiencies in multiplication tasks lies in their difficulty in calculating successive carryovers and caching intermediate results, and confirmed this inference through experiments. Guided by these findings, we propose improvements to enhance transformers performance on multiplication tasks. These enhancements are validated through rigorous testing and mathematical modeling, not only enhance transformer's interpretability, but also improve its performance, e.g., we achieve over 99.9% accuracy on 5-digit integer multiplication with a tiny transformer, outperform LLMs GPT-4. Our method contributes to the broader fields of model understanding and interpretability, paving the way for analyzing more complex tasks and Transformer models. This work underscores the importance of explainable AI, helping to build trust in large language models and promoting their adoption in critical applications.
Met^2Net: A Decoupled Two-Stage Spatio-Temporal Forecasting Model for Complex Meteorological Systems
The increasing frequency of extreme weather events due to global climate change urges accurate weather prediction. Recently, great advances have been made by the end-to-end methods, thanks to deep learning techniques, but they face limitations of representation inconsistency in multivariable integration and struggle to effectively capture the dependency between variables, which is required in complex weather systems. Treating different variables as distinct modalities and applying a two-stage training approach from multimodal models can partially alleviate this issue, but due to the inconformity in training tasks between the two stages, the results are often suboptimal. To address these challenges, we propose an implicit two-stage training method, configuring separate encoders and decoders for each variable. In detailed, in the first stage, the Translator is frozen while the Encoders and Decoders learn a shared latent space, in the second stage, the Encoders and Decoders are frozen, and the Translator captures inter-variable interactions for prediction. Besides, by introducing a self-attention mechanism for multivariable fusion in the latent space, the performance achieves further improvements. Empirically, extensive experiments show the state-of-the-art performance of our method. Specifically, it reduces the MSE for near-surface air temperature and relative humidity predictions by 28.82\% and 23.39\%, respectively. The source code is available at https://github.com/ShremG/Met2Net.
KnowledgeMath: Knowledge-Intensive Math Word Problem Solving in Finance Domains
We introduce KnowledgeMath, a novel benchmark designed to evaluate LLMs' capabilities in applying financial knowledge to solve complex math word problems. Compared to prior works, this study features three core advancements. First, KnowledgeMath includes 1,259 problems with a hybrid of textual and tabular content and require college-level knowledge in the finance domain for effective resolution. Second, we provide expert-annotated, detailed solution references in Python program format, ensuring a high-quality benchmark for LLM assessment. Finally, we evaluate a wide spectrum of 14 LLMs with different prompting strategies like Chain-of-Thoughts and Program-of-Thoughts. The current best-performing system (i.e., GPT-4 with Program-of-Thoughts) achieves only 45.4% accuracy, leaving substantial room for improvement. While knowledge-augmented LLMs can improve the performance (e.g., from 23.9% to 32.0% for GPT-3.5), it is still significantly lower the estimated human expert performance of 94%. We believe that KnowledgeMath can facilitate future research on domain-specific knowledge retrieval and augmentation into the math word problem-solving process. We will release the benchmark and code at https://github.com/yale-nlp/KnowledgeMath.
Rethinking Thinking Tokens: LLMs as Improvement Operators
Reasoning training incentivizes LLMs to produce long chains of thought (long CoT), which among other things, allows them to explore solution strategies with self-checking. This results in higher accuracy, but inflates context length, token/compute cost, and answer latency. We ask: Can current models leverage their metacognition to provide other combinations on this Pareto frontier, e.g., better accuracy with lower context length and/or latency? Abstractly, we view the model as an improvement operator on its own "thoughts" with a continuum of possible strategies. We identify an interesting inference family Parallel-Distill-Refine (PDR), which performs the following: (i) generate diverse drafts in parallel; (ii) distill them into a bounded, textual workspace; and (iii) refine conditioned on this workspace, producing an output that seeds the next round. Importantly, context length (hence compute cost) is controllable via degree of parallelism, and is no longer conflated with the total number of generated tokens. We report PDR instantiations of current models that give better accuracy than long CoT while incurring lower latency. Setting degree of parallelism to 1 yields an interesting subcase, Sequential Refinement (SR) (iteratively improve a single candidate answer) which provides performance superior to long CoT. Success of such model orchestrations raises the question whether further training could shift the Pareto frontier. To this end, we train an 8B thinking model with Reinforcement Learning (RL) to make it consistent with PDR as the inference method. On math tasks with verifiable answers, iterative pipelines surpass single-pass baselines at matched sequential budgets, with PDR delivering the largest gains (e.g., +11% on AIME 2024 and +9% on AIME 2025).
