new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Nov 10

The Role of the Crowd in Countering Misinformation: A Case Study of the COVID-19 Infodemic

Fact checking by professionals is viewed as a vital defense in the fight against misinformation.While fact checking is important and its impact has been significant, fact checks could have limited visibility and may not reach the intended audience, such as those deeply embedded in polarized communities. Concerned citizens (i.e., the crowd), who are users of the platforms where misinformation appears, can play a crucial role in disseminating fact-checking information and in countering the spread of misinformation. To explore if this is the case, we conduct a data-driven study of misinformation on the Twitter platform, focusing on tweets related to the COVID-19 pandemic, analyzing the spread of misinformation, professional fact checks, and the crowd response to popular misleading claims about COVID-19. In this work, we curate a dataset of false claims and statements that seek to challenge or refute them. We train a classifier to create a novel dataset of 155,468 COVID-19-related tweets, containing 33,237 false claims and 33,413 refuting arguments.Our findings show that professional fact-checking tweets have limited volume and reach. In contrast, we observe that the surge in misinformation tweets results in a quick response and a corresponding increase in tweets that refute such misinformation. More importantly, we find contrasting differences in the way the crowd refutes tweets, some tweets appear to be opinions, while others contain concrete evidence, such as a link to a reputed source. Our work provides insights into how misinformation is organically countered in social platforms by some of their users and the role they play in amplifying professional fact checks.These insights could lead to development of tools and mechanisms that can empower concerned citizens in combating misinformation. The code and data can be found in http://claws.cc.gatech.edu/covid_counter_misinformation.html.

  • 5 authors
·
Nov 11, 2020

Characterizing, Detecting, and Predicting Online Ban Evasion

Moderators and automated methods enforce bans on malicious users who engage in disruptive behavior. However, malicious users can easily create a new account to evade such bans. Previous research has focused on other forms of online deception, like the simultaneous operation of multiple accounts by the same entities (sockpuppetry), impersonation of other individuals, and studying the effects of de-platforming individuals and communities. Here we conduct the first data-driven study of ban evasion, i.e., the act of circumventing bans on an online platform, leading to temporally disjoint operation of accounts by the same user. We curate a novel dataset of 8,551 ban evasion pairs (parent, child) identified on Wikipedia and contrast their behavior with benign users and non-evading malicious users. We find that evasion child accounts demonstrate similarities with respect to their banned parent accounts on several behavioral axes - from similarity in usernames and edited pages to similarity in content added to the platform and its psycholinguistic attributes. We reveal key behavioral attributes of accounts that are likely to evade bans. Based on the insights from the analyses, we train logistic regression classifiers to detect and predict ban evasion at three different points in the ban evasion lifecycle. Results demonstrate the effectiveness of our methods in predicting future evaders (AUC = 0.78), early detection of ban evasion (AUC = 0.85), and matching child accounts with parent accounts (MRR = 0.97). Our work can aid moderators by reducing their workload and identifying evasion pairs faster and more efficiently than current manual and heuristic-based approaches. Dataset is available https://github.com/srijankr/ban_evasion{here}.

  • 3 authors
·
Feb 10, 2022

End-To-End Prediction of Knee Osteoarthritis Progression With Multi-Modal Transformers

Knee Osteoarthritis (KOA) is a highly prevalent chronic musculoskeletal condition with no currently available treatment. The manifestation of KOA is heterogeneous and prediction of its progression is challenging. Current literature suggests that the use of multi-modal data and advanced modeling methods, such as the ones based on Deep Learning, has promise in tackling this challenge. To date, however, the evidence on the efficacy of this approach is limited. In this study, we leveraged recent advances in Deep Learning and, using a Transformer approach, developed a unified framework for the multi-modal fusion of knee imaging data. Subsequently, we analyzed its performance across a range of scenarios by investigating multiple progression horizons -- from short-term to long-term. We report our findings using a large cohort (n=2421-3967) derived from the Osteoarthritis Initiative dataset. We show that structural knee MRI allows identifying radiographic KOA progressors on par with multi-modal fusion approaches, achieving an area under the ROC curve (ROC AUC) of 0.70-0.76 and Average Precision (AP) of 0.15-0.54 in 2-8 year horizons. Progression within 1 year was better predicted with a multi-modal method using X-ray, structural, and compositional MR images -- ROC AUC of 0.76(0.04), AP of 0.13(0.04) -- or via clinical data. Our follow-up analysis generally shows that prediction from the imaging data is more accurate for post-traumatic subjects, and we further investigate which subject subgroups may benefit the most. The present study provides novel insights into multi-modal imaging of KOA and brings a unified data-driven framework for studying its progression in an end-to-end manner, providing new tools for the design of more efficient clinical trials. The source code of our framework and the pre-trained models are made publicly available.

  • 4 authors
·
Jul 3, 2023

Robust model benchmarking and bias-imbalance in data-driven materials science: a case study on MODNet

As the number of novel data-driven approaches to material science continues to grow, it is crucial to perform consistent quality, reliability and applicability assessments of model performance. In this paper, we benchmark the Materials Optimal Descriptor Network (MODNet) method and architecture against the recently released MatBench v0.1, a curated test suite of materials datasets. MODNet is shown to outperform current leaders on 6 of the 13 tasks, whilst closely matching the current leaders on a further 2 tasks; MODNet performs particularly well when the number of samples is below 10,000. Attention is paid to two topics of concern when benchmarking models. First, we encourage the reporting of a more diverse set of metrics as it leads to a more comprehensive and holistic comparison of model performance. Second, an equally important task is the uncertainty assessment of a model towards a target domain. Significant variations in validation errors can be observed, depending on the imbalance and bias in the training set (i.e., similarity between training and application space). By using an ensemble MODNet model, confidence intervals can be built and the uncertainty on individual predictions can be quantified. Imbalance and bias issues are often overlooked, and yet are important for successful real-world applications of machine learning in materials science and condensed matter.

  • 3 authors
·
Feb 3, 2021

Data-driven Tracking of the Bounce-back Path after Disasters: Critical Milestones of Population Activity Recovery and Their Spatial Inequality

The ability to measure and track the speed and trajectory of a community's post-disaster recovery is essential to inform resource allocation and prioritization. The current survey-based approaches to examining community recovery, however, have significant lags and put the burden of data collection on affected people. Also, the existing literature lacks quantitative measures for important milestones to inform the assessment of recovery trajectory. Recognizing these gaps, this study uses location-based data related to visitation patterns and credit card transactions to specify critical recovery milestones related to population activity recovery. Using data from 2017 Hurricane Harvey in Harris County (Texas), the study specifies four critical post-disaster recovery milestones and calculates quantitative measurements of the length of time between the end of a hazard event and when the spatial areas (census tracts) reached these milestones based on fluctuations in visits to essential and non-essential facilities, and essential and non-essential credit card transactions. Accordingly, an integrated recovery metric is created for an overall measurement of each spatial area's recovery progression. Exploratory statistical analyses were conducted to examine whether variations in community recovery progression in achieving the critical milestones is correlated to its flood status, socioeconomic characteristics, and demographic composition. Finally, the extent of spatial inequality is examined. The results show the presence of moderate spatial inequality in population activity recovery in Hurricane Harvey, based upon which the inequality of recovery is measured. Results of this study can benefit post-disaster recovery resource allocation as well as improve community resilience towards future natural hazards.

  • 6 authors
·
Nov 20, 2022

Big-data-driven and AI-based framework to enable personalization in wireless networks

Current communication networks use design methodologies that prevent the realization of maximum network efficiency. In the first place, while users' perception of satisfactory service diverges widely, current networks are designed to be a "universal fit," where they are generally over-engineered to deliver services appealing to all types of users. Also, current networks lack user-level data cognitive intelligence that would enable fast personalized network decisions and actions through automation. Thus, in this article, we propose the utilization of AI, big data analytics, and real-time non-intrusive user feedback in order to enable the personalization of wireless networks. Based on each user's actual QoS requirements and context, a multi-objective formulation enables the network to micro-manage and optimize the provided QoS and user satisfaction levels simultaneously. Moreover, in order to enable user feedback tracking and measurement, we propose a user satisfaction model based on the zone of tolerance concept. Furthermore, we propose a big-data-driven and AI-based personalization framework to integrate personalization into wireless networks. Finally, we implement a personalized network prototype to demonstrate the proposed personalization concept and its potential benefits through a case study. The case study shows how personalization can be realized to enable the efficient optimization of network resources such that certain requirement levels of user satisfaction and revenue in the form of saved resources are achieved.

