new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Nov 7

DAS: Dual-Aligned Semantic IDs Empowered Industrial Recommender System

Semantic IDs are discrete identifiers generated by quantizing the Multi-modal Large Language Models (MLLMs) embeddings, enabling efficient multi-modal content integration in recommendation systems. However, their lack of collaborative signals results in a misalignment with downstream discriminative and generative recommendation objectives. Recent studies have introduced various alignment mechanisms to address this problem, but their two-stage framework design still leads to two main limitations: (1) inevitable information loss during alignment, and (2) inflexibility in applying adaptive alignment strategies, consequently constraining the mutual information maximization during the alignment process. To address these limitations, we propose a novel and flexible one-stage Dual-Aligned Semantic IDs (DAS) method that simultaneously optimizes quantization and alignment, preserving semantic integrity and alignment quality while avoiding the information loss typically associated with two-stage methods. Meanwhile, DAS achieves more efficient alignment between the semantic IDs and collaborative signals, with the following two innovative and effective approaches: (1) Multi-view Constrative Alignment: To maximize mutual information between semantic IDs and collaborative signals, we first incorporate an ID-based CF debias module, and then design three effective contrastive alignment methods: dual user-to-item (u2i), dual item-to-item/user-to-user (i2i/u2u), and dual co-occurrence item-to-item/user-to-user (i2i/u2u). (2) Dual Learning: By aligning the dual quantizations of users and ads, the constructed semantic IDs for users and ads achieve stronger alignment. Finally, we conduct extensive offline experiments and online A/B tests to evaluate DAS's effectiveness, which is now successfully deployed across various advertising scenarios at Kuaishou App, serving over 400 million users daily.

  • 6 authors
·
Aug 14

Dual-Encoders for Extreme Multi-Label Classification

Dual-encoder (DE) models are widely used in retrieval tasks, most commonly studied on open QA benchmarks that are often characterized by multi-class and limited training data. In contrast, their performance in multi-label and data-rich retrieval settings like extreme multi-label classification (XMC), remains under-explored. Current empirical evidence indicates that DE models fall significantly short on XMC benchmarks, where SOTA methods linearly scale the number of learnable parameters with the total number of classes (documents in the corpus) by employing per-class classification head. To this end, we first study and highlight that existing multi-label contrastive training losses are not appropriate for training DE models on XMC tasks. We propose decoupled softmax loss - a simple modification to the InfoNCE loss - that overcomes the limitations of existing contrastive losses. We further extend our loss design to a soft top-k operator-based loss which is tailored to optimize top-k prediction performance. When trained with our proposed loss functions, standard DE models alone can match or outperform SOTA methods by up to 2% at Precision@1 even on the largest XMC datasets while being 20x smaller in terms of the number of trainable parameters. This leads to more parameter-efficient and universally applicable solutions for retrieval tasks. Our code and models are publicly available at https://github.com/nilesh2797/dexml.

  • 6 authors
·
Oct 16, 2023

Simple Semi-supervised Knowledge Distillation from Vision-Language Models via texttt{D}ual-texttt{H}ead texttt{O}ptimization

Vision-language models (VLMs) have achieved remarkable success across diverse tasks by leveraging rich textual information with minimal labeled data. However, deploying such large models remains challenging, particularly in resource-constrained environments. Knowledge distillation (KD) offers a well-established solution to this problem; however, recent KD approaches from VLMs often involve multi-stage training or additional tuning, increasing computational overhead and optimization complexity. In this paper, we propose texttt{D}ual-texttt{H}ead texttt{O}ptimization (texttt{DHO}) -- a simple yet effective KD framework that transfers knowledge from VLMs to compact, task-specific models in semi-supervised settings. Specifically, we introduce dual prediction heads that independently learn from labeled data and teacher predictions, and propose to linearly combine their outputs during inference. We observe that DHO mitigates gradient conflicts between supervised and distillation signals, enabling more effective feature learning than single-head KD baselines. As a result, extensive experiments show that DHO consistently outperforms baselines across multiple domains and fine-grained datasets. Notably, on ImageNet, it achieves state-of-the-art performance, improving accuracy by 3% and 0.1% with 1% and 10% labeled data, respectively, while using fewer parameters.

  • 4 authors
·
May 12 3

Attentive WaveBlock: Complementarity-enhanced Mutual Networks for Unsupervised Domain Adaptation in Person Re-identification and Beyond

Unsupervised domain adaptation (UDA) for person re-identification is challenging because of the huge gap between the source and target domain. A typical self-training method is to use pseudo-labels generated by clustering algorithms to iteratively optimize the model on the target domain. However, a drawback to this is that noisy pseudo-labels generally cause trouble in learning. To address this problem, a mutual learning method by dual networks has been developed to produce reliable soft labels. However, as the two neural networks gradually converge, their complementarity is weakened and they likely become biased towards the same kind of noise. This paper proposes a novel light-weight module, the Attentive WaveBlock (AWB), which can be integrated into the dual networks of mutual learning to enhance the complementarity and further depress noise in the pseudo-labels. Specifically, we first introduce a parameter-free module, the WaveBlock, which creates a difference between features learned by two networks by waving blocks of feature maps differently. Then, an attention mechanism is leveraged to enlarge the difference created and discover more complementary features. Furthermore, two kinds of combination strategies, i.e. pre-attention and post-attention, are explored. Experiments demonstrate that the proposed method achieves state-of-the-art performance with significant improvements on multiple UDA person re-identification tasks. We also prove the generality of the proposed method by applying it to vehicle re-identification and image classification tasks. Our codes and models are available at https://github.com/WangWenhao0716/Attentive-WaveBlock.

  • 4 authors
·
Jun 11, 2020

Robust Active Distillation

Distilling knowledge from a large teacher model to a lightweight one is a widely successful approach for generating compact, powerful models in the semi-supervised learning setting where a limited amount of labeled data is available. In large-scale applications, however, the teacher tends to provide a large number of incorrect soft-labels that impairs student performance. The sheer size of the teacher additionally constrains the number of soft-labels that can be queried due to prohibitive computational and/or financial costs. The difficulty in achieving simultaneous efficiency (i.e., minimizing soft-label queries) and robustness (i.e., avoiding student inaccuracies due to incorrect labels) hurts the widespread application of knowledge distillation to many modern tasks. In this paper, we present a parameter-free approach with provable guarantees to query the soft-labels of points that are simultaneously informative and correctly labeled by the teacher. At the core of our work lies a game-theoretic formulation that explicitly considers the inherent trade-off between the informativeness and correctness of input instances. We establish bounds on the expected performance of our approach that hold even in worst-case distillation instances. We present empirical evaluations on popular benchmarks that demonstrate the improved distillation performance enabled by our work relative to that of state-of-the-art active learning and active distillation methods.

  • 5 authors
·
Oct 3, 2022

ProtoGCD: Unified and Unbiased Prototype Learning for Generalized Category Discovery

Generalized category discovery (GCD) is a pragmatic but underexplored problem, which requires models to automatically cluster and discover novel categories by leveraging the labeled samples from old classes. The challenge is that unlabeled data contain both old and new classes. Early works leveraging pseudo-labeling with parametric classifiers handle old and new classes separately, which brings about imbalanced accuracy between them. Recent methods employing contrastive learning neglect potential positives and are decoupled from the clustering objective, leading to biased representations and sub-optimal results. To address these issues, we introduce a unified and unbiased prototype learning framework, namely ProtoGCD, wherein old and new classes are modeled with joint prototypes and unified learning objectives, {enabling unified modeling between old and new classes}. Specifically, we propose a dual-level adaptive pseudo-labeling mechanism to mitigate confirmation bias, together with two regularization terms to collectively help learn more suitable representations for GCD. Moreover, for practical considerations, we devise a criterion to estimate the number of new classes. Furthermore, we extend ProtoGCD to detect unseen outliers, achieving task-level unification. Comprehensive experiments show that ProtoGCD achieves state-of-the-art performance on both generic and fine-grained datasets. The code is available at https://github.com/mashijie1028/ProtoGCD.

  • 4 authors
·
Apr 2 2

Mind the Gap: Polishing Pseudo labels for Accurate Semi-supervised Object Detection

Exploiting pseudo labels (e.g., categories and bounding boxes) of unannotated objects produced by a teacher detector have underpinned much of recent progress in semi-supervised object detection (SSOD). However, due to the limited generalization capacity of the teacher detector caused by the scarce annotations, the produced pseudo labels often deviate from ground truth, especially those with relatively low classification confidences, thus limiting the generalization performance of SSOD. To mitigate this problem, we propose a dual pseudo-label polishing framework for SSOD. Instead of directly exploiting the pseudo labels produced by the teacher detector, we take the first attempt at reducing their deviation from ground truth using dual polishing learning, where two differently structured polishing networks are elaborately developed and trained using synthesized paired pseudo labels and the corresponding ground truth for categories and bounding boxes on the given annotated objects, respectively. By doing this, both polishing networks can infer more accurate pseudo labels for unannotated objects through sufficiently exploiting their context knowledge based on the initially produced pseudo labels, and thus improve the generalization performance of SSOD. Moreover, such a scheme can be seamlessly plugged into the existing SSOD framework for joint end-to-end learning. In addition, we propose to disentangle the polished pseudo categories and bounding boxes of unannotated objects for separate category classification and bounding box regression in SSOD, which enables introducing more unannotated objects during model training and thus further improve the performance. Experiments on both PASCAL VOC and MS COCO benchmarks demonstrate the superiority of the proposed method over existing state-of-the-art baselines.

  • 3 authors
·
Jul 17, 2022

The Gauss-Markov Adjunction: Categorical Semantics of Residuals in Supervised Learning

Enhancing the intelligibility and interpretability of machine learning is a crucial task in responding to the demand for Explicability as an AI principle, and in promoting the better social implementation of AI. The aim of our research is to contribute to this improvement by reformulating machine learning models through the lens of category theory, thereby developing a semantic framework for structuring and understanding AI systems. Our categorical modeling in this paper clarifies and formalizes the structural interplay between residuals and parameters in supervised learning. The present paper focuses on the multiple linear regression model, which represents the most basic form of supervised learning. By defining two concrete categories corresponding to parameters and data, along with an adjoint pair of functors between them, we introduce our categorical formulation of supervised learning. We show that the essential structure of this framework is captured by what we call the Gauss-Markov Adjunction. Within this setting, the dual flow of information can be explicitly described as a correspondence between variations in parameters and residuals. The ordinary least squares estimator for the parameters and the minimum residual are related via the preservation of limits by the right adjoint functor. Furthermore, we position this formulation as an instance of extended denotational semantics for supervised learning, and propose applying a semantic perspective developed in theoretical computer science as a formal foundation for Explicability in AI.

Multi-label Cluster Discrimination for Visual Representation Learning

Contrastive Language Image Pre-training (CLIP) has recently demonstrated success across various tasks due to superior feature representation empowered by image-text contrastive learning. However, the instance discrimination method used by CLIP can hardly encode the semantic structure of training data. To handle this limitation, cluster discrimination has been proposed through iterative cluster assignment and classification. Nevertheless, most cluster discrimination approaches only define a single pseudo-label for each image, neglecting multi-label signals in the image. In this paper, we propose a novel Multi-Label Cluster Discrimination method named MLCD to enhance representation learning. In the clustering step, we first cluster the large-scale LAION-400M dataset into one million centers based on off-the-shelf embedding features. Considering that natural images frequently contain multiple visual objects or attributes, we select the multiple closest centers as auxiliary class labels. In the discrimination step, we design a novel multi-label classification loss, which elegantly separates losses from positive classes and negative classes, and alleviates ambiguity on decision boundary. We validate the proposed multi-label cluster discrimination method with experiments on different scales of models and pre-training datasets. Experimental results show that our method achieves state-of-the-art performance on multiple downstream tasks including linear probe, zero-shot classification, and image-text retrieval.