Martingale Posterior Neural Processes
A Neural Process (NP) estimates a stochastic process implicitly defined with neural networks given a stream of data, rather than pre-specifying priors already known, such as Gaussian processes. An ideal NP would learn everything from data without any inductive biases, but in practice, we often restrict the class of stochastic processes for the ease of estimation. One such restriction is the use of a finite-dimensional latent variable accounting for the uncertainty in the functions drawn from NPs. Some recent works show that this can be improved with more "data-driven" source of uncertainty such as bootstrapping. In this work, we take a different approach based on the martingale posterior, a recently developed alternative to Bayesian inference. For the martingale posterior, instead of specifying prior-likelihood pairs, a predictive distribution for future data is specified. Under specific conditions on the predictive distribution, it can be shown that the uncertainty in the generated future data actually corresponds to the uncertainty of the implicitly defined Bayesian posteriors. Based on this result, instead of assuming any form of the latent variables, we equip a NP with a predictive distribution implicitly defined with neural networks and use the corresponding martingale posteriors as the source of uncertainty. The resulting model, which we name as Martingale Posterior Neural Process (MPNP), is demonstrated to outperform baselines on various tasks.
Composable Text Controls in Latent Space with ODEs
Real-world text applications often involve composing a wide range of text control operations, such as editing the text w.r.t. an attribute, manipulating keywords and structure, and generating new text of desired properties. Prior work typically learns/finetunes a language model (LM) to perform individual or specific subsets of operations. Recent research has studied combining operations in a plug-and-play manner, often with costly search or optimization in the complex sequence space. This paper proposes a new efficient approach for composable text operations in the compact latent space of text. The low-dimensionality and differentiability of the text latent vector allow us to develop an efficient sampler based on ordinary differential equations (ODEs) given arbitrary plug-in operators (e.g., attribute classifiers). By connecting pretrained LMs (e.g., GPT2) to the latent space through efficient adaption, we then decode the sampled vectors into desired text sequences. The flexible approach permits diverse control operators (sentiment, tense, formality, keywords, etc.) acquired using any relevant data from different domains. Experiments show that composing those operators within our approach manages to generate or edit high-quality text, substantially improving over previous methods in terms of generation quality and efficiency.
Beyond Vanilla Variational Autoencoders: Detecting Posterior Collapse in Conditional and Hierarchical Variational Autoencoders
The posterior collapse phenomenon in variational autoencoder (VAE), where the variational posterior distribution closely matches the prior distribution, can hinder the quality of the learned latent variables. As a consequence of posterior collapse, the latent variables extracted by the encoder in VAE preserve less information from the input data and thus fail to produce meaningful representations as input to the reconstruction process in the decoder. While this phenomenon has been an actively addressed topic related to VAE performance, the theory for posterior collapse remains underdeveloped, especially beyond the standard VAE. In this work, we advance the theoretical understanding of posterior collapse to two important and prevalent yet less studied classes of VAE: conditional VAE and hierarchical VAE. Specifically, via a non-trivial theoretical analysis of linear conditional VAE and hierarchical VAE with two levels of latent, we prove that the cause of posterior collapses in these models includes the correlation between the input and output of the conditional VAE and the effect of learnable encoder variance in the hierarchical VAE. We empirically validate our theoretical findings for linear conditional and hierarchical VAE and demonstrate that these results are also predictive for non-linear cases with extensive experiments.
Linear Time GPs for Inferring Latent Trajectories from Neural Spike Trains
Latent Gaussian process (GP) models are widely used in neuroscience to uncover hidden state evolutions from sequential observations, mainly in neural activity recordings. While latent GP models provide a principled and powerful solution in theory, the intractable posterior in non-conjugate settings necessitates approximate inference schemes, which may lack scalability. In this work, we propose cvHM, a general inference framework for latent GP models leveraging Hida-Mat\'ern kernels and conjugate computation variational inference (CVI). With cvHM, we are able to perform variational inference of latent neural trajectories with linear time complexity for arbitrary likelihoods. The reparameterization of stationary kernels using Hida-Mat\'ern GPs helps us connect the latent variable models that encode prior assumptions through dynamical systems to those that encode trajectory assumptions through GPs. In contrast to previous work, we use bidirectional information filtering, leading to a more concise implementation. Furthermore, we employ the Whittle approximate likelihood to achieve highly efficient hyperparameter learning.
