new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Nov 4

Guiding Giants: Lightweight Controllers for Weighted Activation Steering in LLMs

Controlling undesirable Large Language Model (LLM) behaviors, such as the generation of unsafe content or failing to adhere to safety guidelines, often relies on costly fine-tuning. Activation steering provides an alternative for inference-time control, but existing methods typically lack fine-grained, adaptive mechanisms. We introduce a novel approach using a lightweight, trainable controller network integrated during inference. This controller network observes specific intermediate LLM activations and predicts both a global scaling factor and layer-specific weights. The predicted global scaling factor and layer-specific weights then dynamically modulate the intensity of a steering patch, derived from a pre-computed "refusal direction" vector, applied across the LLM's layers during generation. Trained on activations from both harmful and benign prompts, our controller learns to discriminatively apply nuanced, layer-aware interventions, activating steering primarily for harmful inputs. Experiments using safety benchmarks like ToxicChat & In-The-Wild Jailbreak Prompts demonstrate that our weighted steering controller significantly increases refusal rates compared to the base LLM, achieving targeted behavioral modification without altering the original model parameters. Our experiments with Llama-3.1-8B, Llama-3.2-1B & Mistral-7B show our approach outperforms existing methods, presenting an efficient and adaptive method for fine-grained control over LLM behavior at inference time.

  • 3 authors
·
May 21

Llama Guard: LLM-based Input-Output Safeguard for Human-AI Conversations

We introduce Llama Guard, an LLM-based input-output safeguard model geared towards Human-AI conversation use cases. Our model incorporates a safety risk taxonomy, a valuable tool for categorizing a specific set of safety risks found in LLM prompts (i.e., prompt classification). This taxonomy is also instrumental in classifying the responses generated by LLMs to these prompts, a process we refer to as response classification. For the purpose of both prompt and response classification, we have meticulously gathered a dataset of high quality. Llama Guard, a Llama2-7b model that is instruction-tuned on our collected dataset, albeit low in volume, demonstrates strong performance on existing benchmarks such as the OpenAI Moderation Evaluation dataset and ToxicChat, where its performance matches or exceeds that of currently available content moderation tools. Llama Guard functions as a language model, carrying out multi-class classification and generating binary decision scores. Furthermore, the instruction fine-tuning of Llama Guard allows for the customization of tasks and the adaptation of output formats. This feature enhances the model's capabilities, such as enabling the adjustment of taxonomy categories to align with specific use cases, and facilitating zero-shot or few-shot prompting with diverse taxonomies at the input. We are making Llama Guard model weights available and we encourage researchers to further develop and adapt them to meet the evolving needs of the community for AI safety.

  • 11 authors
·
Dec 7, 2023 1