- NutritionVerse-Real: An Open Access Manually Collected 2D Food Scene Dataset for Dietary Intake Estimation Dietary intake estimation plays a crucial role in understanding the nutritional habits of individuals and populations, aiding in the prevention and management of diet-related health issues. Accurate estimation requires comprehensive datasets of food scenes, including images, segmentation masks, and accompanying dietary intake metadata. In this paper, we introduce NutritionVerse-Real, an open access manually collected 2D food scene dataset for dietary intake estimation with 889 images of 251 distinct dishes and 45 unique food types. The NutritionVerse-Real dataset was created by manually collecting images of food scenes in real life, measuring the weight of every ingredient and computing the associated dietary content of each dish using the ingredient weights and nutritional information from the food packaging or the Canada Nutrient File. Segmentation masks were then generated through human labelling of the images. We provide further analysis on the data diversity to highlight potential biases when using this data to develop models for dietary intake estimation. NutritionVerse-Real is publicly available at https://www.kaggle.com/datasets/nutritionverse/nutritionverse-real as part of an open initiative to accelerate machine learning for dietary sensing. 7 authors · Nov 20, 2023
1 NutritionVerse-Synth: An Open Access Synthetically Generated 2D Food Scene Dataset for Dietary Intake Estimation Manually tracking nutritional intake via food diaries is error-prone and burdensome. Automated computer vision techniques show promise for dietary monitoring but require large and diverse food image datasets. To address this need, we introduce NutritionVerse-Synth (NV-Synth), a large-scale synthetic food image dataset. NV-Synth contains 84,984 photorealistic meal images rendered from 7,082 dynamically plated 3D scenes. Each scene is captured from 12 viewpoints and includes perfect ground truth annotations such as RGB, depth, semantic, instance, and amodal segmentation masks, bounding boxes, and detailed nutritional information per food item. We demonstrate the diversity of NV-Synth across foods, compositions, viewpoints, and lighting. As the largest open-source synthetic food dataset, NV-Synth highlights the value of physics-based simulations for enabling scalable and controllable generation of diverse photorealistic meal images to overcome data limitations and drive advancements in automated dietary assessment using computer vision. In addition to the dataset, the source code for our data generation framework is also made publicly available at https://saeejithnair.github.io/nvsynth. 4 authors · Dec 11, 2023