Math Agents: Computational Infrastructure, Mathematical Embedding, and Genomics
The advancement in generative AI could be boosted with more accessible mathematics. Beyond human-AI chat, large language models (LLMs) are emerging in programming, algorithm discovery, and theorem proving, yet their genomics application is limited. This project introduces Math Agents and mathematical embedding as fresh entries to the "Moore's Law of Mathematics", using a GPT-based workflow to convert equations from literature into LaTeX and Python formats. While many digital equation representations exist, there's a lack of automated large-scale evaluation tools. LLMs are pivotal as linguistic user interfaces, providing natural language access for human-AI chat and formal languages for large-scale AI-assisted computational infrastructure. Given the infinite formal possibility spaces, Math Agents, which interact with math, could potentially shift us from "big data" to "big math". Math, unlike the more flexible natural language, has properties subject to proof, enabling its use beyond traditional applications like high-validation math-certified icons for AI alignment aims. This project aims to use Math Agents and mathematical embeddings to address the ageing issue in information systems biology by applying multiscalar physics mathematics to disease models and genomic data. Generative AI with episodic memory could help analyse causal relations in longitudinal health records, using SIR Precision Health models. Genomic data is suggested for addressing the unsolved Alzheimer's disease problem.
Measuring and Guiding Monosemanticity
There is growing interest in leveraging mechanistic interpretability and controllability to better understand and influence the internal dynamics of large language models (LLMs). However, current methods face fundamental challenges in reliably localizing and manipulating feature representations. Sparse Autoencoders (SAEs) have recently emerged as a promising direction for feature extraction at scale, yet they, too, are limited by incomplete feature isolation and unreliable monosemanticity. To systematically quantify these limitations, we introduce Feature Monosemanticity Score (FMS), a novel metric to quantify feature monosemanticity in latent representation. Building on these insights, we propose Guided Sparse Autoencoders (G-SAE), a method that conditions latent representations on labeled concepts during training. We demonstrate that reliable localization and disentanglement of target concepts within the latent space improve interpretability, detection of behavior, and control. Specifically, our evaluations on toxicity detection, writing style identification, and privacy attribute recognition show that G-SAE not only enhances monosemanticity but also enables more effective and fine-grained steering with less quality degradation. Our findings provide actionable guidelines for measuring and advancing mechanistic interpretability and control of LLMs.
Exploring the latent space of diffusion models directly through singular value decomposition
Despite the groundbreaking success of diffusion models in generating high-fidelity images, their latent space remains relatively under-explored, even though it holds significant promise for enabling versatile and interpretable image editing capabilities. The complicated denoising trajectory and high dimensionality of the latent space make it extremely challenging to interpret. Existing methods mainly explore the feature space of U-Net in Diffusion Models (DMs) instead of the latent space itself. In contrast, we directly investigate the latent space via Singular Value Decomposition (SVD) and discover three useful properties that can be used to control generation results without the requirements of data collection and maintain identity fidelity generated images. Based on these properties, we propose a novel image editing framework that is capable of learning arbitrary attributes from one pair of latent codes destined by text prompts in Stable Diffusion Models. To validate our approach, extensive experiments are conducted to demonstrate its effectiveness and flexibility in image editing. We will release our codes soon to foster further research and applications in this area.
Reasoning with Latent Diffusion in Offline Reinforcement Learning
Offline reinforcement learning (RL) holds promise as a means to learn high-reward policies from a static dataset, without the need for further environment interactions. However, a key challenge in offline RL lies in effectively stitching portions of suboptimal trajectories from the static dataset while avoiding extrapolation errors arising due to a lack of support in the dataset. Existing approaches use conservative methods that are tricky to tune and struggle with multi-modal data (as we show) or rely on noisy Monte Carlo return-to-go samples for reward conditioning. In this work, we propose a novel approach that leverages the expressiveness of latent diffusion to model in-support trajectory sequences as compressed latent skills. This facilitates learning a Q-function while avoiding extrapolation error via batch-constraining. The latent space is also expressive and gracefully copes with multi-modal data. We show that the learned temporally-abstract latent space encodes richer task-specific information for offline RL tasks as compared to raw state-actions. This improves credit assignment and facilitates faster reward propagation during Q-learning. Our method demonstrates state-of-the-art performance on the D4RL benchmarks, particularly excelling in long-horizon, sparse-reward tasks.