  • 3 authors
·
Jun 7, 2023

Sample complexity of data-driven tuning of model hyperparameters in neural networks with structured parameter-dependent dual function

Modern machine learning algorithms, especially deep learning based techniques, typically involve careful hyperparameter tuning to achieve the best performance. Despite the surge of intense interest in practical techniques like Bayesian optimization and random search based approaches to automating this laborious and compute intensive task, the fundamental learning theoretic complexity of tuning hyperparameters for deep neural networks is poorly understood. Inspired by this glaring gap, we initiate the formal study of hyperparameter tuning complexity in deep learning through a recently introduced data driven setting. We assume that we have a series of deep learning tasks, and we have to tune hyperparameters to do well on average over the distribution of tasks. A major difficulty is that the utility function as a function of the hyperparameter is very volatile and furthermore, it is given implicitly by an optimization problem over the model parameters. To tackle this challenge, we introduce a new technique to characterize the discontinuities and oscillations of the utility function on any fixed problem instance as we vary the hyperparameter; our analysis relies on subtle concepts including tools from differential/algebraic geometry and constrained optimization. This can be used to show that the learning theoretic complexity of the corresponding family of utility functions is bounded. We instantiate our results and provide sample complexity bounds for concrete applications tuning a hyperparameter that interpolates neural activation functions and setting the kernel parameter in graph neural networks.

  • 3 authors
·
Jan 23

DrivAerNet: A Parametric Car Dataset for Data-Driven Aerodynamic Design and Graph-Based Drag Prediction

This study introduces DrivAerNet, a large-scale high-fidelity CFD dataset of 3D industry-standard car shapes, and RegDGCNN, a dynamic graph convolutional neural network model, both aimed at aerodynamic car design through machine learning. DrivAerNet, with its 4000 detailed 3D car meshes using 0.5 million surface mesh faces and comprehensive aerodynamic performance data comprising of full 3D pressure, velocity fields, and wall-shear stresses, addresses the critical need for extensive datasets to train deep learning models in engineering applications. It is 60\% larger than the previously available largest public dataset of cars, and is the only open-source dataset that also models wheels and underbody. RegDGCNN leverages this large-scale dataset to provide high-precision drag estimates directly from 3D meshes, bypassing traditional limitations such as the need for 2D image rendering or Signed Distance Fields (SDF). By enabling fast drag estimation in seconds, RegDGCNN facilitates rapid aerodynamic assessments, offering a substantial leap towards integrating data-driven methods in automotive design. Together, DrivAerNet and RegDGCNN promise to accelerate the car design process and contribute to the development of more efficient vehicles. To lay the groundwork for future innovations in the field, the dataset and code used in our study are publicly accessible at https://github.com/Mohamedelrefaie/DrivAerNet

  • 3 authors
·
Mar 12, 2024

FairLay-ML: Intuitive Remedies for Unfairness in Data-Driven Social-Critical Algorithms

This thesis explores open-sourced machine learning (ML) model explanation tools to understand whether these tools can allow a layman to visualize, understand, and suggest intuitive remedies to unfairness in ML-based decision-support systems. Machine learning models trained on datasets biased against minority groups are increasingly used to guide life-altering social decisions, prompting the urgent need to study their logic for unfairness. Due to this problem's impact on vast populations of the general public, it is critical for the layperson -- not just subject matter experts in social justice or machine learning experts -- to understand the nature of unfairness within these algorithms and the potential trade-offs. Existing research on fairness in machine learning focuses mostly on the mathematical definitions and tools to understand and remedy unfair models, with some directly citing user-interactive tools as necessary for future work. This thesis presents FairLay-ML, a proof-of-concept GUI integrating some of the most promising tools to provide intuitive explanations for unfair logic in ML models by integrating existing research tools (e.g. Local Interpretable Model-Agnostic Explanations) with existing ML-focused GUI (e.g. Python Streamlit). We test FairLay-ML using models of various accuracy and fairness generated by an unfairness detector tool, Parfait-ML, and validate our results using Themis. Our study finds that the technology stack used for FairLay-ML makes it easy to install and provides real-time black-box explanations of pre-trained models to users. Furthermore, the explanations provided translate to actionable remedies.

  • 3 authors
·
Jul 11, 2023

PACE: Data-Driven Virtual Agent Interaction in Dense and Cluttered Environments

We present PACE, a novel method for modifying motion-captured virtual agents to interact with and move throughout dense, cluttered 3D scenes. Our approach changes a given motion sequence of a virtual agent as needed to adjust to the obstacles and objects in the environment. We first take the individual frames of the motion sequence most important for modeling interactions with the scene and pair them with the relevant scene geometry, obstacles, and semantics such that interactions in the agents motion match the affordances of the scene (e.g., standing on a floor or sitting in a chair). We then optimize the motion of the human by directly altering the high-DOF pose at each frame in the motion to better account for the unique geometric constraints of the scene. Our formulation uses novel loss functions that maintain a realistic flow and natural-looking motion. We compare our method with prior motion generating techniques and highlight the benefits of our method with a perceptual study and physical plausibility metrics. Human raters preferred our method over the prior approaches. Specifically, they preferred our method 57.1% of the time versus the state-of-the-art method using existing motions, and 81.0% of the time versus a state-of-the-art motion synthesis method. Additionally, our method performs significantly higher on established physical plausibility and interaction metrics. Specifically, we outperform competing methods by over 1.2% in terms of the non-collision metric and by over 18% in terms of the contact metric. We have integrated our interactive system with Microsoft HoloLens and demonstrate its benefits in real-world indoor scenes. Our project website is available at https://gamma.umd.edu/pace/.

  • 2 authors
·
Mar 24, 2023

Enhancing End Stage Renal Disease Outcome Prediction: A Multi-Sourced Data-Driven Approach

Objective: To improve prediction of Chronic Kidney Disease (CKD) progression to End Stage Renal Disease (ESRD) using machine learning (ML) and deep learning (DL) models applied to an integrated clinical and claims dataset of varying observation windows, supported by explainable AI (XAI) to enhance interpretability and reduce bias. Materials and Methods: We utilized data about 10,326 CKD patients, combining their clinical and claims information from 2009 to 2018. Following data preprocessing, cohort identification, and feature engineering, we evaluated multiple statistical, ML and DL models using data extracted from five distinct observation windows. Feature importance and Shapley value analysis were employed to understand key predictors. Models were tested for robustness, clinical relevance, misclassification errors and bias issues. Results: Integrated data models outperformed those using single data sources, with the Long Short-Term Memory (LSTM) model achieving the highest AUC (0.93) and F1 score (0.65). A 24-month observation window was identified as optimal for balancing early detection and prediction accuracy. The 2021 eGFR equation improved prediction accuracy and reduced racial bias, notably for African American patients. Discussion: Improved ESRD prediction accuracy, results interpretability and bias mitigation strategies presented in this study have the potential to significantly enhance CKD and ESRD management, support targeted early interventions and reduce healthcare disparities. Conclusion: This study presents a robust framework for predicting ESRD outcomes in CKD patients, improving clinical decision-making and patient care through multi-sourced, integrated data and AI/ML methods. Future research will expand data integration and explore the application of this framework to other chronic diseases.

  • 2 authors
·
Oct 1, 2024

Nigerian Schizophrenia EEG Dataset (NSzED) Towards Data-Driven Psychiatry in Africa

This work has been carried out to improve the dearth of high-quality EEG datasets used for schizophrenia diagnostic tools development and studies from populations of developing and underdeveloped regions of the world. To this aim, the presented dataset contains international 10/20 system EEG recordings from West African subjects of Nigerian origin in restful states, mental arithmetic task execution states and while passively reacting to auditory stimuli, the first of its kind from the region and continent. The subjects are divided into patients and healthy controls and recorded from 37 patients and 22 healthy control subjects identified by the Mini International Schizophrenia Interview (MINI) and also assessed by the Positive and Negative Symptoms Scale (PANSS) and the World Health Organization Disability Assessment Schedule (WHODAS). All patients are admitted schizophrenia patients of the Mental Health Ward, Medical Outpatient Department of the Obafemi Awolowo University Teaching Hospital Complex (OAUTHC, Ile-Ife) and its subsidiary Wesley Guild Hospital Unit (OAUTHC, Ilesa). Controls are drawn from students and clinicians who volunteered to participate in the study at the Mental Health Ward of OAUTHC and the Wesley Guild Hospital Unit. This dataset is the first version of the Nigerian schizophrenia dataset (NSzED) and can be used by the neuroscience and computational psychiatry research community studying the diagnosis and prognosis of schizophrenia using the electroencephalogram signal modality.