  • 5 authors
·
Jul 24, 2024

Self-supervised Label Augmentation via Input Transformations

Self-supervised learning, which learns by constructing artificial labels given only the input signals, has recently gained considerable attention for learning representations with unlabeled datasets, i.e., learning without any human-annotated supervision. In this paper, we show that such a technique can be used to significantly improve the model accuracy even under fully-labeled datasets. Our scheme trains the model to learn both original and self-supervised tasks, but is different from conventional multi-task learning frameworks that optimize the summation of their corresponding losses. Our main idea is to learn a single unified task with respect to the joint distribution of the original and self-supervised labels, i.e., we augment original labels via self-supervision of input transformation. This simple, yet effective approach allows to train models easier by relaxing a certain invariant constraint during learning the original and self-supervised tasks simultaneously. It also enables an aggregated inference which combines the predictions from different augmentations to improve the prediction accuracy. Furthermore, we propose a novel knowledge transfer technique, which we refer to as self-distillation, that has the effect of the aggregated inference in a single (faster) inference. We demonstrate the large accuracy improvement and wide applicability of our framework on various fully-supervised settings, e.g., the few-shot and imbalanced classification scenarios.

  • 3 authors
·
Oct 13, 2019

Learning from Label Proportions: Bootstrapping Supervised Learners via Belief Propagation

Learning from Label Proportions (LLP) is a learning problem where only aggregate level labels are available for groups of instances, called bags, during training, and the aim is to get the best performance at the instance-level on the test data. This setting arises in domains like advertising and medicine due to privacy considerations. We propose a novel algorithmic framework for this problem that iteratively performs two main steps. For the first step (Pseudo Labeling) in every iteration, we define a Gibbs distribution over binary instance labels that incorporates a) covariate information through the constraint that instances with similar covariates should have similar labels and b) the bag level aggregated label. We then use Belief Propagation (BP) to marginalize the Gibbs distribution to obtain pseudo labels. In the second step (Embedding Refinement), we use the pseudo labels to provide supervision for a learner that yields a better embedding. Further, we iterate on the two steps again by using the second step's embeddings as new covariates for the next iteration. In the final iteration, a classifier is trained using the pseudo labels. Our algorithm displays strong gains against several SOTA baselines (up to 15%) for the LLP Binary Classification problem on various dataset types - tabular and Image. We achieve these improvements with minimal computational overhead above standard supervised learning due to Belief Propagation, for large bag sizes, even for a million samples.

  • 5 authors
·
Oct 12, 2023

Label Anything: Multi-Class Few-Shot Semantic Segmentation with Visual Prompts

Few-shot semantic segmentation aims to segment objects from previously unseen classes using only a limited number of labeled examples. In this paper, we introduce Label Anything, a novel transformer-based architecture designed for multi-prompt, multi-way few-shot semantic segmentation. Our approach leverages diverse visual prompts -- points, bounding boxes, and masks -- to create a highly flexible and generalizable framework that significantly reduces annotation burden while maintaining high accuracy. Label Anything makes three key contributions: (i) we introduce a new task formulation that relaxes conventional few-shot segmentation constraints by supporting various types of prompts, multi-class classification, and enabling multiple prompts within a single image; (ii) we propose a novel architecture based on transformers and attention mechanisms; and (iii) we design a versatile training procedure allowing our model to operate seamlessly across different N-way K-shot and prompt-type configurations with a single trained model. Our extensive experimental evaluation on the widely used COCO-20^i benchmark demonstrates that Label Anything achieves state-of-the-art performance among existing multi-way few-shot segmentation methods, while significantly outperforming leading single-class models when evaluated in multi-class settings. Code and trained models are available at https://github.com/pasqualedem/LabelAnything.

  • 7 authors
·
Jul 2, 2024

PatchCT: Aligning Patch Set and Label Set with Conditional Transport for Multi-Label Image Classification

Multi-label image classification is a prediction task that aims to identify more than one label from a given image. This paper considers the semantic consistency of the latent space between the visual patch and linguistic label domains and introduces the conditional transport (CT) theory to bridge the acknowledged gap. While recent cross-modal attention-based studies have attempted to align such two representations and achieved impressive performance, they required carefully-designed alignment modules and extra complex operations in the attention computation. We find that by formulating the multi-label classification as a CT problem, we can exploit the interactions between the image and label efficiently by minimizing the bidirectional CT cost. Specifically, after feeding the images and textual labels into the modality-specific encoders, we view each image as a mixture of patch embeddings and a mixture of label embeddings, which capture the local region features and the class prototypes, respectively. CT is then employed to learn and align those two semantic sets by defining the forward and backward navigators. Importantly, the defined navigators in CT distance model the similarities between patches and labels, which provides an interpretable tool to visualize the learned prototypes. Extensive experiments on three public image benchmarks show that the proposed model consistently outperforms the previous methods.

  • 7 authors
·
Jul 18, 2023

Edge Representation Learning with Hypergraphs

Graph neural networks have recently achieved remarkable success in representing graph-structured data, with rapid progress in both the node embedding and graph pooling methods. Yet, they mostly focus on capturing information from the nodes considering their connectivity, and not much work has been done in representing the edges, which are essential components of a graph. However, for tasks such as graph reconstruction and generation, as well as graph classification tasks for which the edges are important for discrimination, accurately representing edges of a given graph is crucial to the success of the graph representation learning. To this end, we propose a novel edge representation learning framework based on Dual Hypergraph Transformation (DHT), which transforms the edges of a graph into the nodes of a hypergraph. This dual hypergraph construction allows us to apply message-passing techniques for node representations to edges. After obtaining edge representations from the hypergraphs, we then cluster or drop edges to obtain holistic graph-level edge representations. We validate our edge representation learning method with hypergraphs on diverse graph datasets for graph representation and generation performance, on which our method largely outperforms existing graph representation learning methods. Moreover, our edge representation learning and pooling method also largely outperforms state-of-the-art graph pooling methods on graph classification, not only because of its accurate edge representation learning, but also due to its lossless compression of the nodes and removal of irrelevant edges for effective message-passing.

  • 6 authors
·
Jun 30, 2021

LaSO: Label-Set Operations networks for multi-label few-shot learning

Example synthesis is one of the leading methods to tackle the problem of few-shot learning, where only a small number of samples per class are available. However, current synthesis approaches only address the scenario of a single category label per image. In this work, we propose a novel technique for synthesizing samples with multiple labels for the (yet unhandled) multi-label few-shot classification scenario. We propose to combine pairs of given examples in feature space, so that the resulting synthesized feature vectors will correspond to examples whose label sets are obtained through certain set operations on the label sets of the corresponding input pairs. Thus, our method is capable of producing a sample containing the intersection, union or set-difference of labels present in two input samples. As we show, these set operations generalize to labels unseen during training. This enables performing augmentation on examples of novel categories, thus, facilitating multi-label few-shot classifier learning. We conduct numerous experiments showing promising results for the label-set manipulation capabilities of the proposed approach, both directly (using the classification and retrieval metrics), and in the context of performing data augmentation for multi-label few-shot learning. We propose a benchmark for this new and challenging task and show that our method compares favorably to all the common baselines.

  • 8 authors
·
Feb 26, 2019

Dual-Head Knowledge Distillation: Enhancing Logits Utilization with an Auxiliary Head

Traditional knowledge distillation focuses on aligning the student's predicted probabilities with both ground-truth labels and the teacher's predicted probabilities. However, the transition to predicted probabilities from logits would obscure certain indispensable information. To address this issue, it is intuitive to additionally introduce a logit-level loss function as a supplement to the widely used probability-level loss function, for exploiting the latent information of logits. Unfortunately, we empirically find that the amalgamation of the newly introduced logit-level loss and the previous probability-level loss will lead to performance degeneration, even trailing behind the performance of employing either loss in isolation. We attribute this phenomenon to the collapse of the classification head, which is verified by our theoretical analysis based on the neural collapse theory. Specifically, the gradients of the two loss functions exhibit contradictions in the linear classifier yet display no such conflict within the backbone. Drawing from the theoretical analysis, we propose a novel method called dual-head knowledge distillation, which partitions the linear classifier into two classification heads responsible for different losses, thereby preserving the beneficial effects of both losses on the backbone while eliminating adverse influences on the classification head. Extensive experiments validate that our method can effectively exploit the information inside the logits and achieve superior performance against state-of-the-art counterparts.

  • 5 authors
·
Nov 13, 2024

MultiCapCLIP: Auto-Encoding Prompts for Zero-Shot Multilingual Visual Captioning

Supervised visual captioning models typically require a large scale of images or videos paired with descriptions in a specific language (i.e., the vision-caption pairs) for training. However, collecting and labeling large-scale datasets is time-consuming and expensive for many scenarios and languages. Therefore, sufficient labeled pairs are usually not available. To deal with the label shortage problem, we present a simple yet effective zero-shot approach MultiCapCLIP that can generate visual captions for different scenarios and languages without any labeled vision-caption pairs of downstream datasets. In the training stage, MultiCapCLIP only requires text data for input. Then it conducts two main steps: 1) retrieving concept prompts that preserve the corresponding domain knowledge of new scenarios; 2) auto-encoding the prompts to learn writing styles to output captions in a desired language. In the testing stage, MultiCapCLIP instead takes visual data as input directly to retrieve the concept prompts to generate the final visual descriptions. The extensive experiments on image and video captioning across four benchmarks and four languages (i.e., English, Chinese, German, and French) confirm the effectiveness of our approach. Compared with state-of-the-art zero-shot and weakly-supervised methods, our method achieves 4.8% and 21.5% absolute improvements in terms of BLEU@4 and CIDEr metrics. Our code is available at https://github.com/yangbang18/MultiCapCLIP.

  • 6 authors
·
Aug 25, 2023

DETRs with Collaborative Hybrid Assignments Training

In this paper, we provide the observation that too few queries assigned as positive samples in DETR with one-to-one set matching leads to sparse supervision on the encoder's output which considerably hurt the discriminative feature learning of the encoder and vice visa for attention learning in the decoder. To alleviate this, we present a novel collaborative hybrid assignments training scheme, namely Co-DETR, to learn more efficient and effective DETR-based detectors from versatile label assignment manners. This new training scheme can easily enhance the encoder's learning ability in end-to-end detectors by training the multiple parallel auxiliary heads supervised by one-to-many label assignments such as ATSS and Faster RCNN. In addition, we conduct extra customized positive queries by extracting the positive coordinates from these auxiliary heads to improve the training efficiency of positive samples in the decoder. In inference, these auxiliary heads are discarded and thus our method introduces no additional parameters and computational cost to the original detector while requiring no hand-crafted non-maximum suppression (NMS). We conduct extensive experiments to evaluate the effectiveness of the proposed approach on DETR variants, including DAB-DETR, Deformable-DETR, and DINO-Deformable-DETR. The state-of-the-art DINO-Deformable-DETR with Swin-L can be improved from 58.5% to 59.5% AP on COCO val. Surprisingly, incorporated with ViT-L backbone, we achieve 66.0% AP on COCO test-dev and 67.9% AP on LVIS val, outperforming previous methods by clear margins with much fewer model sizes. Codes are available at https://github.com/Sense-X/Co-DETR.

  • 3 authors
·
Nov 22, 2022

Local or Global: Selective Knowledge Assimilation for Federated Learning with Limited Labels

Many existing FL methods assume clients with fully-labeled data, while in realistic settings, clients have limited labels due to the expensive and laborious process of labeling. Limited labeled local data of the clients often leads to their local model having poor generalization abilities to their larger unlabeled local data, such as having class-distribution mismatch with the unlabeled data. As a result, clients may instead look to benefit from the global model trained across clients to leverage their unlabeled data, but this also becomes difficult due to data heterogeneity across clients. In our work, we propose FedLabel where clients selectively choose the local or global model to pseudo-label their unlabeled data depending on which is more of an expert of the data. We further utilize both the local and global models' knowledge via global-local consistency regularization which minimizes the divergence between the two models' outputs when they have identical pseudo-labels for the unlabeled data. Unlike other semi-supervised FL baselines, our method does not require additional experts other than the local or global model, nor require additional parameters to be communicated. We also do not assume any server-labeled data or fully labeled clients. For both cross-device and cross-silo settings, we show that FedLabel outperforms other semi-supervised FL baselines by 8-24%, and even outperforms standard fully supervised FL baselines (100% labeled data) with only 5-20% of labeled data.