Characterizing and Efficiently Accelerating Multimodal Generation Model Inference
Generative artificial intelligence (AI) technology is revolutionizing the computing industry. Not only its applications have broadened to various sectors but also poses new system design and optimization opportunities. The technology is capable of understanding and responding in multiple modalities. However, the advanced capability currently comes with significant system resource demands. To sustainably scale generative AI capabilities to billions of users in the world, inference must be fast and efficient. This paper pinpoints key system design and optimization opportunities by characterizing a family of emerging multi-modal generation models on real systems. Auto-regressive token generation is a critical latency performance bottleneck, typically dominated by GPU idle time. In addition to memory-intensive attention across the generative AI models, linear operations constitute significant inference latency due to the feed forward networks in Transformer-based models. We demonstrate that state-of-the-art optimization levers, spanning from applications to system software and hardware, set a 3.88x better baseline.
Video Probabilistic Diffusion Models in Projected Latent Space
Despite the remarkable progress in deep generative models, synthesizing high-resolution and temporally coherent videos still remains a challenge due to their high-dimensionality and complex temporal dynamics along with large spatial variations. Recent works on diffusion models have shown their potential to solve this challenge, yet they suffer from severe computation- and memory-inefficiency that limit the scalability. To handle this issue, we propose a novel generative model for videos, coined projected latent video diffusion models (PVDM), a probabilistic diffusion model which learns a video distribution in a low-dimensional latent space and thus can be efficiently trained with high-resolution videos under limited resources. Specifically, PVDM is composed of two components: (a) an autoencoder that projects a given video as 2D-shaped latent vectors that factorize the complex cubic structure of video pixels and (b) a diffusion model architecture specialized for our new factorized latent space and the training/sampling procedure to synthesize videos of arbitrary length with a single model. Experiments on popular video generation datasets demonstrate the superiority of PVDM compared with previous video synthesis methods; e.g., PVDM obtains the FVD score of 639.7 on the UCF-101 long video (128 frames) generation benchmark, which improves 1773.4 of the prior state-of-the-art.
Zero-Shot Question Answering over Financial Documents using Large Language Models
We introduce a large language model (LLM) based approach to answer complex questions requiring multi-hop numerical reasoning over financial reports. While LLMs have exhibited remarkable performance on various natural language and reasoning tasks, complex reasoning problems often rely on few-shot prompts that require carefully crafted examples. In contrast, our approach uses novel zero-shot prompts that guide the LLM to encode the required reasoning into a Python program or a domain specific language. The generated program is then executed by a program interpreter, thus mitigating the limitations of LLM in performing accurate arithmetic calculations. We evaluate the proposed approach on three financial datasets using some of the recently developed generative pretrained transformer (GPT) models and perform comparisons with various zero-shot baselines. The experimental results demonstrate that our approach significantly improves the accuracy for all the LLMs over their respective baselines. We provide a detailed analysis of the results, generating insights to support our findings. The success of our approach demonstrates the enormous potential to extract complex domain specific numerical reasoning by designing zero-shot prompts to effectively exploit the knowledge embedded in LLMs.
Turning Dust into Gold: Distilling Complex Reasoning Capabilities from LLMs by Leveraging Negative Data
Large Language Models (LLMs) have performed well on various reasoning tasks, but their inaccessibility and numerous parameters hinder wide application in practice. One promising way is distilling the reasoning ability from LLMs to small models by the generated chain-of-thought reasoning paths. In some cases, however, LLMs may produce incorrect reasoning chains, especially when facing complex mathematical problems. Previous studies only transfer knowledge from positive samples and drop the synthesized data with wrong answers. In this work, we illustrate the merit of negative data and propose a model specialization framework to distill LLMs with negative samples besides positive ones. The framework consists of three progressive steps, covering from training to inference stages, to absorb knowledge from negative data. We conduct extensive experiments across arithmetic reasoning tasks to demonstrate the role of negative data in distillation from LLM.