  • 3 authors
·
Nov 30, 2023

Skill-it! A Data-Driven Skills Framework for Understanding and Training Language Models

The quality of training data impacts the performance of pre-trained large language models (LMs). Given a fixed budget of tokens, we study how to best select data that leads to good downstream model performance across tasks. We develop a new framework based on a simple hypothesis: just as humans acquire interdependent skills in a deliberate order, language models also follow a natural order when learning a set of skills from their training data. If such an order exists, it can be utilized for improved understanding of LMs and for data-efficient training. Using this intuition, our framework formalizes the notion of a skill and of an ordered set of skills in terms of the associated data. First, using both synthetic and real data, we demonstrate that these ordered skill sets exist, and that their existence enables more advanced skills to be learned with less data when we train on their prerequisite skills. Second, using our proposed framework, we introduce an online data sampling algorithm, Skill-It, over mixtures of skills for both continual pre-training and fine-tuning regimes, where the objective is to efficiently learn multiple skills in the former and an individual skill in the latter. On the LEGO synthetic in the continual pre-training setting, Skill-It obtains 36.5 points higher accuracy than random sampling. On the Natural Instructions dataset in the fine-tuning setting, Skill-It reduces the validation loss on the target skill by 13.6% versus training on data associated with the target skill itself. We apply our skills framework on the recent RedPajama dataset to continually pre-train a 3B-parameter LM, achieving higher accuracy on the LM Evaluation Harness with 1B tokens than the baseline approach of sampling uniformly over data sources with 3B tokens.

  • 7 authors
·
Jul 26, 2023

Assessing the Use of AutoML for Data-Driven Software Engineering

Background. Due to the widespread adoption of Artificial Intelligence (AI) and Machine Learning (ML) for building software applications, companies are struggling to recruit employees with a deep understanding of such technologies. In this scenario, AutoML is soaring as a promising solution to fill the AI/ML skills gap since it promises to automate the building of end-to-end AI/ML pipelines that would normally be engineered by specialized team members. Aims. Despite the growing interest and high expectations, there is a dearth of information about the extent to which AutoML is currently adopted by teams developing AI/ML-enabled systems and how it is perceived by practitioners and researchers. Method. To fill these gaps, in this paper, we present a mixed-method study comprising a benchmark of 12 end-to-end AutoML tools on two SE datasets and a user survey with follow-up interviews to further our understanding of AutoML adoption and perception. Results. We found that AutoML solutions can generate models that outperform those trained and optimized by researchers to perform classification tasks in the SE domain. Also, our findings show that the currently available AutoML solutions do not live up to their names as they do not equally support automation across the stages of the ML development workflow and for all the team members. Conclusions. We derive insights to inform the SE research community on how AutoML can facilitate their activities and tool builders on how to design the next generation of AutoML technologies.

  • 4 authors
·
Jul 20, 2023

Enhancing Large Language Models for Secure Code Generation: A Dataset-driven Study on Vulnerability Mitigation

Large language models (LLMs) have brought significant advancements to code generation, benefiting both novice and experienced developers. However, their training using unsanitized data from open-source repositories, like GitHub, introduces the risk of inadvertently propagating security vulnerabilities. To effectively mitigate this concern, this paper presents a comprehensive study focused on evaluating and enhancing code LLMs from a software security perspective. We introduce SecuCoGenSecuCoGen has been uploaded as supplemental material and will be made publicly available after publication., a meticulously curated dataset targeting 21 critical vulnerability types. SecuCoGen comprises 180 samples and serves as the foundation for conducting experiments on three crucial code-related tasks: code generation, code repair and vulnerability classification, with a strong emphasis on security. Our experimental results reveal that existing models often overlook security concerns during code generation, leading to the generation of vulnerable code. To address this, we propose effective approaches to mitigate the security vulnerabilities and enhance the overall robustness of code generated by LLMs. Moreover, our study identifies weaknesses in existing models' ability to repair vulnerable code, even when provided with vulnerability information. Additionally, certain vulnerability types pose challenges for the models, hindering their performance in vulnerability classification. Based on these findings, we believe our study will have a positive impact on the software engineering community, inspiring the development of improved methods for training and utilizing LLMs, thereby leading to safer and more trustworthy model deployment.

  • 7 authors
·
Oct 24, 2023

Integrating Biological Data into Autonomous Remote Sensing Systems for In Situ Imageomics: A Case Study for Kenyan Animal Behavior Sensing with Unmanned Aerial Vehicles (UAVs)

In situ imageomics leverages machine learning techniques to infer biological traits from images collected in the field, or in situ, to study individuals organisms, groups of wildlife, and whole ecosystems. Such datasets provide real-time social and environmental context to inferred biological traits, which can enable new, data-driven conservation and ecosystem management. The development of machine learning techniques to extract biological traits from images are impeded by the volume and quality data required to train these models. Autonomous, unmanned aerial vehicles (UAVs), are well suited to collect in situ imageomics data as they can traverse remote terrain quickly to collect large volumes of data with greater consistency and reliability compared to manually piloted UAV missions. However, little guidance exists on optimizing autonomous UAV missions for the purposes of remote sensing for conservation and biodiversity monitoring. The UAV video dataset curated by KABR: In-Situ Dataset for Kenyan Animal Behavior Recognition from Drone Videos required three weeks to collect, a time-consuming and expensive endeavor. Our analysis of KABR revealed that a third of the videos gathered were unusable for the purposes of inferring wildlife behavior. We analyzed the flight telemetry data from portions of UAV videos that were usable for inferring wildlife behavior, and demonstrate how these insights can be integrated into an autonomous remote sensing system to track wildlife in real time. Our autonomous remote sensing system optimizes the UAV's actions to increase the yield of usable data, and matches the flight path of an expert pilot with an 87% accuracy rate, representing an 18.2% improvement in accuracy over previously proposed methods.

  • 6 authors
·
Jul 23, 2024

VaxxHesitancy: A Dataset for Studying Hesitancy Towards COVID-19 Vaccination on Twitter

Vaccine hesitancy has been a common concern, probably since vaccines were created and, with the popularisation of social media, people started to express their concerns about vaccines online alongside those posting pro- and anti-vaccine content. Predictably, since the first mentions of a COVID-19 vaccine, social media users posted about their fears and concerns or about their support and belief into the effectiveness of these rapidly developing vaccines. Identifying and understanding the reasons behind public hesitancy towards COVID-19 vaccines is important for policy markers that need to develop actions to better inform the population with the aim of increasing vaccine take-up. In the case of COVID-19, where the fast development of the vaccines was mirrored closely by growth in anti-vaxx disinformation, automatic means of detecting citizen attitudes towards vaccination became necessary. This is an important computational social sciences task that requires data analysis in order to gain in-depth understanding of the phenomena at hand. Annotated data is also necessary for training data-driven models for more nuanced analysis of attitudes towards vaccination. To this end, we created a new collection of over 3,101 tweets annotated with users' attitudes towards COVID-19 vaccination (stance). Besides, we also develop a domain-specific language model (VaxxBERT) that achieves the best predictive performance (73.0 accuracy and 69.3 F1-score) as compared to a robust set of baselines. To the best of our knowledge, these are the first dataset and model that model vaccine hesitancy as a category distinct from pro- and anti-vaccine stance.

  • 6 authors
·
Jan 16, 2023

Clinical Evaluation of Medical Image Synthesis: A Case Study in Wireless Capsule Endoscopy

Synthetic Data Generation (SDG) based on Artificial Intelligence (AI) can transform the way clinical medicine is delivered by overcoming privacy barriers that currently render clinical data sharing difficult. This is the key to accelerating the development of digital tools contributing to enhanced patient safety. Such tools include robust data-driven clinical decision support systems, and example-based digital training tools that will enable healthcare professionals to improve their diagnostic performance for enhanced patient safety. This study focuses on the clinical evaluation of medical SDG, with a proof-of-concept investigation on diagnosing Inflammatory Bowel Disease (IBD) using Wireless Capsule Endoscopy (WCE) images. Its scientific contributions include a) a novel protocol for the systematic Clinical Evaluation of Medical Image Synthesis (CEMIS); b) a novel variational autoencoder-based model for the generation of high-resolution synthetic WCE images; and c) a comprehensive evaluation of the synthetic images using the CEMIS protocol by 10 international WCE specialists, in terms of image quality, diversity, and realism, as well as their utility for clinical decision-making. The results show that TIDE-II generates clinically plausible, very realistic WCE images, of improved quality compared to relevant state-of-the-art generative models. Concludingly, CEMIS can serve as a reference for future research on medical image-generation techniques, while the adaptation/extension of the architecture of TIDE-II to other imaging domains can be promising.