  • 3 authors
·
Jul 17, 2023

Unbiased Learning to Rank with Unbiased Propensity Estimation

Learning to rank with biased click data is a well-known challenge. A variety of methods has been explored to debias click data for learning to rank such as click models, result interleaving and, more recently, the unbiased learning-to-rank framework based on inverse propensity weighting. Despite their differences, most existing studies separate the estimation of click bias (namely the propensity model) from the learning of ranking algorithms. To estimate click propensities, they either conduct online result randomization, which can negatively affect the user experience, or offline parameter estimation, which has special requirements for click data and is optimized for objectives (e.g. click likelihood) that are not directly related to the ranking performance of the system. In this work, we address those problems by unifying the learning of propensity models and ranking models. We find that the problem of estimating a propensity model from click data is a dual problem of unbiased learning to rank. Based on this observation, we propose a Dual Learning Algorithm (DLA) that jointly learns an unbiased ranker and an unbiased propensity model. DLA is an automatic unbiased learning-to-rank framework as it directly learns unbiased ranking models from biased click data without any preprocessing. It can adapt to the change of bias distributions and is applicable to online learning. Our empirical experiments with synthetic and real-world data show that the models trained with DLA significantly outperformed the unbiased learning-to-rank algorithms based on result randomization and the models trained with relevance signals extracted by click models.

  • 5 authors
·
Apr 16, 2018

Recovering Top-Two Answers and Confusion Probability in Multi-Choice Crowdsourcing

Crowdsourcing has emerged as an effective platform for labeling large amounts of data in a cost- and time-efficient manner. Most previous work has focused on designing an efficient algorithm to recover only the ground-truth labels of the data. In this paper, we consider multi-choice crowdsourcing tasks with the goal of recovering not only the ground truth, but also the most confusing answer and the confusion probability. The most confusing answer provides useful information about the task by revealing the most plausible answer other than the ground truth and how plausible it is. To theoretically analyze such scenarios, we propose a model in which there are the top two plausible answers for each task, distinguished from the rest of the choices. Task difficulty is quantified by the probability of confusion between the top two, and worker reliability is quantified by the probability of giving an answer among the top two. Under this model, we propose a two-stage inference algorithm to infer both the top two answers and the confusion probability. We show that our algorithm achieves the minimax optimal convergence rate. We conduct both synthetic and real data experiments and demonstrate that our algorithm outperforms other recent algorithms. We also show the applicability of our algorithms in inferring the difficulty of tasks and in training neural networks with top-two soft labels.

  • 2 authors
·
Dec 29, 2022

Efficient Nearest Neighbor Search for Cross-Encoder Models using Matrix Factorization

Efficient k-nearest neighbor search is a fundamental task, foundational for many problems in NLP. When the similarity is measured by dot-product between dual-encoder vectors or ell_2-distance, there already exist many scalable and efficient search methods. But not so when similarity is measured by more accurate and expensive black-box neural similarity models, such as cross-encoders, which jointly encode the query and candidate neighbor. The cross-encoders' high computational cost typically limits their use to reranking candidates retrieved by a cheaper model, such as dual encoder or TF-IDF. However, the accuracy of such a two-stage approach is upper-bounded by the recall of the initial candidate set, and potentially requires additional training to align the auxiliary retrieval model with the cross-encoder model. In this paper, we present an approach that avoids the use of a dual-encoder for retrieval, relying solely on the cross-encoder. Retrieval is made efficient with CUR decomposition, a matrix decomposition approach that approximates all pairwise cross-encoder distances from a small subset of rows and columns of the distance matrix. Indexing items using our approach is computationally cheaper than training an auxiliary dual-encoder model through distillation. Empirically, for k > 10, our approach provides test-time recall-vs-computational cost trade-offs superior to the current widely-used methods that re-rank items retrieved using a dual-encoder or TF-IDF.

  • 5 authors
·
Oct 22, 2022

Two Is Better Than One: Dual Embeddings for Complementary Product Recommendations

Embedding based product recommendations have gained popularity in recent years due to its ability to easily integrate to large-scale systems and allowing nearest neighbor searches in real-time. The bulk of studies in this area has predominantly been focused on similar item recommendations. Research on complementary item recommendations, on the other hand, still remains considerably under-explored. We define similar items as items that are interchangeable in terms of their utility and complementary items as items that serve different purposes, yet are compatible when used with one another. In this paper, we apply a novel approach to finding complementary items by leveraging dual embedding representations for products. We demonstrate that the notion of relatedness discovered in NLP for skip-gram negative sampling (SGNS) models translates effectively to the concept of complementarity when training item representations using co-purchase data. Since sparsity of purchase data is a major challenge in real-world scenarios, we further augment the model using synthetic samples to extend coverage. This allows the model to provide complementary recommendations for items that do not share co-purchase data by leveraging other abundantly available data modalities such as images, text, clicks etc. We establish the effectiveness of our approach in improving both coverage and quality of recommendations on real world data for a major online retail company. We further show the importance of task specific hyperparameter tuning in training SGNS. Our model is effective yet simple to implement, making it a great candidate for generating complementary item recommendations at any e-commerce website.

  • 4 authors
·
Nov 27, 2022

Positive Label Is All You Need for Multi-Label Classification

Multi-label classification (MLC) suffers from the inevitable label noise in training data due to the difficulty in annotating various semantic labels in each image. To mitigate the influence of noisy labels, existing methods mainly devote to identifying and correcting the label mistakes via a trained MLC model. However, these methods still involve annoying noisy labels in training, which can result in imprecise recognition of noisy labels and weaken the performance. In this paper, considering that the negative labels are substantially more than positive labels, and most noisy labels are from the negative labels, we directly discard all the negative labels in the dataset, and propose a new method dubbed positive and unlabeled multi-label classification (PU-MLC). By extending positive-unlabeled learning into MLC task, our method trains model with only positive labels and unlabeled data, and introduces adaptive re-balance factor and adaptive temperature coefficient in the loss function to alleviate the catastrophic imbalance in label distribution and over-smoothing of probabilities in training. Furthermore, to capture both local and global dependencies in the image, we also introduce a local-global convolution module, which supplements global information into existing convolution layers with no retraining of backbone required. Our PU-MLC is simple and effective, and it is applicable to both MLC and MLC with partial labels (MLC-PL) tasks. Extensive experiments on MS-COCO and PASCAL VOC datasets demonstrate that our PU-MLC achieves significantly improvements on both MLC and MLC-PL settings with even fewer annotations. Code will be released.

  • 3 authors
·
Jun 28, 2023

Noisy-Correspondence Learning for Text-to-Image Person Re-identification

Text-to-image person re-identification (TIReID) is a compelling topic in the cross-modal community, which aims to retrieve the target person based on a textual query. Although numerous TIReID methods have been proposed and achieved promising performance, they implicitly assume the training image-text pairs are correctly aligned, which is not always the case in real-world scenarios. In practice, the image-text pairs inevitably exist under-correlated or even false-correlated, a.k.a noisy correspondence (NC), due to the low quality of the images and annotation errors. To address this problem, we propose a novel Robust Dual Embedding method (RDE) that can learn robust visual-semantic associations even with NC. Specifically, RDE consists of two main components: 1) A Confident Consensus Division (CCD) module that leverages the dual-grained decisions of dual embedding modules to obtain a consensus set of clean training data, which enables the model to learn correct and reliable visual-semantic associations. 2) A Triplet-Alignment Loss (TAL) relaxes the conventional triplet-ranking loss with hardest negatives, which tends to rapidly overfit NC, to a log-exponential upper bound over all negatives, thus preventing the model from overemphasizing false image-text pairs. We conduct extensive experiments on three public benchmarks, namely CUHK-PEDES, ICFG-PEDES, and RSTPReID, to evaluate the performance and robustness of our RDE. Our method achieves state-of-the-art results both with and without synthetic noisy correspondences on all three datasets.

  • 6 authors
·
Aug 19, 2023

Optimizing What Matters: AUC-Driven Learning for Robust Neural Retrieval

Dual-encoder retrievers depend on the principle that relevant documents should score higher than irrelevant ones for a given query. Yet the dominant Noise Contrastive Estimation (NCE) objective, which underpins Contrastive Loss, optimizes a softened ranking surrogate that we rigorously prove is fundamentally oblivious to score separation quality and unrelated to AUC. This mismatch leads to poor calibration and suboptimal performance in downstream tasks like retrieval-augmented generation (RAG). To address this fundamental limitation, we introduce the MW loss, a new training objective that maximizes the Mann-Whitney U statistic, which is mathematically equivalent to the Area under the ROC Curve (AUC). MW loss encourages each positive-negative pair to be correctly ranked by minimizing binary cross entropy over score differences. We provide theoretical guarantees that MW loss directly upper-bounds the AoC, better aligning optimization with retrieval goals. We further promote ROC curves and AUC as natural threshold free diagnostics for evaluating retriever calibration and ranking quality. Empirically, retrievers trained with MW loss consistently outperform contrastive counterparts in AUC and standard retrieval metrics. Our experiments show that MW loss is an empirically superior alternative to Contrastive Loss, yielding better-calibrated and more discriminative retrievers for high-stakes applications like RAG.

ServiceNow-AI ServiceNow-AI
·
Sep 30 2

Towards Open-Ended Visual Recognition with Large Language Model

Localizing and recognizing objects in the open-ended physical world poses a long-standing challenge within the domain of machine perception. Recent methods have endeavored to address the issue by employing a class-agnostic mask (or box) proposal model, complemented by an open-vocabulary classifier (e.g., CLIP) using pre-extracted text embeddings. However, it is worth noting that these open-vocabulary recognition models still exhibit limitations in practical applications. On one hand, they rely on the provision of class names during testing, where the recognition performance heavily depends on this predefined set of semantic classes by users. On the other hand, when training with multiple datasets, human intervention is required to alleviate the label definition conflict between them. In this paper, we introduce the OmniScient Model (OSM), a novel Large Language Model (LLM) based mask classifier, as a straightforward and effective solution to the aforementioned challenges. Specifically, OSM predicts class labels in a generative manner, thus removing the supply of class names during both training and testing. It also enables cross-dataset training without any human interference, exhibiting robust generalization capabilities due to the world knowledge acquired from the LLM. By combining OSM with an off-the-shelf mask proposal model, we present promising results on various benchmarks, and demonstrate its effectiveness in handling novel concepts. Code/model are available at https://github.com/bytedance/OmniScient-Model.

  • 3 authors
·
Nov 14, 2023

Information Extraction from Heterogeneous Documents without Ground Truth Labels using Synthetic Label Generation and Knowledge Distillation

Invoices and receipts submitted by employees are visually rich documents (VRDs) with textual, visual and layout information. To protect against the risk of fraud and abuse, it is crucial for organizations to efficiently extract desired information from submitted receipts. This helps in the assessment of key factors such as appropriateness of the expense claim, adherence to spending and transaction policies, the validity of the receipt, as well as downstream anomaly detection at various levels. These documents are heterogeneous, with multiple formats and languages, uploaded with different image qualities, and often do not contain ground truth labels for the efficient training of models. In this paper we propose Task Aware Instruction-based Labelling (TAIL), a method for synthetic label generation in VRD corpuses without labels, and fine-tune a multimodal Visually Rich Document Understanding Model (VRDU) on TAIL labels using response-based knowledge distillation without using the teacher model's weights or training dataset to conditionally generate annotations in the appropriate format. Using a benchmark external dataset where ground truth labels are available, we demonstrate conditions under which our approach performs at par with Claude 3 Sonnet through empirical studies. We then show that the resulting model performs at par or better on the internal expense documents of a large multinational organization than state-of-the-art LMM (large multimodal model) Claude 3 Sonnet while being 85% less costly and ~5X faster, and outperforms layout-aware baselines by more than 10% in Average Normalized Levenshtein Similarity (ANLS) scores due to its ability to reason and extract information from rare formats. Finally, we illustrate the usage of our approach in overpayment prevention.