Graph-Augmented Reasoning: Evolving Step-by-Step Knowledge Graph Retrieval for LLM Reasoning
Recent large language model (LLM) reasoning, despite its success, suffers from limited domain knowledge, susceptibility to hallucinations, and constrained reasoning depth, particularly in small-scale models deployed in resource-constrained environments. This paper presents the first investigation into integrating step-wise knowledge graph retrieval with step-wise reasoning to address these challenges, introducing a novel paradigm termed as graph-augmented reasoning. Our goal is to enable frozen, small-scale LLMs to retrieve and process relevant mathematical knowledge in a step-wise manner, enhancing their problem-solving abilities without additional training. To this end, we propose KG-RAR, a framework centered on process-oriented knowledge graph construction, a hierarchical retrieval strategy, and a universal post-retrieval processing and reward model (PRP-RM) that refines retrieved information and evaluates each reasoning step. Experiments on the Math500 and GSM8K benchmarks across six models demonstrate that KG-RAR yields encouraging results, achieving a 20.73\% relative improvement with Llama-3B on Math500.
Diffusion Transformers with Representation Autoencoders
Latent generative modeling, where a pretrained autoencoder maps pixels into a latent space for the diffusion process, has become the standard strategy for Diffusion Transformers (DiT); however, the autoencoder component has barely evolved. Most DiTs continue to rely on the original VAE encoder, which introduces several limitations: outdated backbones that compromise architectural simplicity, low-dimensional latent spaces that restrict information capacity, and weak representations that result from purely reconstruction-based training and ultimately limit generative quality. In this work, we explore replacing the VAE with pretrained representation encoders (e.g., DINO, SigLIP, MAE) paired with trained decoders, forming what we term Representation Autoencoders (RAEs). These models provide both high-quality reconstructions and semantically rich latent spaces, while allowing for a scalable transformer-based architecture. Since these latent spaces are typically high-dimensional, a key challenge is enabling diffusion transformers to operate effectively within them. We analyze the sources of this difficulty, propose theoretically motivated solutions, and validate them empirically. Our approach achieves faster convergence without auxiliary representation alignment losses. Using a DiT variant equipped with a lightweight, wide DDT head, we achieve strong image generation results on ImageNet: 1.51 FID at 256x256 (no guidance) and 1.13 at both 256x256 and 512x512 (with guidance). RAE offers clear advantages and should be the new default for diffusion transformer training.
The Hallucination Tax of Reinforcement Finetuning
Reinforcement finetuning (RFT) has become a standard approach for enhancing the reasoning capabilities of large language models (LLMs). However, its impact on model trustworthiness remains underexplored. In this work, we identify and systematically study a critical side effect of RFT, which we term the hallucination tax: a degradation in refusal behavior causing models to produce hallucinated answers to unanswerable questions confidently. To investigate this, we introduce SUM (Synthetic Unanswerable Math), a high-quality dataset of unanswerable math problems designed to probe models' ability to recognize an unanswerable question by reasoning from the insufficient or ambiguous information. Our results show that standard RFT training could reduce model refusal rates by more than 80%, which significantly increases model's tendency to hallucinate. We further demonstrate that incorporating just 10% SUM during RFT substantially restores appropriate refusal behavior, with minimal accuracy trade-offs on solvable tasks. Crucially, this approach enables LLMs to leverage inference-time compute to reason about their own uncertainty and knowledge boundaries, improving generalization not only to out-of-domain math problems but also to factual question answering tasks.
LatentSpeech: Latent Diffusion for Text-To-Speech Generation
Diffusion-based Generative AI gains significant attention for its superior performance over other generative techniques like Generative Adversarial Networks and Variational Autoencoders. While it has achieved notable advancements in fields such as computer vision and natural language processing, their application in speech generation remains under-explored. Mainstream Text-to-Speech systems primarily map outputs to Mel-Spectrograms in the spectral space, leading to high computational loads due to the sparsity of MelSpecs. To address these limitations, we propose LatentSpeech, a novel TTS generation approach utilizing latent diffusion models. By using latent embeddings as the intermediate representation, LatentSpeech reduces the target dimension to 5% of what is required for MelSpecs, simplifying the processing for the TTS encoder and vocoder and enabling efficient high-quality speech generation. This study marks the first integration of latent diffusion models in TTS, enhancing the accuracy and naturalness of generated speech. Experimental results on benchmark datasets demonstrate that LatentSpeech achieves a 25% improvement in Word Error Rate and a 24% improvement in Mel Cepstral Distortion compared to existing models, with further improvements rising to 49.5% and 26%, respectively, with additional training data. These findings highlight the potential of LatentSpeech to advance the state-of-the-art in TTS technology