  • 13 authors
·
Oct 31, 2024

RDesign: Hierarchical Data-efficient Representation Learning for Tertiary Structure-based RNA Design

While artificial intelligence has made remarkable strides in revealing the relationship between biological macromolecules' primary sequence and tertiary structure, designing RNA sequences based on specified tertiary structures remains challenging. Though existing approaches in protein design have thoroughly explored structure-to-sequence dependencies in proteins, RNA design still confronts difficulties due to structural complexity and data scarcity. Moreover, direct transplantation of protein design methodologies into RNA design fails to achieve satisfactory outcomes although sharing similar structural components. In this study, we aim to systematically construct a data-driven RNA design pipeline. We crafted a large, well-curated benchmark dataset and designed a comprehensive structural modeling approach to represent the complex RNA tertiary structure. More importantly, we proposed a hierarchical data-efficient representation learning framework that learns structural representations through contrastive learning at both cluster-level and sample-level to fully leverage the limited data. By constraining data representations within a limited hyperspherical space, the intrinsic relationships between data points could be explicitly imposed. Moreover, we incorporated extracted secondary structures with base pairs as prior knowledge to facilitate the RNA design process. Extensive experiments demonstrate the effectiveness of our proposed method, providing a reliable baseline for future RNA design tasks. The source code and benchmark dataset are available at https://github.com/A4Bio/RDesign.

  • 7 authors
·
Jan 25, 2023

Automated Code-centric Software Vulnerability Assessment: How Far Are We? An Empirical Study in C/C++

Background: The C and C++ languages hold significant importance in Software Engineering research because of their widespread use in practice. Numerous studies have utilized Machine Learning (ML) and Deep Learning (DL) techniques to detect software vulnerabilities (SVs) in the source code written in these languages. However, the application of these techniques in function-level SV assessment has been largely unexplored. SV assessment is increasingly crucial as it provides detailed information on the exploitability, impacts, and severity of security defects, thereby aiding in their prioritization and remediation. Aims: We conduct the first empirical study to investigate and compare the performance of ML and DL models, many of which have been used for SV detection, for function-level SV assessment in C/C++. Method: Using 9,993 vulnerable C/C++ functions, we evaluated the performance of six multi-class ML models and five multi-class DL models for the SV assessment at the function level based on the Common Vulnerability Scoring System (CVSS). We further explore multi-task learning, which can leverage common vulnerable code to predict all SV assessment outputs simultaneously in a single model, and compare the effectiveness and efficiency of this model type with those of the original multi-class models. Results: We show that ML has matching or even better performance compared to the multi-class DL models for function-level SV assessment with significantly less training time. Employing multi-task learning allows the DL models to perform significantly better, with an average of 8-22% increase in Matthews Correlation Coefficient (MCC). Conclusions: We distill the practices of using data-driven techniques for function-level SV assessment in C/C++, including the use of multi-task DL to balance efficiency and effectiveness. This can establish a strong foundation for future work in this area.

  • 3 authors
·
Jul 24, 2024

Causal Evidence for the Primordiality of Colors in Trans-Neptunian Objects

The origins of the colors of Trans-Neptunian Objects (TNOs) represent a crucial unresolved question, central to understanding the history of our Solar System. Recent observational surveys have revealed correlations between the eccentricity and inclination of TNOs and their colors. This has rekindled the long-standing debate on whether these colors reflect the conditions of TNO formation or their subsequent collisional evolution. In this study, we address this question with 98.7% certainty, using a model-agnostic, data-driven approach based on causal graphs. First, as a sanity check, we demonstrate how our model can replicate the currently accepted paradigms of TNOs' dynamical history, blindly and without any orbital modeling or physics-based assumptions. In fact, our causal model (with no knowledge of the existence of Neptune) predicts the existence of an unknown perturbing body, i.e., Neptune. We then show how this model predicts, with high certainty, that the color of TNOs is the root cause of their inclination distribution, rather than the other way around. This strongly suggests that the colors of TNOs reflect an underlying dynamical property, most likely their formation location. Moreover, our causal model excludes formation scenarios that invoke substantial color modification by subsequent irradiation. We therefore conclude that the colors of TNOs are predominantly primordial.

  • 6 authors
·
Jul 4

Automated Extraction of Material Properties using LLM-based AI Agents

The rapid discovery of materials is constrained by the lack of large, machine-readable datasets that couple performance metrics with structural context. Existing databases are either small, manually curated, or biased toward first principles results, leaving experimental literature underexploited. We present an agentic, large language model (LLM)-driven workflow that autonomously extracts thermoelectric and structural-properties from about 10,000 full-text scientific articles. The pipeline integrates dynamic token allocation, zeroshot multi-agent extraction, and conditional table parsing to balance accuracy against computational cost. Benchmarking on 50 curated papers shows that GPT-4.1 achieves the highest accuracy (F1 = 0.91 for thermoelectric properties and 0.82 for structural fields), while GPT-4.1 Mini delivers nearly comparable performance (F1 = 0.89 and 0.81) at a fraction of the cost, enabling practical large scale deployment. Applying this workflow, we curated 27,822 temperature resolved property records with normalized units, spanning figure of merit (ZT), Seebeck coefficient, conductivity, resistivity, power factor, and thermal conductivity, together with structural attributes such as crystal class, space group, and doping strategy. Dataset analysis reproduces known thermoelectric trends, such as the superior performance of alloys over oxides and the advantage of p-type doping, while also surfacing broader structure-property correlations. To facilitate community access, we release an interactive web explorer with semantic filters, numeric queries, and CSV export. This study delivers the largest LLM-curated thermoelectric dataset to date, provides a reproducible and cost-profiled extraction pipeline, and establishes a foundation for scalable, data-driven materials discovery beyond thermoelectrics.

  • 2 authors
·
Sep 23

BrainSCUBA: Fine-Grained Natural Language Captions of Visual Cortex Selectivity

Understanding the functional organization of higher visual cortex is a central focus in neuroscience. Past studies have primarily mapped the visual and semantic selectivity of neural populations using hand-selected stimuli, which may potentially bias results towards pre-existing hypotheses of visual cortex functionality. Moving beyond conventional approaches, we introduce a data-driven method that generates natural language descriptions for images predicted to maximally activate individual voxels of interest. Our method -- Semantic Captioning Using Brain Alignments ("BrainSCUBA") -- builds upon the rich embedding space learned by a contrastive vision-language model and utilizes a pre-trained large language model to generate interpretable captions. We validate our method through fine-grained voxel-level captioning across higher-order visual regions. We further perform text-conditioned image synthesis with the captions, and show that our images are semantically coherent and yield high predicted activations. Finally, to demonstrate how our method enables scientific discovery, we perform exploratory investigations on the distribution of "person" representations in the brain, and discover fine-grained semantic selectivity in body-selective areas. Unlike earlier studies that decode text, our method derives voxel-wise captions of semantic selectivity. Our results show that BrainSCUBA is a promising means for understanding functional preferences in the brain, and provides motivation for further hypothesis-driven investigation of visual cortex.

  • 4 authors
·
Oct 6, 2023

Make Your LLM Fully Utilize the Context

While many contemporary large language models (LLMs) can process lengthy input, they still struggle to fully utilize information within the long context, known as the lost-in-the-middle challenge. We hypothesize that it stems from insufficient explicit supervision during the long-context training, which fails to emphasize that any position in a long context can hold crucial information. Based on this intuition, our study presents information-intensive (IN2) training, a purely data-driven solution to overcome lost-in-the-middle. Specifically, IN2 training leverages a synthesized long-context question-answer dataset, where the answer requires (1) fine-grained information awareness on a short segment (~128 tokens) within a synthesized long context (4K-32K tokens), and (2) the integration and reasoning of information from two or more short segments. Through applying this information-intensive training on Mistral-7B, we present FILM-7B (FILl-in-the-Middle). To thoroughly assess the ability of FILM-7B for utilizing long contexts, we design three probing tasks that encompass various context styles (document, code, and structured-data context) and information retrieval patterns (forward, backward, and bi-directional retrieval). The probing results demonstrate that FILM-7B can robustly retrieve information from different positions in its 32K context window. Beyond these probing tasks, FILM-7B significantly improves the performance on real-world long-context tasks (e.g., 23.5->26.9 F1 score on NarrativeQA), while maintaining a comparable performance on short-context tasks (e.g., 59.3->59.2 accuracy on MMLU). Github Link: https://github.com/microsoft/FILM.