  • 2 authors
·
Nov 22, 2024

Intra-Cluster Mixup: An Effective Data Augmentation Technique for Complementary-Label Learning

In this paper, we investigate the challenges of complementary-label learning (CLL), a specialized form of weakly-supervised learning (WSL) where models are trained with labels indicating classes to which instances do not belong, rather than standard ordinary labels. This alternative supervision is appealing because collecting complementary labels is generally cheaper and less labor-intensive. Although most existing research in CLL emphasizes the development of novel loss functions, the potential of data augmentation in this domain remains largely underexplored. In this work, we uncover that the widely-used Mixup data augmentation technique is ineffective when directly applied to CLL. Through in-depth analysis, we identify that the complementary-label noise generated by Mixup negatively impacts the performance of CLL models. We then propose an improved technique called Intra-Cluster Mixup (ICM), which only synthesizes augmented data from nearby examples, to mitigate the noise effect. ICM carries the benefits of encouraging complementary label sharing of nearby examples, and leads to substantial performance improvements across synthetic and real-world labeled datasets. In particular, our wide spectrum of experimental results on both balanced and imbalanced CLL settings justifies the potential of ICM in allying with state-of-the-art CLL algorithms, achieving significant accuracy increases of 30% and 10% on MNIST and CIFAR datasets, respectively.

  • 2 authors
·
Sep 22

ConR: Contrastive Regularizer for Deep Imbalanced Regression

Imbalanced distributions are ubiquitous in real-world data. They create constraints on Deep Neural Networks to represent the minority labels and avoid bias towards majority labels. The extensive body of imbalanced approaches address categorical label spaces but fail to effectively extend to regression problems where the label space is continuous. Local and global correlations among continuous labels provide valuable insights towards effectively modelling relationships in feature space. In this work, we propose ConR, a contrastive regularizer that models global and local label similarities in feature space and prevents the features of minority samples from being collapsed into their majority neighbours. ConR discerns the disagreements between the label space and feature space and imposes a penalty on these disagreements. ConR addresses the continuous nature of label space with two main strategies in a contrastive manner: incorrect proximities are penalized proportionate to the label similarities and the correct ones are encouraged to model local similarities. ConR consolidates essential considerations into a generic, easy-to-integrate, and efficient method that effectively addresses deep imbalanced regression. Moreover, ConR is orthogonal to existing approaches and smoothly extends to uni- and multi-dimensional label spaces. Our comprehensive experiments show that ConR significantly boosts the performance of all the state-of-the-art methods on four large-scale deep imbalanced regression benchmarks. Our code is publicly available in https://github.com/BorealisAI/ConR.

  • 3 authors
·
Sep 12, 2023

Learning in Imperfect Environment: Multi-Label Classification with Long-Tailed Distribution and Partial Labels

Conventional multi-label classification (MLC) methods assume that all samples are fully labeled and identically distributed. Unfortunately, this assumption is unrealistic in large-scale MLC data that has long-tailed (LT) distribution and partial labels (PL). To address the problem, we introduce a novel task, Partial labeling and Long-Tailed Multi-Label Classification (PLT-MLC), to jointly consider the above two imperfect learning environments. Not surprisingly, we find that most LT-MLC and PL-MLC approaches fail to solve the PLT-MLC, resulting in significant performance degradation on the two proposed PLT-MLC benchmarks. Therefore, we propose an end-to-end learning framework: COrrection rightarrow ModificatIon rightarrow balanCe, abbreviated as \method{}. Our bootstrapping philosophy is to simultaneously correct the missing labels (Correction) with convinced prediction confidence over a class-aware threshold and to learn from these recall labels during training. We next propose a novel multi-focal modifier loss that simultaneously addresses head-tail imbalance and positive-negative imbalance to adaptively modify the attention to different samples (Modification) under the LT class distribution. In addition, we develop a balanced training strategy by distilling the model's learning effect from head and tail samples, and thus design a balanced classifier (Balance) conditioned on the head and tail learning effect to maintain stable performance for all samples. Our experimental study shows that the proposed significantly outperforms general MLC, LT-MLC and PL-MLC methods in terms of effectiveness and robustness on our newly created PLT-MLC datasets.

  • 6 authors
·
Apr 20, 2023

Multi-Granularity Distillation Scheme Towards Lightweight Semi-Supervised Semantic Segmentation

Albeit with varying degrees of progress in the field of Semi-Supervised Semantic Segmentation, most of its recent successes are involved in unwieldy models and the lightweight solution is still not yet explored. We find that existing knowledge distillation techniques pay more attention to pixel-level concepts from labeled data, which fails to take more informative cues within unlabeled data into account. Consequently, we offer the first attempt to provide lightweight SSSS models via a novel multi-granularity distillation (MGD) scheme, where multi-granularity is captured from three aspects: i) complementary teacher structure; ii) labeled-unlabeled data cooperative distillation; iii) hierarchical and multi-levels loss setting. Specifically, MGD is formulated as a labeled-unlabeled data cooperative distillation scheme, which helps to take full advantage of diverse data characteristics that are essential in the semi-supervised setting. Image-level semantic-sensitive loss, region-level content-aware loss, and pixel-level consistency loss are set up to enrich hierarchical distillation abstraction via structurally complementary teachers. Experimental results on PASCAL VOC2012 and Cityscapes reveal that MGD can outperform the competitive approaches by a large margin under diverse partition protocols. For example, the performance of ResNet-18 and MobileNet-v2 backbone is boosted by 11.5% and 4.6% respectively under 1/16 partition protocol on Cityscapes. Although the FLOPs of the model backbone is compressed by 3.4-5.3x (ResNet-18) and 38.7-59.6x (MobileNetv2), the model manages to achieve satisfactory segmentation results.

  • 6 authors
·
Aug 22, 2022

Learning Semi-supervised Gaussian Mixture Models for Generalized Category Discovery

In this paper, we address the problem of generalized category discovery (GCD), \ie, given a set of images where part of them are labelled and the rest are not, the task is to automatically cluster the images in the unlabelled data, leveraging the information from the labelled data, while the unlabelled data contain images from the labelled classes and also new ones. GCD is similar to semi-supervised learning (SSL) but is more realistic and challenging, as SSL assumes all the unlabelled images are from the same classes as the labelled ones. We also do not assume the class number in the unlabelled data is known a-priori, making the GCD problem even harder. To tackle the problem of GCD without knowing the class number, we propose an EM-like framework that alternates between representation learning and class number estimation. We propose a semi-supervised variant of the Gaussian Mixture Model (GMM) with a stochastic splitting and merging mechanism to dynamically determine the prototypes by examining the cluster compactness and separability. With these prototypes, we leverage prototypical contrastive learning for representation learning on the partially labelled data subject to the constraints imposed by the labelled data. Our framework alternates between these two steps until convergence. The cluster assignment for an unlabelled instance can then be retrieved by identifying its nearest prototype. We comprehensively evaluate our framework on both generic image classification datasets and challenging fine-grained object recognition datasets, achieving state-of-the-art performance.

  • 3 authors
·
May 10, 2023

DB-LLM: Accurate Dual-Binarization for Efficient LLMs

Large language models (LLMs) have significantly advanced the field of natural language processing, while the expensive memory and computation consumption impede their practical deployment. Quantization emerges as one of the most effective methods for improving the computational efficiency of LLMs. However, existing ultra-low-bit quantization always causes severe accuracy drops. In this paper, we empirically relieve the micro and macro characteristics of ultra-low bit quantization and present a novel Dual-Binarization method for LLMs, namely DB-LLM. For the micro-level, we take both the accuracy advantage of 2-bit-width and the efficiency advantage of binarization into account, introducing Flexible Dual Binarization (FDB). By splitting 2-bit quantized weights into two independent sets of binaries, FDB ensures the accuracy of representations and introduces flexibility, utilizing the efficient bitwise operations of binarization while retaining the inherent high sparsity of ultra-low bit quantization. For the macro-level, we find the distortion that exists in the prediction of LLM after quantization, which is specified as the deviations related to the ambiguity of samples. We propose the Deviation-Aware Distillation (DAD) method, enabling the model to focus differently on various samples. Comprehensive experiments show that our DB-LLM not only significantly surpasses the current State-of-The-Art (SoTA) in ultra-low bit quantization (eg, perplexity decreased from 9.64 to 7.23), but also achieves an additional 20\% reduction in computational consumption compared to the SOTA method under the same bit-width. Our code will be released soon.

  • 11 authors
·
Feb 19, 2024

When Noisy Labels Meet Long Tail Dilemmas: A Representation Calibration Method

Real-world large-scale datasets are both noisily labeled and class-imbalanced. The issues seriously hurt the generalization of trained models. It is hence significant to address the simultaneous incorrect labeling and class-imbalance, i.e., the problem of learning with noisy labels on long-tailed data. Previous works develop several methods for the problem. However, they always rely on strong assumptions that are invalid or hard to be checked in practice. In this paper, to handle the problem and address the limitations of prior works, we propose a representation calibration method RCAL. Specifically, RCAL works with the representations extracted by unsupervised contrastive learning. We assume that without incorrect labeling and class imbalance, the representations of instances in each class conform to a multivariate Gaussian distribution, which is much milder and easier to be checked. Based on the assumption, we recover underlying representation distributions from polluted ones resulting from mislabeled and class-imbalanced data. Additional data points are then sampled from the recovered distributions to help generalization. Moreover, during classifier training, representation learning takes advantage of representation robustness brought by contrastive learning, which further improves the classifier performance. We derive theoretical results to discuss the effectiveness of our representation calibration. Experiments on multiple benchmarks justify our claims and confirm the superiority of the proposed method.

  • 5 authors
·
Nov 20, 2022

Self-similarity Driven Scale-invariant Learning for Weakly Supervised Person Search

Weakly supervised person search aims to jointly detect and match persons with only bounding box annotations. Existing approaches typically focus on improving the features by exploring relations of persons. However, scale variation problem is a more severe obstacle and under-studied that a person often owns images with different scales (resolutions). On the one hand, small-scale images contain less information of a person, thus affecting the accuracy of the generated pseudo labels. On the other hand, the similarity of cross-scale images is often smaller than that of images with the same scale for a person, which will increase the difficulty of matching. In this paper, we address this problem by proposing a novel one-step framework, named Self-similarity driven Scale-invariant Learning (SSL). Scale invariance can be explored based on the self-similarity prior that it shows the same statistical properties of an image at different scales. To this end, we introduce a Multi-scale Exemplar Branch to guide the network in concentrating on the foreground and learning scale-invariant features by hard exemplars mining. To enhance the discriminative power of the features in an unsupervised manner, we introduce a dynamic multi-label prediction which progressively seeks true labels for training. It is adaptable to different types of unlabeled data and serves as a compensation for clustering based strategy. Experiments on PRW and CUHK-SYSU databases demonstrate the effectiveness of our method.