  • 5 authors
·
Apr 25, 2024 2

An adapted large language model facilitates multiple medical tasks in diabetes care

Diabetes is a chronic disease that poses a significant global health burden, and optimizing diabetes management requires multi-stakeholder collaboration. Large language models (LLMs) have shown promise in various healthcare scenarios, but their effectiveness across a diverse range of diabetes tasks remains unproven. In this study, we introduced a framework to train and validate diabetes-specific LLMs. We first developed a comprehensive data processing pipeline that includes data collection, filtering, augmentation and refinement. This approach contributes to creating a high-quality, diabetes-specific dataset, and several evaluation benchmarks entirely from scratch. Utilizing the collected training dataset, we fine-tuned a diabetes-specific LLM family that demonstrated state-of-the-art proficiency in understanding and processing various diabetes tasks compared to other LLMs. Furthermore, clinical studies showed the potential applications of our models in diabetes care, including providing personalized healthcare, assisting medical education, and streamlining clinical tasks. In conclusion, our study introduced a framework to develop and evaluate a diabetes-specific LLM family, and highlighted its potential to enhance clinical practice and provide personalized, data-driven support for diabetes support when facing different end users. The code is provided via GitHub at https://github.com/waltonfuture/Diabetica.

  • 10 authors
·
Sep 19, 2024 2

Corrective or Backfire: Characterizing and Predicting User Response to Social Correction

Online misinformation poses a global risk with harmful implications for society. Ordinary social media users are known to actively reply to misinformation posts with counter-misinformation messages, which is shown to be effective in containing the spread of misinformation. Such a practice is defined as "social correction". Nevertheless, it remains unknown how users respond to social correction in real-world scenarios, especially, will it have a corrective or backfire effect on users. Investigating this research question is pivotal for developing and refining strategies that maximize the efficacy of social correction initiatives. To fill this gap, we conduct an in-depth study to characterize and predict the user response to social correction in a data-driven manner through the lens of X (Formerly Twitter), where the user response is instantiated as the reply that is written toward a counter-misinformation message. Particularly, we first create a novel dataset with 55, 549 triples of misinformation tweets, counter-misinformation replies, and responses to counter-misinformation replies, and then curate a taxonomy to illustrate different kinds of user responses. Next, fine-grained statistical analysis of reply linguistic and engagement features as well as repliers' user attributes is conducted to illustrate the characteristics that are significant in determining whether a reply will have a corrective or backfire effect. Finally, we build a user response prediction model to identify whether a social correction will be corrective, neutral, or have a backfire effect, which achieves a promising F1 score of 0.816. Our work enables stakeholders to monitor and predict user responses effectively, thus guiding the use of social correction to maximize their corrective impact and minimize backfire effects. The code and data is accessible on https://github.com/claws-lab/response-to-social-correction.

  • 4 authors
·
Mar 7, 2024

ReviewGuard: Enhancing Deficient Peer Review Detection via LLM-Driven Data Augmentation

Peer review serves as the gatekeeper of science, yet the surge in submissions and widespread adoption of large language models (LLMs) in scholarly evaluation present unprecedented challenges. Recent work has focused on using LLMs to improve review efficiency or generate insightful review content. However, unchecked deficient reviews from both human experts and AI systems threaten to systematically undermine the peer review ecosystem and compromise academic integrity. To address this critical issue, we introduce ReviewGuard, an automated system for detecting and categorizing deficient reviews. ReviewGuard employs a comprehensive four-stage LLM-driven framework that: (1) collects ICLR and NeurIPS papers with their corresponding reviews from OpenReview; (2) annotates review types using GPT-4.1 with human validation; (3) addresses class imbalance and data scarcity through LLM-driven synthetic data augmentation, producing a final corpus of 6,634 papers, 24,657 real reviews, and 46,438 synthetic reviews; and (4) fine-tunes both encoder-based models and open source LLMs. We perform comprehensive feature analysis of the structure and quality of the review text. Compared to sufficient reviews, deficient reviews demonstrate lower rating scores, higher self-reported confidence, reduced structural complexity, and a higher proportion of negative sentiment. AI-generated text detection reveals that, since ChatGPT's emergence, AI-generated reviews have increased dramatically. In the evaluation of deficient review detection models, mixed training with synthetic and real review data provides substantial enhancements to recall and F1 scores on the binary task. This study presents the first LLM-driven system for detecting deficient peer reviews, providing evidence to inform AI governance in peer review while offering valuable insights into human-AI collaboration to maintain academic integrity.

  • 9 authors
·
Oct 18

Understanding Alignment in Multimodal LLMs: A Comprehensive Study

Preference alignment has become a crucial component in enhancing the performance of Large Language Models (LLMs), yet its impact in Multimodal Large Language Models (MLLMs) remains comparatively underexplored. Similar to language models, MLLMs for image understanding tasks encounter challenges like hallucination. In MLLMs, hallucination can occur not only by stating incorrect facts but also by producing responses that are inconsistent with the image content. A primary objective of alignment for MLLMs is to encourage these models to align responses more closely with image information. Recently, multiple works have introduced preference datasets for MLLMs and examined different alignment methods, including Direct Preference Optimization (DPO) and Proximal Policy Optimization (PPO). However, due to variations in datasets, base model types, and alignment methods, it remains unclear which specific elements contribute most significantly to the reported improvements in these works. In this paper, we independently analyze each aspect of preference alignment in MLLMs. We start by categorizing the alignment algorithms into two groups, offline (such as DPO), and online (such as online-DPO), and show that combining offline and online methods can improve the performance of the model in certain scenarios. We review a variety of published multimodal preference datasets and discuss how the details of their construction impact model performance. Based on these insights, we introduce a novel way of creating multimodal preference data called Bias-Driven Hallucination Sampling (BDHS) that needs neither additional annotation nor external models, and show that it can achieve competitive performance to previously published alignment work for multimodal models across a range of benchmarks.

  • 11 authors
·
Jul 2, 2024 2

AI-Driven Real-Time Monitoring of Ground-Nesting Birds: A Case Study on Curlew Detection Using YOLOv10

Effective monitoring of wildlife is critical for assessing biodiversity and ecosystem health, as declines in key species often signal significant environmental changes. Birds, particularly ground-nesting species, serve as important ecological indicators due to their sensitivity to environmental pressures. Camera traps have become indispensable tools for monitoring nesting bird populations, enabling data collection across diverse habitats. However, the manual processing and analysis of such data are resource-intensive, often delaying the delivery of actionable conservation insights. This study presents an AI-driven approach for real-time species detection, focusing on the curlew (Numenius arquata), a ground-nesting bird experiencing significant population declines. A custom-trained YOLOv10 model was developed to detect and classify curlews and their chicks using 3/4G-enabled cameras linked to the Conservation AI platform. The system processes camera trap data in real-time, significantly enhancing monitoring efficiency. Across 11 nesting sites in Wales, the model achieved high performance, with a sensitivity of 90.56%, specificity of 100%, and F1-score of 95.05% for curlew detections, and a sensitivity of 92.35%, specificity of 100%, and F1-score of 96.03% for curlew chick detections. These results demonstrate the capability of AI-driven monitoring systems to deliver accurate, timely data for biodiversity assessments, facilitating early conservation interventions and advancing the use of technology in ecological research.

  • 9 authors
·
Nov 22, 2024

ChartM$^3$: A Multi-Stage Code-Driven Pipeline for Constructing Multi-Dimensional and Multi-Step Visual Reasoning Data in Chart Comprehension

Complex chart understanding tasks demand advanced visual recognition and reasoning capabilities from multimodal large language models (MLLMs). However, current research provides limited coverage of complex chart scenarios and computation-intensive reasoning tasks prevalent in real-world applications. This study proposes an automated multi-stage code-driven pipeline for systematically generating visual reasoning datasets to address these limitations. The pipeline integrates retrieval-augmented generation (RAG) to retrieve professional chart templates and employs chain-of-thought (CoT) strategies to generate reasoning codes that simulate real data distributions, thereby driving chart rendering and question-related statistical computations. Through model-based evaluation, the pipeline enhances chart diversity and data quality. Using this framework, we construct ChartM^3, a multi-dimensional and multi-step dataset containing 38K charts and 142K Q&A pairs for training, along with 2,871 high-quality evaluation samples for enabling practical performance assessment. Supervised fine-tuning (SFT) and reinforcement learning (RL) experiments demonstrate that our dataset significantly improves reasoning capabilities and cross-domain generalization performance, enabling smaller models to achieve performance comparable to larger-scale models in complex chart comprehension.