  • 5 authors
·
Feb 24, 2023

Make a Strong Teacher with Label Assistance: A Novel Knowledge Distillation Approach for Semantic Segmentation

In this paper, we introduce a novel knowledge distillation approach for the semantic segmentation task. Unlike previous methods that rely on power-trained teachers or other modalities to provide additional knowledge, our approach does not require complex teacher models or information from extra sensors. Specifically, for the teacher model training, we propose to noise the label and then incorporate it into input to effectively boost the lightweight teacher performance. To ensure the robustness of the teacher model against the introduced noise, we propose a dual-path consistency training strategy featuring a distance loss between the outputs of two paths. For the student model training, we keep it consistent with the standard distillation for simplicity. Our approach not only boosts the efficacy of knowledge distillation but also increases the flexibility in selecting teacher and student models. To demonstrate the advantages of our Label Assisted Distillation (LAD) method, we conduct extensive experiments on five challenging datasets including Cityscapes, ADE20K, PASCAL-VOC, COCO-Stuff 10K, and COCO-Stuff 164K, five popular models: FCN, PSPNet, DeepLabV3, STDC, and OCRNet, and results show the effectiveness and generalization of our approach. We posit that incorporating labels into the input, as demonstrated in our work, will provide valuable insights into related fields. Code is available at https://github.com/skyshoumeng/Label_Assisted_Distillation.

  • 6 authors
·
Jul 18, 2024

Active Generalized Category Discovery

Generalized Category Discovery (GCD) is a pragmatic and challenging open-world task, which endeavors to cluster unlabeled samples from both novel and old classes, leveraging some labeled data of old classes. Given that knowledge learned from old classes is not fully transferable to new classes, and that novel categories are fully unlabeled, GCD inherently faces intractable problems, including imbalanced classification performance and inconsistent confidence between old and new classes, especially in the low-labeling regime. Hence, some annotations of new classes are deemed necessary. However, labeling new classes is extremely costly. To address this issue, we take the spirit of active learning and propose a new setting called Active Generalized Category Discovery (AGCD). The goal is to improve the performance of GCD by actively selecting a limited amount of valuable samples for labeling from the oracle. To solve this problem, we devise an adaptive sampling strategy, which jointly considers novelty, informativeness and diversity to adaptively select novel samples with proper uncertainty. However, owing to the varied orderings of label indices caused by the clustering of novel classes, the queried labels are not directly applicable to subsequent training. To overcome this issue, we further propose a stable label mapping algorithm that transforms ground truth labels to the label space of the classifier, thereby ensuring consistent training across different active selection stages. Our method achieves state-of-the-art performance on both generic and fine-grained datasets. Our code is available at https://github.com/mashijie1028/ActiveGCD

  • 5 authors
·
Mar 7, 2024

CLImage: Human-Annotated Datasets for Complementary-Label Learning

Complementary-label learning (CLL) is a weakly-supervised learning paradigm that aims to train a multi-class classifier using only complementary labels, which indicate classes to which an instance does not belong. Despite numerous algorithmic proposals for CLL, their practical applicability remains unverified for two reasons. Firstly, these algorithms often rely on assumptions about the generation of complementary labels, and it is not clear how far the assumptions are from reality. Secondly, their evaluation has been limited to synthetically labeled datasets. To gain insights into the real-world performance of CLL algorithms, we developed a protocol to collect complementary labels from human annotators. Our efforts resulted in the creation of four datasets: CLCIFAR10, CLCIFAR20, CLMicroImageNet10, and CLMicroImageNet20, derived from well-known classification datasets CIFAR10, CIFAR100, and TinyImageNet200. These datasets represent the very first real-world CLL datasets, namely CLImage, which are publicly available at: https://github.com/ntucllab/CLImage\_Dataset. Through extensive benchmark experiments, we discovered a notable decrease in performance when transitioning from synthetically labeled datasets to real-world datasets. We investigated the key factors contributing to the decrease with a thorough dataset-level ablation study. Our analyses highlight annotation noise as the most influential factor in the real-world datasets. In addition, we discover that the biased-nature of human-annotated complementary labels and the difficulty to validate with only complementary labels are two outstanding barriers to practical CLL. These findings suggest that the community focus more research efforts on developing CLL algorithms and validation schemes that are robust to noisy and biased complementary-label distributions.

  • 5 authors
·
May 14, 2023

An Efficient General-Purpose Modular Vision Model via Multi-Task Heterogeneous Training

We present a model that can perform multiple vision tasks and can be adapted to other downstream tasks efficiently. Despite considerable progress in multi-task learning, most efforts focus on learning from multi-label data: a single image set with multiple task labels. Such multi-label data sets are rare, small, and expensive. We say heterogeneous to refer to image sets with different task labels, or to combinations of single-task datasets. Few have explored training on such heterogeneous datasets. General-purpose vision models are still dominated by single-task pretraining, and it remains unclear how to scale up multi-task models by leveraging mainstream vision datasets designed for different purposes. The challenges lie in managing large intrinsic differences among vision tasks, including data distribution, architectures, task-specific modules, dataset scales, and sampling strategies. To address these challenges, we propose to modify and scale up mixture-of-experts (MoE) vision transformers, so that they can simultaneously learn classification, detection, and segmentation on diverse mainstream vision datasets including ImageNet, COCO, and ADE20K. Our approach achieves comparable results to single-task state-of-the-art models and demonstrates strong generalization on downstream tasks. Due to its emergent modularity, this general-purpose model decomposes into high-performing components, efficiently adapting to downstream tasks. We can fine-tune it with fewer training parameters, fewer model parameters, and less computation. Additionally, its modularity allows for easy expansion in continual-learning-without-forgetting scenarios. Finally, these functions can be controlled and combined to meet various demands of downstream tasks.

  • 7 authors
·
Jun 29, 2023

Local Graph Clustering with Noisy Labels

The growing interest in machine learning problems over graphs with additional node information such as texts, images, or labels has popularized methods that require the costly operation of processing the entire graph. Yet, little effort has been made to the development of fast local methods (i.e. without accessing the entire graph) that extract useful information from such data. To that end, we propose a study of local graph clustering using noisy node labels as a proxy for additional node information. In this setting, nodes receive initial binary labels based on cluster affiliation: 1 if they belong to the target cluster and 0 otherwise. Subsequently, a fraction of these labels is flipped. We investigate the benefits of incorporating noisy labels for local graph clustering. By constructing a weighted graph with such labels, we study the performance of graph diffusion-based local clustering method on both the original and the weighted graphs. From a theoretical perspective, we consider recovering an unknown target cluster with a single seed node in a random graph with independent noisy node labels. We provide sufficient conditions on the label noise under which, with high probability, using diffusion in the weighted graph yields a more accurate recovery of the target cluster. This approach proves more effective than using the given labels alone or using diffusion in the label-free original graph. Empirically, we show that reliable node labels can be obtained with just a few samples from an attributed graph. Moreover, utilizing these labels via diffusion in the weighted graph leads to significantly better local clustering performance across several real-world datasets, improving F1 scores by up to 13%.

  • 3 authors
·
Oct 12, 2023

Thinking Like an Annotator: Generation of Dataset Labeling Instructions

Large-scale datasets are essential to modern day deep learning. Advocates argue that understanding these methods requires dataset transparency (e.g. "dataset curation, motivation, composition, collection process, etc..."). However, almost no one has suggested the release of the detailed definitions and visual category examples provided to annotators - information critical to understanding the structure of the annotations present in each dataset. These labels are at the heart of public datasets, yet few datasets include the instructions that were used to generate them. We introduce a new task, Labeling Instruction Generation, to address missing publicly available labeling instructions. In Labeling Instruction Generation, we take a reasonably annotated dataset and: 1) generate a set of examples that are visually representative of each category in the dataset; 2) provide a text label that corresponds to each of the examples. We introduce a framework that requires no model training to solve this task and includes a newly created rapid retrieval system that leverages a large, pre-trained vision and language model. This framework acts as a proxy to human annotators that can help to both generate a final labeling instruction set and evaluate its quality. Our framework generates multiple diverse visual and text representations of dataset categories. The optimized instruction set outperforms our strongest baseline across 5 folds by 7.06 mAP for NuImages and 12.9 mAP for COCO.

  • 5 authors
·
Jun 24, 2023 1

Label Critic: Design Data Before Models

As medical datasets rapidly expand, creating detailed annotations of different body structures becomes increasingly expensive and time-consuming. We consider that requesting radiologists to create detailed annotations is unnecessarily burdensome and that pre-existing AI models can largely automate this process. Following the spirit don't use a sledgehammer on a nut, we find that, rather than creating annotations from scratch, radiologists only have to review and edit errors if the Best-AI Labels have mistakes. To obtain the Best-AI Labels among multiple AI Labels, we developed an automatic tool, called Label Critic, that can assess label quality through tireless pairwise comparisons. Extensive experiments demonstrate that, when incorporated with our developed Image-Prompt pairs, pre-existing Large Vision-Language Models (LVLM), trained on natural images and texts, achieve 96.5% accuracy when choosing the best label in a pair-wise comparison, without extra fine-tuning. By transforming the manual annotation task (30-60 min/scan) into an automatic comparison task (15 sec/scan), we effectively reduce the manual efforts required from radiologists by an order of magnitude. When the Best-AI Labels are sufficiently accurate (81% depending on body structures), they will be directly adopted as the gold-standard annotations for the dataset, with lower-quality AI Labels automatically discarded. Label Critic can also check the label quality of a single AI Label with 71.8% accuracy when no alternatives are available for comparison, prompting radiologists to review and edit if the estimated quality is low (19% depending on body structures).

  • 7 authors
·
Nov 4, 2024

Heavy Labels Out! Dataset Distillation with Label Space Lightening

Dataset distillation or condensation aims to condense a large-scale training dataset into a much smaller synthetic one such that the training performance of distilled and original sets on neural networks are similar. Although the number of training samples can be reduced substantially, current state-of-the-art methods heavily rely on enormous soft labels to achieve satisfactory performance. As a result, the required storage can be comparable even to original datasets, especially for large-scale ones. To solve this problem, instead of storing these heavy labels, we propose a novel label-lightening framework termed HeLlO aiming at effective image-to-label projectors, with which synthetic labels can be directly generated online from synthetic images. Specifically, to construct such projectors, we leverage prior knowledge in open-source foundation models, e.g., CLIP, and introduce a LoRA-like fine-tuning strategy to mitigate the gap between pre-trained and target distributions, so that original models for soft-label generation can be distilled into a group of low-rank matrices. Moreover, an effective image optimization method is proposed to further mitigate the potential error between the original and distilled label generators. Extensive experiments demonstrate that with only about 0.003% of the original storage required for a complete set of soft labels, we achieve comparable performance to current state-of-the-art dataset distillation methods on large-scale datasets. Our code will be available.

  • 5 authors
·
Aug 15, 2024 2

Rethinking Positive Pairs in Contrastive Learning

Contrastive learning, a prominent approach to representation learning, traditionally assumes positive pairs are closely related samples (the same image or class) and negative pairs are distinct samples. We challenge this assumption by proposing to learn from arbitrary pairs, allowing any pair of samples to be positive within our framework.The primary challenge of the proposed approach lies in applying contrastive learning to disparate pairs which are semantically distant. Motivated by the discovery that SimCLR can separate given arbitrary pairs (e.g., garter snake and table lamp) in a subspace, we propose a feature filter in the condition of class pairs that creates the requisite subspaces by gate vectors selectively activating or deactivating dimensions. This filter can be optimized through gradient descent within a conventional contrastive learning mechanism. We present Hydra, a universal contrastive learning framework for visual representations that extends conventional contrastive learning to accommodate arbitrary pairs. Our approach is validated using IN1K, where 1K diverse classes compose 500,500 pairs, most of them being distinct. Surprisingly, Hydra achieves superior performance in this challenging setting. Additional benefits include the prevention of dimensional collapse and the discovery of class relationships. Our work highlights the value of learning common features of arbitrary pairs and potentially broadens the applicability of contrastive learning techniques on the sample pairs with weak relationships.

  • 6 authors
·
Oct 23, 2024

Multi-Outputs Is All You Need For Deblur

Image deblurring task is an ill-posed one, where exists infinite feasible solutions for blurry image. Modern deep learning approaches usually discard the learning of blur kernels and directly employ end-to-end supervised learning. Popular deblurring datasets define the label as one of the feasible solutions. However, we argue that it's not reasonable to specify a label directly, especially when the label is sampled from a random distribution. Therefore, we propose to make the network learn the distribution of feasible solutions, and design based on this consideration a novel multi-head output architecture and corresponding loss function for distribution learning. Our approach enables the model to output multiple feasible solutions to approximate the target distribution. We further propose a novel parameter multiplexing method that reduces the number of parameters and computational effort while improving performance. We evaluated our approach on multiple image-deblur models, including the current state-of-the-art NAFNet. The improvement of best overall (pick the highest score among multiple heads for each validation image) PSNR outperforms the compared baselines up to 0.11~0.18dB. The improvement of the best single head (pick the best-performed head among multiple heads on validation set) PSNR outperforms the compared baselines up to 0.04~0.08dB. The codes are available at https://github.com/Liu-SD/multi-output-deblur.

  • 3 authors
·
Aug 27, 2022

Adversarial Retriever-Ranker for dense text retrieval

Current dense text retrieval models face two typical challenges. First, they adopt a siamese dual-encoder architecture to encode queries and documents independently for fast indexing and searching, while neglecting the finer-grained term-wise interactions. This results in a sub-optimal recall performance. Second, their model training highly relies on a negative sampling technique to build up the negative documents in their contrastive losses. To address these challenges, we present Adversarial Retriever-Ranker (AR2), which consists of a dual-encoder retriever plus a cross-encoder ranker. The two models are jointly optimized according to a minimax adversarial objective: the retriever learns to retrieve negative documents to cheat the ranker, while the ranker learns to rank a collection of candidates including both the ground-truth and the retrieved ones, as well as providing progressive direct feedback to the dual-encoder retriever. Through this adversarial game, the retriever gradually produces harder negative documents to train a better ranker, whereas the cross-encoder ranker provides progressive feedback to improve retriever. We evaluate AR2 on three benchmarks. Experimental results show that AR2 consistently and significantly outperforms existing dense retriever methods and achieves new state-of-the-art results on all of them. This includes the improvements on Natural Questions R@5 to 77.9%(+2.1%), TriviaQA R@5 to 78.2%(+1.4), and MS-MARCO MRR@10 to 39.5%(+1.3%). Code and models are available at https://github.com/microsoft/AR2.

  • 6 authors
·
Oct 7, 2021

Unsupervised Learning under Latent Label Shift

What sorts of structure might enable a learner to discover classes from unlabeled data? Traditional approaches rely on feature-space similarity and heroic assumptions on the data. In this paper, we introduce unsupervised learning under Latent Label Shift (LLS), where we have access to unlabeled data from multiple domains such that the label marginals p_d(y) can shift across domains but the class conditionals p(x|y) do not. This work instantiates a new principle for identifying classes: elements that shift together group together. For finite input spaces, we establish an isomorphism between LLS and topic modeling: inputs correspond to words, domains to documents, and labels to topics. Addressing continuous data, we prove that when each label's support contains a separable region, analogous to an anchor word, oracle access to p(d|x) suffices to identify p_d(y) and p_d(y|x) up to permutation. Thus motivated, we introduce a practical algorithm that leverages domain-discriminative models as follows: (i) push examples through domain discriminator p(d|x); (ii) discretize the data by clustering examples in p(d|x) space; (iii) perform non-negative matrix factorization on the discrete data; (iv) combine the recovered p(y|d) with the discriminator outputs p(d|x) to compute p_d(y|x) ; forall d. With semi-synthetic experiments, we show that our algorithm can leverage domain information to improve upon competitive unsupervised classification methods. We reveal a failure mode of standard unsupervised classification methods when feature-space similarity does not indicate true groupings, and show empirically that our method better handles this case. Our results establish a deep connection between distribution shift and topic modeling, opening promising lines for future work.

  • 4 authors
·
Jul 26, 2022

Evaluating the Effectiveness and Scalability of LLM-Based Data Augmentation for Retrieval

Compact dual-encoder models are widely used for retrieval owing to their efficiency and scalability. However, such models often underperform compared to their Large Language Model (LLM)-based retrieval counterparts, likely due to their limited world knowledge. While LLM-based data augmentation has been proposed as a strategy to bridge this performance gap, there is insufficient understanding of its effectiveness and scalability to real-world retrieval problems. Existing research does not systematically explore key factors such as the optimal augmentation scale, the necessity of using large augmentation models, and whether diverse augmentations improve generalization, particularly in out-of-distribution (OOD) settings. This work presents a comprehensive study of the effectiveness of LLM augmentation for retrieval, comprising over 100 distinct experimental settings of retrieval models, augmentation models and augmentation strategies. We find that, while augmentation enhances retrieval performance, its benefits diminish beyond a certain augmentation scale, even with diverse augmentation strategies. Surprisingly, we observe that augmentation with smaller LLMs can achieve performance competitive with larger augmentation models. Moreover, we examine how augmentation effectiveness varies with retrieval model pre-training, revealing that augmentation provides the most benefit to models which are not well pre-trained. Our insights pave the way for more judicious and efficient augmentation strategies, thus enabling informed decisions and maximizing retrieval performance while being more cost-effective. Code and augmented datasets accompanying this work are publicly available at https://aka.ms/DAGR.

  • 4 authors
·
Sep 19

KeNet:Knowledge-enhanced Doc-Label Attention Network for Multi-label text classification

Multi-Label Text Classification (MLTC) is a fundamental task in the field of Natural Language Processing (NLP) that involves the assignment of multiple labels to a given text. MLTC has gained significant importance and has been widely applied in various domains such as topic recognition, recommendation systems, sentiment analysis, and information retrieval. However, traditional machine learning and Deep neural network have not yet addressed certain issues, such as the fact that some documents are brief but have a large number of labels and how to establish relationships between the labels. It is imperative to additionally acknowledge that the significance of knowledge is substantiated in the realm of MLTC. To address this issue, we provide a novel approach known as Knowledge-enhanced Doc-Label Attention Network (KeNet). Specifically, we design an Attention Network that incorporates external knowledge, label embedding, and a comprehensive attention mechanism. In contrast to conventional methods, we use comprehensive representation of documents, knowledge and labels to predict all labels for each single text. Our approach has been validated by comprehensive research conducted on three multi-label datasets. Experimental results demonstrate that our method outperforms state-of-the-art MLTC method. Additionally, a case study is undertaken to illustrate the practical implementation of KeNet.

  • 3 authors
·
Mar 4, 2024

Prefer to Classify: Improving Text Classifiers via Auxiliary Preference Learning

The development of largely human-annotated benchmarks has driven the success of deep neural networks in various NLP tasks. To enhance the effectiveness of existing benchmarks, collecting new additional input-output pairs is often too costly and challenging, particularly considering their marginal impact on improving the current model accuracy. Instead, additional or complementary annotations on the existing input texts in the benchmarks can be preferable as an efficient way to pay the additional human cost. In this paper, we investigate task-specific preferences between pairs of input texts as a new alternative way for such auxiliary data annotation. From 'pair-wise' comparisons with respect to the task, the auxiliary preference learning enables the model to learn an additional informative training signal that cannot be captured with 'instance-wise' task labels. To this end, we propose a novel multi-task learning framework, called prefer-to-classify (P2C), which can enjoy the cooperative effect of learning both the given classification task and the auxiliary preferences. Here, we provide three different ways to collect preference signals in practice: (a) implicitly extracting from annotation records (for free, but often unavailable), (b) collecting explicitly from crowd workers (high paid), or (c) pre-trained large language models such as GPT-3 (low paid). Given existing classification NLP benchmarks, we demonstrate that the proposed auxiliary preference learning via P2C on them is effective in improving text classifiers. Our codes are publicly available.

  • 3 authors
·
Jun 8, 2023

Using Imperfect Surrogates for Downstream Inference: Design-based Supervised Learning for Social Science Applications of Large Language Models

In computational social science (CSS), researchers analyze documents to explain social and political phenomena. In most scenarios, CSS researchers first obtain labels for documents and then explain labels using interpretable regression analyses in the second step. One increasingly common way to annotate documents cheaply at scale is through large language models (LLMs). However, like other scalable ways of producing annotations, such surrogate labels are often imperfect and biased. We present a new algorithm for using imperfect annotation surrogates for downstream statistical analyses while guaranteeing statistical properties -- like asymptotic unbiasedness and proper uncertainty quantification -- which are fundamental to CSS research. We show that direct use of surrogate labels in downstream statistical analyses leads to substantial bias and invalid confidence intervals, even with high surrogate accuracy of 80-90%. To address this, we build on debiased machine learning to propose the design-based supervised learning (DSL) estimator. DSL employs a doubly-robust procedure to combine surrogate labels with a smaller number of high-quality, gold-standard labels. Our approach guarantees valid inference for downstream statistical analyses, even when surrogates are arbitrarily biased and without requiring stringent assumptions, by controlling the probability of sampling documents for gold-standard labeling. Both our theoretical analysis and experimental results show that DSL provides valid statistical inference while achieving root mean squared errors comparable to existing alternatives that focus only on prediction without inferential guarantees.

  • 4 authors
·
Jun 7, 2023

StageInteractor: Query-based Object Detector with Cross-stage Interaction

Previous object detectors make predictions based on dense grid points or numerous preset anchors. Most of these detectors are trained with one-to-many label assignment strategies. On the contrary, recent query-based object detectors depend on a sparse set of learnable queries and a series of decoder layers. The one-to-one label assignment is independently applied on each layer for the deep supervision during training. Despite the great success of query-based object detection, however, this one-to-one label assignment strategy demands the detectors to have strong fine-grained discrimination and modeling capacity. To solve the above problems, in this paper, we propose a new query-based object detector with cross-stage interaction, coined as StageInteractor. During the forward propagation, we come up with an efficient way to improve this modeling ability by reusing dynamic operators with lightweight adapters. As for the label assignment, a cross-stage label assigner is applied subsequent to the one-to-one label assignment. With this assigner, the training target class labels are gathered across stages and then reallocated to proper predictions at each decoder layer. On MS COCO benchmark, our model improves the baseline by 2.2 AP, and achieves 44.8 AP with ResNet-50 as backbone, 100 queries and 12 training epochs. With longer training time and 300 queries, StageInteractor achieves 51.1 AP and 52.2 AP with ResNeXt-101-DCN and Swin-S, respectively.

  • 4 authors
·
Apr 11, 2023

UniME-V2: MLLM-as-a-Judge for Universal Multimodal Embedding Learning

Universal multimodal embedding models are foundational to various tasks. Existing approaches typically employ in-batch negative mining by measuring the similarity of query-candidate pairs. However, these methods often struggle to capture subtle semantic differences among candidates and lack diversity in negative samples. Moreover, the embeddings exhibit limited discriminative ability in distinguishing false and hard negatives. In this paper, we leverage the advanced understanding capabilities of MLLMs to enhance representation learning and present a novel Universal Multimodal Embedding (UniME-V2) model. Our approach first constructs a potential hard negative set through global retrieval. We then introduce the MLLM-as-a-Judge mechanism, which utilizes MLLMs to assess the semantic alignment of query-candidate pairs and generate soft semantic matching scores. These scores serve as a foundation for hard negative mining, mitigating the impact of false negatives and enabling the identification of diverse, high-quality hard negatives. Furthermore, the semantic matching scores are used as soft labels to mitigate the rigid one-to-one mapping constraint. By aligning the similarity matrix with the soft semantic matching score matrix, the model learns semantic distinctions among candidates, significantly enhancing its discriminative capacity. To further improve performance, we propose UniME-V2-Reranker, a reranking model trained on our mined hard negatives through a joint pairwise and listwise optimization approach. We conduct comprehensive experiments on the MMEB benchmark and multiple retrieval tasks, demonstrating that our method achieves state-of-the-art performance on average across all tasks.