No Language Data Left Behind: A Comparative Study of CJK Language Datasets in the Hugging Face Ecosystem

Recent advances in Natural Language Processing (NLP) have underscored the crucial role of high-quality datasets in building large language models (LLMs). However, while extensive resources and analyses exist for English, the landscape for East Asian languages - particularly Chinese, Japanese, and Korean (CJK) - remains fragmented and underexplored, despite these languages together serving over 1.6 billion speakers. To address this gap, we investigate the HuggingFace ecosystem from a cross-linguistic perspective, focusing on how cultural norms, research environments, and institutional practices shape dataset availability and quality. Drawing on more than 3,300 datasets, we employ quantitative and qualitative methods to examine how these factors drive distinct creation and curation patterns across Chinese, Japanese, and Korean NLP communities. Our findings highlight the large-scale and often institution-driven nature of Chinese datasets, grassroots community-led development in Korean NLP, and an entertainment- and subculture-focused emphasis on Japanese collections. By uncovering these patterns, we reveal practical strategies for enhancing dataset documentation, licensing clarity, and cross-lingual resource sharing - ultimately guiding more effective and culturally attuned LLM development in East Asia. We conclude by discussing best practices for future dataset curation and collaboration, aiming to strengthen resource development across all three languages.

  • 3 authors
·
Jul 6

LLM Agent-Based Simulation of Student Activities and Mental Health Using Smartphone Sensing Data

Students' mental well-being is vital for academic success, with activities such as studying, socializing, and sleeping playing a role. Current mobile sensing data highlight this intricate link using statistical and machine learning analyses. We propose a novel LLM agent-based simulation framework to model student activities and mental health using the StudentLife Dataset. Each LLM agent was initialized with personality questionnaires and guided by smartphone sensing data throughout the simulated semester. These agents predict individual behaviors, provide self-reported mental health data via ecological momentary assessments (EMAs), and complete follow-up personality questionnaires. To ensure accuracy, we investigated various prompting techniques, memory systems, and activity-based mental state management strategies that dynamically update an agent's mental state based on their daily activities. This simulation goes beyond simply replicating existing data. This allows us to explore new scenarios that are not present in the original dataset, such as peer influence through agent-to-agent interactions and the impact of social media. Furthermore, we can conduct intervention studies by manipulating activity patterns via sensing signals and personality traits using questionnaire responses. This provides valuable insights into the behavioral changes that could enhance student well-being. The framework also facilitates hypothetical interviews with LLM agents, offering deeper insights into their mental health. This study showcases the power of LLM-driven behavioral modeling with sensing data, opening new avenues for understanding and supporting student mental health.

Character-lab Character-lab
·
Jul 16

Harnessing Earnings Reports for Stock Predictions: A QLoRA-Enhanced LLM Approach

Accurate stock market predictions following earnings reports are crucial for investors. Traditional methods, particularly classical machine learning models, struggle with these predictions because they cannot effectively process and interpret extensive textual data contained in earnings reports and often overlook nuances that influence market movements. This paper introduces an advanced approach by employing Large Language Models (LLMs) instruction fine-tuned with a novel combination of instruction-based techniques and quantized low-rank adaptation (QLoRA) compression. Our methodology integrates 'base factors', such as financial metric growth and earnings transcripts, with 'external factors', including recent market indices performances and analyst grades, to create a rich, supervised dataset. This comprehensive dataset enables our models to achieve superior predictive performance in terms of accuracy, weighted F1, and Matthews correlation coefficient (MCC), especially evident in the comparison with benchmarks such as GPT-4. We specifically highlight the efficacy of the llama-3-8b-Instruct-4bit model, which showcases significant improvements over baseline models. The paper also discusses the potential of expanding the output capabilities to include a 'Hold' option and extending the prediction horizon, aiming to accommodate various investment styles and time frames. This study not only demonstrates the power of integrating cutting-edge AI with fine-tuned financial data but also paves the way for future research in enhancing AI-driven financial analysis tools.

  • 10 authors
·
Aug 13, 2024

Case Studies for Computing Density of Reachable States for Safe Autonomous Motion Planning

Density of the reachable states can help understand the risk of safety-critical systems, especially in situations when worst-case reachability is too conservative. Recent work provides a data-driven approach to compute the density distribution of autonomous systems' forward reachable states online. In this paper, we study the use of such approach in combination with model predictive control for verifiable safe path planning under uncertainties. We first use the learned density distribution to compute the risk of collision online. If such risk exceeds the acceptable threshold, our method will plan for a new path around the previous trajectory, with the risk of collision below the threshold. Our method is well-suited to handle systems with uncertainties and complicated dynamics as our data-driven approach does not need an analytical form of the systems' dynamics and can estimate forward state density with an arbitrary initial distribution of uncertainties. We design two challenging scenarios (autonomous driving and hovercraft control) for safe motion planning in environments with obstacles under system uncertainties. We first show that our density estimation approach can reach a similar accuracy as the Monte-Carlo-based method while using only 0.01X training samples. By leveraging the estimated risk, our algorithm achieves the highest success rate in goal reaching when enforcing the safety rate above 0.99.

  • 4 authors
·
Sep 16, 2022

Automated Coding of Under-Studied Medical Concept Domains: Linking Physical Activity Reports to the International Classification of Functioning, Disability, and Health

Linking clinical narratives to standardized vocabularies and coding systems is a key component of unlocking the information in medical text for analysis. However, many domains of medical concepts lack well-developed terminologies that can support effective coding of medical text. We present a framework for developing natural language processing (NLP) technologies for automated coding of under-studied types of medical information, and demonstrate its applicability via a case study on physical mobility function. Mobility is a component of many health measures, from post-acute care and surgical outcomes to chronic frailty and disability, and is coded in the International Classification of Functioning, Disability, and Health (ICF). However, mobility and other types of functional activity remain under-studied in medical informatics, and neither the ICF nor commonly-used medical terminologies capture functional status terminology in practice. We investigated two data-driven paradigms, classification and candidate selection, to link narrative observations of mobility to standardized ICF codes, using a dataset of clinical narratives from physical therapy encounters. Recent advances in language modeling and word embedding were used as features for established machine learning models and a novel deep learning approach, achieving a macro F-1 score of 84% on linking mobility activity reports to ICF codes. Both classification and candidate selection approaches present distinct strengths for automated coding in under-studied domains, and we highlight that the combination of (i) a small annotated data set; (ii) expert definitions of codes of interest; and (iii) a representative text corpus is sufficient to produce high-performing automated coding systems. This study has implications for the ongoing growth of NLP tools for a variety of specialized applications in clinical care and research.

  • 2 authors
·
Nov 27, 2020

Stable-Sim2Real: Exploring Simulation of Real-Captured 3D Data with Two-Stage Depth Diffusion

3D data simulation aims to bridge the gap between simulated and real-captured 3D data, which is a fundamental problem for real-world 3D visual tasks. Most 3D data simulation methods inject predefined physical priors but struggle to capture the full complexity of real data. An optimal approach involves learning an implicit mapping from synthetic to realistic data in a data-driven manner, but progress in this solution has met stagnation in recent studies. This work explores a new solution path of data-driven 3D simulation, called Stable-Sim2Real, based on a novel two-stage depth diffusion model. The initial stage finetunes Stable-Diffusion to generate the residual between the real and synthetic paired depth, producing a stable but coarse depth, where some local regions may deviate from realistic patterns. To enhance this, both the synthetic and initial output depth are fed into a second-stage diffusion, where diffusion loss is adjusted to prioritize these distinct areas identified by a 3D discriminator. We provide a new benchmark scheme to evaluate 3D data simulation methods. Extensive experiments show that training the network with the 3D simulated data derived from our method significantly enhances performance in real-world 3D visual tasks. Moreover, the evaluation demonstrates the high similarity between our 3D simulated data and real-captured patterns. Project page: https://mutianxu.github.io/stable-sim2real/.