  • 9 authors
·
Oct 15 2

MixPro: Data Augmentation with MaskMix and Progressive Attention Labeling for Vision Transformer

The recently proposed data augmentation TransMix employs attention labels to help visual transformers (ViT) achieve better robustness and performance. However, TransMix is deficient in two aspects: 1) The image cropping method of TransMix may not be suitable for ViTs. 2) At the early stage of training, the model produces unreliable attention maps. TransMix uses unreliable attention maps to compute mixed attention labels that can affect the model. To address the aforementioned issues, we propose MaskMix and Progressive Attention Labeling (PAL) in image and label space, respectively. In detail, from the perspective of image space, we design MaskMix, which mixes two images based on a patch-like grid mask. In particular, the size of each mask patch is adjustable and is a multiple of the image patch size, which ensures each image patch comes from only one image and contains more global contents. From the perspective of label space, we design PAL, which utilizes a progressive factor to dynamically re-weight the attention weights of the mixed attention label. Finally, we combine MaskMix and Progressive Attention Labeling as our new data augmentation method, named MixPro. The experimental results show that our method can improve various ViT-based models at scales on ImageNet classification (73.8\% top-1 accuracy based on DeiT-T for 300 epochs). After being pre-trained with MixPro on ImageNet, the ViT-based models also demonstrate better transferability to semantic segmentation, object detection, and instance segmentation. Furthermore, compared to TransMix, MixPro also shows stronger robustness on several benchmarks. The code is available at https://github.com/fistyee/MixPro.

  • 5 authors
·
Apr 24, 2023

Online hierarchical partitioning of the output space in extreme multi-label data stream

Mining data streams with multi-label outputs poses significant challenges due to evolving distributions, high-dimensional label spaces, sparse label occurrences, and complex label dependencies. Moreover, concept drift affects not only input distributions but also label correlations and imbalance ratios over time, complicating model adaptation. To address these challenges, structured learners are categorized into local and global methods. Local methods break down the task into simpler components, while global methods adapt the algorithm to the full output space, potentially yielding better predictions by exploiting label correlations. This work introduces iHOMER (Incremental Hierarchy Of Multi-label Classifiers), an online multi-label learning framework that incrementally partitions the label space into disjoint, correlated clusters without relying on predefined hierarchies. iHOMER leverages online divisive-agglomerative clustering based on Jaccard similarity and a global tree-based learner driven by a multivariate Bernoulli process to guide instance partitioning. To address non-stationarity, it integrates drift detection mechanisms at both global and local levels, enabling dynamic restructuring of label partitions and subtrees. Experiments across 23 real-world datasets show iHOMER outperforms 5 state-of-the-art global baselines, such as MLHAT, MLHT of Pruned Sets and iSOUPT, by 23\%, and 12 local baselines, such as binary relevance transformations of kNN, EFDT, ARF, and ADWIN bagging/boosting ensembles, by 32\%, establishing its robustness for online multi-label classification.

  • 4 authors
·
Jul 28

FYI: Flip Your Images for Dataset Distillation

Dataset distillation synthesizes a small set of images from a large-scale real dataset such that synthetic and real images share similar behavioral properties (e.g, distributions of gradients or features) during a training process. Through extensive analyses on current methods and real datasets, together with empirical observations, we provide in this paper two important things to share for dataset distillation. First, object parts that appear on one side of a real image are highly likely to appear on the opposite side of another image within a dataset, which we call the bilateral equivalence. Second, the bilateral equivalence enforces synthetic images to duplicate discriminative parts of objects on both the left and right sides of the images, limiting the recognition of subtle differences between objects. To address this problem, we introduce a surprisingly simple yet effective technique for dataset distillation, dubbed FYI, that enables distilling rich semantics of real images into synthetic ones. To this end, FYI embeds a horizontal flipping technique into distillation processes, mitigating the influence of the bilateral equivalence, while capturing more details of objects. Experiments on CIFAR-10/100, Tiny-ImageNet, and ImageNet demonstrate that FYI can be seamlessly integrated into several state-of-the-art methods, without modifying training objectives and network architectures, and it improves the performance remarkably.

  • 4 authors
·
Jul 10, 2024

Rethinking the Value of Labels for Improving Class-Imbalanced Learning

Real-world data often exhibits long-tailed distributions with heavy class imbalance, posing great challenges for deep recognition models. We identify a persisting dilemma on the value of labels in the context of imbalanced learning: on the one hand, supervision from labels typically leads to better results than its unsupervised counterparts; on the other hand, heavily imbalanced data naturally incurs "label bias" in the classifier, where the decision boundary can be drastically altered by the majority classes. In this work, we systematically investigate these two facets of labels. We demonstrate, theoretically and empirically, that class-imbalanced learning can significantly benefit in both semi-supervised and self-supervised manners. Specifically, we confirm that (1) positively, imbalanced labels are valuable: given more unlabeled data, the original labels can be leveraged with the extra data to reduce label bias in a semi-supervised manner, which greatly improves the final classifier; (2) negatively however, we argue that imbalanced labels are not useful always: classifiers that are first pre-trained in a self-supervised manner consistently outperform their corresponding baselines. Extensive experiments on large-scale imbalanced datasets verify our theoretically grounded strategies, showing superior performance over previous state-of-the-arts. Our intriguing findings highlight the need to rethink the usage of imbalanced labels in realistic long-tailed tasks. Code is available at https://github.com/YyzHarry/imbalanced-semi-self.

  • 2 authors
·
Jun 12, 2020

Balance Act: Mitigating Hubness in Cross-Modal Retrieval with Query and Gallery Banks

In this work, we present a post-processing solution to address the hubness problem in cross-modal retrieval, a phenomenon where a small number of gallery data points are frequently retrieved, resulting in a decline in retrieval performance. We first theoretically demonstrate the necessity of incorporating both the gallery and query data for addressing hubness as hubs always exhibit high similarity with gallery and query data. Second, building on our theoretical results, we propose a novel framework, Dual Bank Normalization (DBNorm). While previous work has attempted to alleviate hubness by only utilizing the query samples, DBNorm leverages two banks constructed from the query and gallery samples to reduce the occurrence of hubs during inference. Next, to complement DBNorm, we introduce two novel methods, dual inverted softmax and dual dynamic inverted softmax, for normalizing similarity based on the two banks. Specifically, our proposed methods reduce the similarity between hubs and queries while improving the similarity between non-hubs and queries. Finally, we present extensive experimental results on diverse language-grounded benchmarks, including text-image, text-video, and text-audio, demonstrating the superior performance of our approaches compared to previous methods in addressing hubness and boosting retrieval performance. Our code is available at https://github.com/yimuwangcs/Better_Cross_Modal_Retrieval.

  • 3 authors
·
Oct 17, 2023

Semantic Item Graph Enhancement for Multimodal Recommendation

Multimodal recommendation systems have attracted increasing attention for their improved performance by leveraging items' multimodal information. Prior methods often build modality-specific item-item semantic graphs from raw modality features and use them as supplementary structures alongside the user-item interaction graph to enhance user preference learning. However, these semantic graphs suffer from semantic deficiencies, including (1) insufficient modeling of collaborative signals among items and (2) structural distortions introduced by noise in raw modality features, ultimately compromising performance. To address these issues, we first extract collaborative signals from the interaction graph and infuse them into each modality-specific item semantic graph to enhance semantic modeling. Then, we design a modulus-based personalized embedding perturbation mechanism that injects perturbations with modulus-guided personalized intensity into embeddings to generate contrastive views. This enables the model to learn noise-robust representations through contrastive learning, thereby reducing the effect of structural noise in semantic graphs. Besides, we propose a dual representation alignment mechanism that first aligns multiple semantic representations via a designed Anchor-based InfoNCE loss using behavior representations as anchors, and then aligns behavior representations with the fused semantics by standard InfoNCE, to ensure representation consistency. Extensive experiments on four benchmark datasets validate the effectiveness of our framework.

  • 5 authors
·
Aug 8

Balancing Label Quantity and Quality for Scalable Elicitation

Scalable oversight studies methods of training and evaluating AI systems in domains where human judgment is unreliable or expensive, such as scientific research and software engineering in complex codebases. Most work in this area has focused on methods of improving the quality of labels. Recent work by Burns et al. (2023) considers the complementary problem of training models with low-quality labels, finding that large pretrained models often have an inductive bias towards producing correct answers. In practice, however, neither label quantity nor quality is fixed: practitioners face a quantity-quality tradeoff. In this paper, we explore the microeconomics of the quantity-quality tradeoff on binary NLP classification tasks used in Burns et al. (2023). While sample-efficient learning has been studied extensively, little public research has focused on scalable elicitation: eliciting capabilities from pretrained models subject to labeling cost constraints. We find that this setting has novel dynamics caused by the tradeoff between label quantity and quality, as well as the model's existing latent capabilities. We observe three regimes of eliciting classification knowledge from pretrained models using supervised finetuning: quantity-dominant, quality-dominant, and a mixed regime involving the use of low- and high-quality data together to attain higher accuracy at a lower cost than using either alone. We explore sample-efficient elicitation methods that make use of two datasets of differing qualities, and establish a Pareto frontier of scalable elicitation methods that optimally trade off labeling cost and classifier performance. We find that the accuracy of supervised fine-tuning can be improved by up to 5 percentage points at a fixed labeling budget by adding a few-shot prompt to make use of the model's existing knowledge of the task.

  • 2 authors
·
Oct 17, 2024

Re-labeling ImageNet: from Single to Multi-Labels, from Global to Localized Labels

ImageNet has been arguably the most popular image classification benchmark, but it is also the one with a significant level of label noise. Recent studies have shown that many samples contain multiple classes, despite being assumed to be a single-label benchmark. They have thus proposed to turn ImageNet evaluation into a multi-label task, with exhaustive multi-label annotations per image. However, they have not fixed the training set, presumably because of a formidable annotation cost. We argue that the mismatch between single-label annotations and effectively multi-label images is equally, if not more, problematic in the training setup, where random crops are applied. With the single-label annotations, a random crop of an image may contain an entirely different object from the ground truth, introducing noisy or even incorrect supervision during training. We thus re-label the ImageNet training set with multi-labels. We address the annotation cost barrier by letting a strong image classifier, trained on an extra source of data, generate the multi-labels. We utilize the pixel-wise multi-label predictions before the final pooling layer, in order to exploit the additional location-specific supervision signals. Training on the re-labeled samples results in improved model performances across the board. ResNet-50 attains the top-1 classification accuracy of 78.9% on ImageNet with our localized multi-labels, which can be further boosted to 80.2% with the CutMix regularization. We show that the models trained with localized multi-labels also outperforms the baselines on transfer learning to object detection and instance segmentation tasks, and various robustness benchmarks. The re-labeled ImageNet training set, pre-trained weights, and the source code are available at {https://github.com/naver-ai/relabel_imagenet}.

  • 6 authors
·
Jan 13, 2021

SP^2OT: Semantic-Regularized Progressive Partial Optimal Transport for Imbalanced Clustering

Deep clustering, which learns representation and semantic clustering without labels information, poses a great challenge for deep learning-based approaches. Despite significant progress in recent years, most existing methods focus on uniformly distributed datasets, significantly limiting the practical applicability of their methods. In this paper, we propose a more practical problem setting named deep imbalanced clustering, where the underlying classes exhibit an imbalance distribution. To address this challenge, we introduce a novel optimal transport-based pseudo-label learning framework. Our framework formulates pseudo-label generation as a Semantic-regularized Progressive Partial Optimal Transport (SP^2OT) problem, which progressively transports each sample to imbalanced clusters under several prior distribution and semantic relation constraints, thus generating high-quality and imbalance-aware pseudo-labels. To solve SP^2OT, we develop a Majorization-Minimization-based optimization algorithm. To be more precise, we employ the strategy of majorization to reformulate the SP^2OT problem into a Progressive Partial Optimal Transport problem, which can be transformed into an unbalanced optimal transport problem with augmented constraints and can be solved efficiently by a fast matrix scaling algorithm. Experiments on various datasets, including a human-curated long-tailed CIFAR100, challenging ImageNet-R, and large-scale subsets of fine-grained iNaturalist2018 datasets, demonstrate the superiority of our method.