  • 6 authors
·
Jul 31

SpatialReasoner: Towards Explicit and Generalizable 3D Spatial Reasoning

Despite recent advances on multi-modal models, 3D spatial reasoning remains a challenging task for state-of-the-art open-source and proprietary models. Recent studies explore data-driven approaches and achieve enhanced spatial reasoning performance by fine-tuning models on 3D-related visual question-answering data. However, these methods typically perform spatial reasoning in an implicit manner and often fail on questions that are trivial to humans, even with long chain-of-thought reasoning. In this work, we introduce SpatialReasoner, a novel large vision-language model (LVLM) that addresses 3D spatial reasoning with explicit 3D representations shared between multiple stages--3D perception, computation, and reasoning. Explicit 3D representations provide a coherent interface that supports advanced 3D spatial reasoning and improves the generalization ability to novel question types. Furthermore, by analyzing the explicit 3D representations in multi-step reasoning traces of SpatialReasoner, we study the factual errors and identify key shortcomings of current LVLMs. Results show that our SpatialReasoner achieves improved performance on a variety of spatial reasoning benchmarks, outperforming Gemini 2.0 by 9.2% on 3DSRBench, and generalizes better when evaluating on novel 3D spatial reasoning questions. Our study bridges the 3D parsing capabilities of prior visual foundation models with the powerful reasoning abilities of large language models, opening new directions for 3D spatial reasoning.

  • 7 authors
·
Apr 28

The Imitation Game: Turing Machine Imitator is Length Generalizable Reasoner

Length generalization, the ability to solve problems of longer sequences than those observed during training, poses a core challenge of Transformer-based large language models (LLM). Although existing studies have predominantly focused on data-driven approaches for arithmetic operations and symbolic manipulation tasks, these approaches tend to be task-specific with limited overall performance. To pursue a more general solution, this paper focuses on a broader case of reasoning problems that are computable, i.e., problems that algorithms can solve, thus can be solved by the Turing Machine. From this perspective, this paper proposes Turing MAchine Imitation Learning (TAIL) to improve the length generalization ability of LLMs. TAIL synthesizes chain-of-thoughts (CoT) data that imitate the execution process of a Turing Machine by computer programs, which linearly expands the reasoning steps into atomic states to alleviate shortcut learning and explicit memory fetch mechanism to reduce the difficulties of dynamic and long-range data access in elementary operations. To validate the reliability and universality of TAIL, we construct a challenging synthetic dataset covering 8 classes of algorithms and 18 tasks. Without bells and whistles, TAIL significantly improves the length generalization ability as well as the performance of Qwen2.5-7B on various tasks using only synthetic data, surpassing previous methods and DeepSeek-R1. The experimental results reveal that the key concepts in the Turing Machine, instead of the thinking styles, are indispensable for TAIL for length generalization, through which the model exhibits read-and-write behaviors consistent with the properties of the Turing Machine in their attention layers. This work provides a promising direction for future research in the learning of LLM reasoning from synthetic data.

  • 7 authors
·
Jul 17 3

RISING a new framework for few-view tomographic image reconstruction with deep learning

This paper proposes a new two-step procedure for sparse-view tomographic image reconstruction. It is called RISING, since it combines an early-stopped Rapid Iterative Solver with a subsequent Iteration Network-based Gaining step. So far, regularized iterative methods have widely been used for X-ray computed tomography image reconstruction from low-sampled data, since they converge to a sparse solution in a suitable domain, as upheld by the Compressed Sensing theory. Unfortunately, their use is practically limited by their high computational cost which imposes to perform only a few iterations in the available time for clinical exams. Data-driven methods, using neural networks to post-process a coarse and noisy image obtained from geometrical algorithms, have been recently studied and appreciated for both their computational speed and accurate reconstructions. However, there is no evidence, neither theoretically nor numerically, that neural networks based algorithms solve the mathematical inverse problem modeling the tomographic reconstruction process. In our two-step approach, the first phase executes very few iterations of a regularized model-based algorithm whereas the second step completes the missing iterations by means of a neural network. The resulting hybrid deep-variational framework preserves the convergence properties of the iterative method and, at the same time, it exploits the computational speed and flexibility of a data-driven approach. Experiments performed on a simulated and a real data set confirm the numerical and visual accuracy of the reconstructed RISING images in short computational times.

  • 3 authors
·
Jan 24, 2022

EdNet: A Large-Scale Hierarchical Dataset in Education

With advances in Artificial Intelligence in Education (AIEd) and the ever-growing scale of Interactive Educational Systems (IESs), data-driven approach has become a common recipe for various tasks such as knowledge tracing and learning path recommendation. Unfortunately, collecting real students' interaction data is often challenging, which results in the lack of public large-scale benchmark dataset reflecting a wide variety of student behaviors in modern IESs. Although several datasets, such as ASSISTments, Junyi Academy, Synthetic and STATICS, are publicly available and widely used, they are not large enough to leverage the full potential of state-of-the-art data-driven models and limits the recorded behaviors to question-solving activities. To this end, we introduce EdNet, a large-scale hierarchical dataset of diverse student activities collected by Santa, a multi-platform self-study solution equipped with artificial intelligence tutoring system. EdNet contains 131,441,538 interactions from 784,309 students collected over more than 2 years, which is the largest among the ITS datasets released to the public so far. Unlike existing datasets, EdNet provides a wide variety of student actions ranging from question-solving to lecture consumption and item purchasing. Also, EdNet has a hierarchical structure where the student actions are divided into 4 different levels of abstractions. The features of EdNet are domain-agnostic, allowing EdNet to be extended to different domains easily. The dataset is publicly released under Creative Commons Attribution-NonCommercial 4.0 International license for research purposes. We plan to host challenges in multiple AIEd tasks with EdNet to provide a common ground for the fair comparison between different state of the art models and encourage the development of practical and effective methods.

  • 10 authors
·
Dec 6, 2019

FinTruthQA: A Benchmark Dataset for Evaluating the Quality of Financial Information Disclosure

Accurate and transparent financial information disclosure is essential in accounting and finance, fostering trust and enabling informed investment decisions that drive economic development. Among many information disclosure platforms, the Chinese stock exchanges' investor interactive platform provides a novel and interactive way for listed firms to disclose information of interest to investors through an online question-and-answer (Q&A) format. However, it is common for listed firms to respond to questions with limited or no substantive information, and automatically evaluating the quality of financial information disclosure on large amounts of Q&A pairs is challenging. In this study, our interdisciplinary team of AI and finance professionals proposed FinTruthQA, a benchmark designed to evaluate advanced natural language processing (NLP) techniques for the automatic quality assessment of information disclosure in financial Q&A data. It comprises 6,000 real-world financial Q&A entries and each Q&A was manually annotated based on four key evaluation criteria. We benchmarked various NLP techniques on FinTruthQA, including large language models(LLMs). Experiments showed that existing NLP models have strong predictive ability for question identification and question relevance tasks, but are suboptimal for answer readability and answer relevance tasks. By establishing this benchmark, we provide a robust foundation for the automatic evaluation of information disclosure, demonstrating how AI can be leveraged for social good by promoting transparency, fairness, and investor protection in financial disclosure practices. FinTruthQA can be used by auditors, regulators, and financial analysts for real-time monitoring and data-driven decision-making, as well as by researchers for advanced studies in accounting and finance, ultimately fostering greater trust and efficiency in the financial markets.

  • 8 authors
·
Jun 17, 2024

DataEnvGym: Data Generation Agents in Teacher Environments with Student Feedback

The process of creating training data to teach models is currently driven by humans, who manually analyze model weaknesses and plan how to create data that improves a student model. Recent approaches using LLMs as annotators reduce human effort, but still require humans to interpret feedback from evaluations and control the LLM to produce data the student needs. Automating this labor-intensive process by creating autonomous data generation agents - or teachers - is desirable, but requires environments that can simulate the feedback-driven, iterative, closed loop of data creation. To enable rapid and scalable testing for such agents and their modules, we introduce DataEnvGym, a testbed of teacher environments for data generation agents. DataEnvGym frames data generation as a sequential decision-making task, involving an agent consisting of a data generation policy (which generates a plan for creating training data) and a data generation engine (which transforms the plan into data), inside an environment that provides student feedback. The agent's goal is to improve student performance. Students are iteratively trained and evaluated on generated data, with their feedback (in the form of errors or weak skills) being reported to the agent after each iteration. DataEnvGym includes multiple teacher environment instantiations across 3 levels of structure in the state representation and action space. More structured environments are based on inferred skills and offer more interpretability and curriculum control. We support 3 diverse tasks (math, code, and VQA) and test multiple students and teachers. Example agents in our teaching environments can iteratively improve students across tasks and settings. Moreover, we show that environments teach different skill levels and test variants of key modules, pointing to future work in improving data generation agents, engines, and feedback mechanisms.