  • 3 authors
·
Apr 4, 2024

Adaptive Multi-head Contrastive Learning

In contrastive learning, two views of an original image, generated by different augmentations, are considered a positive pair, and their similarity is required to be high. Similarly, two views of distinct images form a negative pair, with encouraged low similarity. Typically, a single similarity measure, provided by a lone projection head, evaluates positive and negative sample pairs. However, due to diverse augmentation strategies and varying intra-sample similarity, views from the same image may not always be similar. Additionally, owing to inter-sample similarity, views from different images may be more akin than those from the same image. Consequently, enforcing high similarity for positive pairs and low similarity for negative pairs may be unattainable, and in some cases, such enforcement could detrimentally impact performance. To address this challenge, we propose using multiple projection heads, each producing a distinct set of features. Our pre-training loss function emerges from a solution to the maximum likelihood estimation over head-wise posterior distributions of positive samples given observations. This loss incorporates the similarity measure over positive and negative pairs, each re-weighted by an individual adaptive temperature, regulated to prevent ill solutions. Our approach, Adaptive Multi-Head Contrastive Learning (AMCL), can be applied to and experimentally enhances several popular contrastive learning methods such as SimCLR, MoCo, and Barlow Twins. The improvement remains consistent across various backbones and linear probing epochs, and becomes more significant when employing multiple augmentation methods.

  • 4 authors
·
Oct 9, 2023

MarvelOVD: Marrying Object Recognition and Vision-Language Models for Robust Open-Vocabulary Object Detection

Learning from pseudo-labels that generated with VLMs~(Vision Language Models) has been shown as a promising solution to assist open vocabulary detection (OVD) in recent studies. However, due to the domain gap between VLM and vision-detection tasks, pseudo-labels produced by the VLMs are prone to be noisy, while the training design of the detector further amplifies the bias. In this work, we investigate the root cause of VLMs' biased prediction under the OVD context. Our observations lead to a simple yet effective paradigm, coded MarvelOVD, that generates significantly better training targets and optimizes the learning procedure in an online manner by marrying the capability of the detector with the vision-language model. Our key insight is that the detector itself can act as a strong auxiliary guidance to accommodate VLM's inability of understanding both the ``background'' and the context of a proposal within the image. Based on it, we greatly purify the noisy pseudo-labels via Online Mining and propose Adaptive Reweighting to effectively suppress the biased training boxes that are not well aligned with the target object. In addition, we also identify a neglected ``base-novel-conflict'' problem and introduce stratified label assignments to prevent it. Extensive experiments on COCO and LVIS datasets demonstrate that our method outperforms the other state-of-the-arts by significant margins. Codes are available at https://github.com/wkfdb/MarvelOVD

  • 7 authors
·
Jul 31, 2024

Cross-Domain Complementary Learning Using Pose for Multi-Person Part Segmentation

Supervised deep learning with pixel-wise training labels has great successes on multi-person part segmentation. However, data labeling at pixel-level is very expensive. To solve the problem, people have been exploring to use synthetic data to avoid the data labeling. Although it is easy to generate labels for synthetic data, the results are much worse compared to those using real data and manual labeling. The degradation of the performance is mainly due to the domain gap, i.e., the discrepancy of the pixel value statistics between real and synthetic data. In this paper, we observe that real and synthetic humans both have a skeleton (pose) representation. We found that the skeletons can effectively bridge the synthetic and real domains during the training. Our proposed approach takes advantage of the rich and realistic variations of the real data and the easily obtainable labels of the synthetic data to learn multi-person part segmentation on real images without any human-annotated labels. Through experiments, we show that without any human labeling, our method performs comparably to several state-of-the-art approaches which require human labeling on Pascal-Person-Parts and COCO-DensePose datasets. On the other hand, if part labels are also available in the real-images during training, our method outperforms the supervised state-of-the-art methods by a large margin. We further demonstrate the generalizability of our method on predicting novel keypoints in real images where no real data labels are available for the novel keypoints detection. Code and pre-trained models are available at https://github.com/kevinlin311tw/CDCL-human-part-segmentation

  • 6 authors
·
Jul 11, 2019

Rethinking Multiple Instance Learning for Whole Slide Image Classification: A Good Instance Classifier is All You Need

Weakly supervised whole slide image classification is usually formulated as a multiple instance learning (MIL) problem, where each slide is treated as a bag, and the patches cut out of it are treated as instances. Existing methods either train an instance classifier through pseudo-labeling or aggregate instance features into a bag feature through attention mechanisms and then train a bag classifier, where the attention scores can be used for instance-level classification. However, the pseudo instance labels constructed by the former usually contain a lot of noise, and the attention scores constructed by the latter are not accurate enough, both of which affect their performance. In this paper, we propose an instance-level MIL framework based on contrastive learning and prototype learning to effectively accomplish both instance classification and bag classification tasks. To this end, we propose an instance-level weakly supervised contrastive learning algorithm for the first time under the MIL setting to effectively learn instance feature representation. We also propose an accurate pseudo label generation method through prototype learning. We then develop a joint training strategy for weakly supervised contrastive learning, prototype learning, and instance classifier training. Extensive experiments and visualizations on four datasets demonstrate the powerful performance of our method. Codes will be available.

  • 5 authors
·
Jul 5, 2023

Mixup Your Own Pairs

In representation learning, regression has traditionally received less attention than classification. Directly applying representation learning techniques designed for classification to regression often results in fragmented representations in the latent space, yielding sub-optimal performance. In this paper, we argue that the potential of contrastive learning for regression has been overshadowed due to the neglect of two crucial aspects: ordinality-awareness and hardness. To address these challenges, we advocate "mixup your own contrastive pairs for supervised contrastive regression", instead of relying solely on real/augmented samples. Specifically, we propose Supervised Contrastive Learning for Regression with Mixup (SupReMix). It takes anchor-inclusive mixtures (mixup of the anchor and a distinct negative sample) as hard negative pairs and anchor-exclusive mixtures (mixup of two distinct negative samples) as hard positive pairs at the embedding level. This strategy formulates harder contrastive pairs by integrating richer ordinal information. Through extensive experiments on six regression datasets including 2D images, volumetric images, text, tabular data, and time-series signals, coupled with theoretical analysis, we demonstrate that SupReMix pre-training fosters continuous ordered representations of regression data, resulting in significant improvement in regression performance. Furthermore, SupReMix is superior to other approaches in a range of regression challenges including transfer learning, imbalanced training data, and scenarios with fewer training samples.

  • 5 authors
·
Sep 28, 2023

A Cost-Effective LLM-based Approach to Identify Wildlife Trafficking in Online Marketplaces

Wildlife trafficking remains a critical global issue, significantly impacting biodiversity, ecological stability, and public health. Despite efforts to combat this illicit trade, the rise of e-commerce platforms has made it easier to sell wildlife products, putting new pressure on wild populations of endangered and threatened species. The use of these platforms also opens a new opportunity: as criminals sell wildlife products online, they leave digital traces of their activity that can provide insights into trafficking activities as well as how they can be disrupted. The challenge lies in finding these traces. Online marketplaces publish ads for a plethora of products, and identifying ads for wildlife-related products is like finding a needle in a haystack. Learning classifiers can automate ad identification, but creating them requires costly, time-consuming data labeling that hinders support for diverse ads and research questions. This paper addresses a critical challenge in the data science pipeline for wildlife trafficking analytics: generating quality labeled data for classifiers that select relevant data. While large language models (LLMs) can directly label advertisements, doing so at scale is prohibitively expensive. We propose a cost-effective strategy that leverages LLMs to generate pseudo labels for a small sample of the data and uses these labels to create specialized classification models. Our novel method automatically gathers diverse and representative samples to be labeled while minimizing the labeling costs. Our experimental evaluation shows that our classifiers achieve up to 95% F1 score, outperforming LLMs at a lower cost. We present real use cases that demonstrate the effectiveness of our approach in enabling analyses of different aspects of wildlife trafficking.

  • 7 authors
·
Apr 29

Transductive Multi-view Zero-Shot Learning

Most existing zero-shot learning approaches exploit transfer learning via an intermediate-level semantic representation shared between an annotated auxiliary dataset and a target dataset with different classes and no annotation. A projection from a low-level feature space to the semantic representation space is learned from the auxiliary dataset and is applied without adaptation to the target dataset. In this paper we identify two inherent limitations with these approaches. First, due to having disjoint and potentially unrelated classes, the projection functions learned from the auxiliary dataset/domain are biased when applied directly to the target dataset/domain. We call this problem the projection domain shift problem and propose a novel framework, transductive multi-view embedding, to solve it. The second limitation is the prototype sparsity problem which refers to the fact that for each target class, only a single prototype is available for zero-shot learning given a semantic representation. To overcome this problem, a novel heterogeneous multi-view hypergraph label propagation method is formulated for zero-shot learning in the transductive embedding space. It effectively exploits the complementary information offered by different semantic representations and takes advantage of the manifold structures of multiple representation spaces in a coherent manner. We demonstrate through extensive experiments that the proposed approach (1) rectifies the projection shift between the auxiliary and target domains, (2) exploits the complementarity of multiple semantic representations, (3) significantly outperforms existing methods for both zero-shot and N-shot recognition on three image and video benchmark datasets, and (4) enables novel cross-view annotation tasks.

  • 4 authors
·
Jan 19, 2015

Dual Structure-Aware Image Filterings for Semi-supervised Medical Image Segmentation

Semi-supervised image segmentation has attracted great attention recently. The key is how to leverage unlabeled images in the training process. Most methods maintain consistent predictions of the unlabeled images under variations (e.g., adding noise/perturbations, or creating alternative versions) in the image and/or model level. In most image-level variation, medical images often have prior structure information, which has not been well explored. In this paper, we propose novel dual structure-aware image filterings (DSAIF) as the image-level variations for semi-supervised medical image segmentation. Motivated by connected filtering that simplifies image via filtering in structure-aware tree-based image representation, we resort to the dual contrast invariant Max-tree and Min-tree representation. Specifically, we propose a novel connected filtering that removes topologically equivalent nodes (i.e. connected components) having no siblings in the Max/Min-tree. This results in two filtered images preserving topologically critical structure. Applying the proposed DSAIF to mutually supervised networks decreases the consensus of their erroneous predictions on unlabeled images. This helps to alleviate the confirmation bias issue of overfitting to noisy pseudo labels of unlabeled images, and thus effectively improves the segmentation performance. Extensive experimental results on three benchmark datasets demonstrate that the proposed method significantly/consistently outperforms some state-of-the-art methods. The source codes will be publicly available.

  • 7 authors
·
Dec 12, 2023

HuBERTopic: Enhancing Semantic Representation of HuBERT through Self-supervision Utilizing Topic Model

Recently, the usefulness of self-supervised representation learning (SSRL) methods has been confirmed in various downstream tasks. Many of these models, as exemplified by HuBERT and WavLM, use pseudo-labels generated from spectral features or the model's own representation features. From previous studies, it is known that the pseudo-labels contain semantic information. However, the masked prediction task, the learning criterion of HuBERT, focuses on local contextual information and may not make effective use of global semantic information such as speaker, theme of speech, and so on. In this paper, we propose a new approach to enrich the semantic representation of HuBERT. We apply topic model to pseudo-labels to generate a topic label for each utterance. An auxiliary topic classification task is added to HuBERT by using topic labels as teachers. This allows additional global semantic information to be incorporated in an unsupervised manner. Experimental results demonstrate that our method achieves comparable or better performance than the baseline in most tasks, including automatic speech recognition and five out of the eight SUPERB tasks. Moreover, we find that topic labels include various information about utterance, such as gender, speaker, and its theme. This highlights the effectiveness of our approach in capturing multifaceted semantic nuances.

  • 5 authors
·
Oct 5, 2023