  • 4 authors
·
Oct 8, 2024

DuoGuard: A Two-Player RL-Driven Framework for Multilingual LLM Guardrails

The rapid advancement of large language models (LLMs) has increased the need for guardrail models to ensure responsible use, particularly in detecting unsafe and illegal content. While substantial safety data exist in English, multilingual guardrail modeling remains underexplored due to the scarcity of open-source safety data in other languages. To address this gap, we propose a novel two-player Reinforcement Learning (RL) framework, where a generator and a guardrail model co-evolve adversarially to produce high-quality synthetic data for multilingual guardrail training. We theoretically formalize this interaction as a two-player game, proving convergence to a Nash equilibrium. Empirical evaluations show that our model \ours outperforms state-of-the-art models, achieving nearly 10% improvement over LlamaGuard3 (8B) on English benchmarks while being 4.5x faster at inference with a significantly smaller model (0.5B). We achieve substantial advancements in multilingual safety tasks, particularly in addressing the imbalance for lower-resource languages in a collected real dataset. Ablation studies emphasize the critical role of synthetic data generation in bridging the imbalance in open-source data between English and other languages. These findings establish a scalable and efficient approach to synthetic data generation, paving the way for improved multilingual guardrail models to enhance LLM safety. Code, model, and data will be open-sourced at https://github.com/yihedeng9/DuoGuard.

  • 5 authors
·
Feb 7 2

CADmium: Fine-Tuning Code Language Models for Text-Driven Sequential CAD Design

Computer-aided design (CAD) is the digital construction of 2D and 3D objects, and is central to a wide range of engineering and manufacturing applications like automobile and aviation. Despite its importance, CAD modeling remains largely a time-intensive, manual task. Recent works have attempted to automate this process with small transformer-based models and handcrafted CAD sequence representations. However, there has been little effort to leverage the potential of large language models (LLMs) for sequential CAD design. In this work, we introduce a new large-scale dataset of more than 170k CAD models annotated with high-quality, human-like descriptions generated with our pipeline based on GPT-4.1. Using this dataset, we fine-tune powerful code-LLMs to generate CAD sequences represented in a JSON-based format from natural language descriptions, demonstrating the viability and effectiveness of this approach for text-conditioned CAD generation. Because simple metrics often fail to reflect the quality of generated objects, we introduce geometric and topological metrics based on sphericity, mean curvature, and Euler characteristic to provide richer structural insights. Our experiments and ablation studies on both synthetic and human-annotated data demonstrate that CADmium is able to automate CAD design, drastically speeding up the design of new objects. The dataset, code, and fine-tuned models are available online.

  • 5 authors
·
Jul 13

UL-DD: A Multimodal Drowsiness Dataset Using Video, Biometric Signals, and Behavioral Data

In this study, we present a comprehensive public dataset for driver drowsiness detection, integrating multimodal signals of facial, behavioral, and biometric indicators. Our dataset includes 3D facial video using a depth camera, IR camera footage, posterior videos, and biometric signals such as heart rate, electrodermal activity, blood oxygen saturation, skin temperature, and accelerometer data. This data set provides grip sensor data from the steering wheel and telemetry data from the American truck simulator game to provide more information about drivers' behavior while they are alert and drowsy. Drowsiness levels were self-reported every four minutes using the Karolinska Sleepiness Scale (KSS). The simulation environment consists of three monitor setups, and the driving condition is completely like a car. Data were collected from 19 subjects (15 M, 4 F) in two conditions: when they were fully alert and when they exhibited signs of sleepiness. Unlike other datasets, our multimodal dataset has a continuous duration of 40 minutes for each data collection session per subject, contributing to a total length of 1,400 minutes, and we recorded gradual changes in the driver state rather than discrete alert/drowsy labels. This study aims to create a comprehensive multimodal dataset of driver drowsiness that captures a wider range of physiological, behavioral, and driving-related signals. The dataset will be available upon request to the corresponding author.

  • 6 authors
·
Jul 16

DisCoPatch: Taming Adversarially-driven Batch Statistics for Improved Out-of-Distribution Detection

Out-of-distribution (OOD) detection holds significant importance across many applications. While semantic and domain-shift OOD problems are well-studied, this work focuses on covariate shifts - subtle variations in the data distribution that can degrade machine learning performance. We hypothesize that detecting these subtle shifts can improve our understanding of in-distribution boundaries, ultimately improving OOD detection. In adversarial discriminators trained with Batch Normalization (BN), real and adversarial samples form distinct domains with unique batch statistics - a property we exploit for OOD detection. We introduce DisCoPatch, an unsupervised Adversarial Variational Autoencoder (VAE) framework that harnesses this mechanism. During inference, batches consist of patches from the same image, ensuring a consistent data distribution that allows the model to rely on batch statistics. DisCoPatch uses the VAE's suboptimal outputs (generated and reconstructed) as negative samples to train the discriminator, thereby improving its ability to delineate the boundary between in-distribution samples and covariate shifts. By tightening this boundary, DisCoPatch achieves state-of-the-art results in public OOD detection benchmarks. The proposed model not only excels in detecting covariate shifts, achieving 95.5% AUROC on ImageNet-1K(-C) but also outperforms all prior methods on public Near-OOD (95.0%) benchmarks. With a compact model size of 25MB, it achieves high OOD detection performance at notably lower latency than existing methods, making it an efficient and practical solution for real-world OOD detection applications. The code is publicly available.

  • 5 authors
·
Jan 14

Deep Learning Driven Natural Languages Text to SQL Query Conversion: A Survey

With the future striving toward data-centric decision-making, seamless access to databases is of utmost importance. There is extensive research on creating an efficient text-to-sql (TEXT2SQL) model to access data from the database. Using a Natural language is one of the best interfaces that can bridge the gap between the data and results by accessing the database efficiently, especially for non-technical users. It will open the doors and create tremendous interest among users who are well versed in technical skills or not very skilled in query languages. Even if numerous deep learning-based algorithms are proposed or studied, there still is very challenging to have a generic model to solve the data query issues using natural language in a real-work scenario. The reason is the use of different datasets in different studies, which comes with its limitations and assumptions. At the same time, we do lack a thorough understanding of these proposed models and their limitations with the specific dataset it is trained on. In this paper, we try to present a holistic overview of 24 recent neural network models studied in the last couple of years, including their architectures involving convolutional neural networks, recurrent neural networks, pointer networks, reinforcement learning, generative models, etc. We also give an overview of the 11 datasets that are widely used to train the models for TEXT2SQL technologies. We also discuss the future application possibilities of TEXT2SQL technologies for seamless data queries.

  • 4 authors
·
Aug 8, 2022

Procedural Knowledge in Pretraining Drives Reasoning in Large Language Models

The capabilities and limitations of Large Language Models have been sketched out in great detail in recent years, providing an intriguing yet conflicting picture. On the one hand, LLMs demonstrate a general ability to solve problems. On the other hand, they show surprising reasoning gaps when compared to humans, casting doubt on the robustness of their generalisation strategies. The sheer volume of data used in the design of LLMs has precluded us from applying the method traditionally used to measure generalisation: train-test set separation. To overcome this, we study what kind of generalisation strategies LLMs employ when performing reasoning tasks by investigating the pretraining data they rely on. For two models of different sizes (7B and 35B) and 2.5B of their pretraining tokens, we identify what documents influence the model outputs for three simple mathematical reasoning tasks and contrast this to the data that are influential for answering factual questions. We find that, while the models rely on mostly distinct sets of data for each factual question, a document often has a similar influence across different reasoning questions within the same task, indicating the presence of procedural knowledge. We further find that the answers to factual questions often show up in the most influential data. However, for reasoning questions the answers usually do not show up as highly influential, nor do the answers to the intermediate reasoning steps. When we characterise the top ranked documents for the reasoning questions qualitatively, we confirm that the influential documents often contain procedural knowledge, like demonstrating how to obtain a solution using formulae or code. Our findings indicate that the approach to reasoning the models use is unlike retrieval, and more like a generalisable strategy that synthesises procedural knowledge from documents doing a similar form of reasoning.

  • 10 authors
·
Nov 19, 2024