Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeOracle Bone Inscriptions Multi-modal Dataset
Oracle bone inscriptions(OBI) is the earliest developed writing system in China, bearing invaluable written exemplifications of early Shang history and paleography. However, the task of deciphering OBI, in the current climate of the scholarship, can prove extremely challenging. Out of the 4,500 oracle bone characters excavated, only a third have been successfully identified. Therefore, leveraging the advantages of advanced AI technology to assist in the decipherment of OBI is a highly essential research topic. However, fully utilizing AI's capabilities in these matters is reliant on having a comprehensive and high-quality annotated OBI dataset at hand whereas most existing datasets are only annotated in just a single or a few dimensions, limiting the value of their potential application. For instance, the Oracle-MNIST dataset only offers 30k images classified into 10 categories. Therefore, this paper proposes an Oracle Bone Inscriptions Multi-modal Dataset(OBIMD), which includes annotation information for 10,077 pieces of oracle bones. Each piece has two modalities: pixel-level aligned rubbings and facsimiles. The dataset annotates the detection boxes, character categories, transcriptions, corresponding inscription groups, and reading sequences in the groups of each oracle bone character, providing a comprehensive and high-quality level of annotations. This dataset can be used for a variety of AI-related research tasks relevant to the field of OBI, such as OBI Character Detection and Recognition, Rubbing Denoising, Character Matching, Character Generation, Reading Sequence Prediction, Missing Characters Completion task and so on. We believe that the creation and publication of a dataset like this will help significantly advance the application of AI algorithms in the field of OBI research.
HERITAGE: An End-to-End Web Platform for Processing Korean Historical Documents in Hanja
While Korean historical documents are invaluable cultural heritage, understanding those documents requires in-depth Hanja expertise. Hanja is an ancient language used in Korea before the 20th century, whose characters were borrowed from old Chinese but had evolved in Korea for centuries. Modern Koreans and Chinese cannot understand Korean historical documents without substantial additional help, and while previous efforts have produced some Korean and English translations, this requires in-depth expertise, and so most of the documents are not translated into any modern language. To address this gap, we present HERITAGE, the first open-source Hanja NLP toolkit to assist in understanding and translating the unexplored Korean historical documents written in Hanja. HERITAGE is a web-based platform providing model predictions of three critical tasks in historical document understanding via Hanja language models: punctuation restoration, named entity recognition, and machine translation (MT). HERITAGE also provides an interactive glossary, which provides the character-level reading of the Hanja characters in modern Korean, as well as character-level English definition. HERITAGE serves two purposes. First, anyone interested in these documents can get a general understanding from the model predictions and the interactive glossary, especially MT outputs in Korean and English. Second, since the model outputs are not perfect, Hanja experts can revise them to produce better annotations and translations. This would boost the translation efficiency and potentially lead to most of the historical documents being translated into modern languages, lowering the barrier on unexplored Korean historical documents.
Enhancing OCR for Sino-Vietnamese Language Processing via Fine-tuned PaddleOCRv5
Recognizing and processing Classical Chinese (Han-Nom) texts play a vital role in digitizing Vietnamese historical documents and enabling cross-lingual semantic research. However, existing OCR systems struggle with degraded scans, non-standard glyphs, and handwriting variations common in ancient sources. In this work, we propose a fine-tuning approach for PaddleOCRv5 to improve character recognition on Han-Nom texts. We retrain the text recognition module using a curated subset of ancient Vietnamese Chinese manuscripts, supported by a full training pipeline covering preprocessing, LMDB conversion, evaluation, and visualization. Experimental results show a significant improvement over the base model, with exact accuracy increasing from 37.5 percent to 50.0 percent, particularly under noisy image conditions. Furthermore, we develop an interactive demo that visually compares pre- and post-fine-tuning recognition results, facilitating downstream applications such as Han-Vietnamese semantic alignment, machine translation, and historical linguistics research. The demo is available at https://huggingface.co/spaces/MinhDS/Fine-tuned-PaddleOCRv5.
When Does Classical Chinese Help? Quantifying Cross-Lingual Transfer in Hanja and Kanbun
Historical and linguistic connections within the Sinosphere have led researchers to use Classical Chinese resources for cross-lingual transfer when processing historical documents from Korea and Japan. In this paper, we question the assumption of cross-lingual transferability from Classical Chinese to Hanja and Kanbun, the ancient written languages of Korea and Japan, respectively. Our experiments across machine translation, named entity recognition, and punctuation restoration tasks show minimal impact of Classical Chinese datasets on language model performance for ancient Korean documents written in Hanja, with performance differences within 0.0068 F1-score for sequence labeling tasks and up to +0.84 BLEU score for translation. These limitations persist consistently across various model sizes, architectures, and domain-specific datasets. Our analysis reveals that the benefits of Classical Chinese resources diminish rapidly as local language data increases for Hanja, while showing substantial improvements only in extremely low-resource scenarios for both Korean and Japanese historical documents. These mixed results emphasize the need for careful empirical validation rather than assuming benefits from indiscriminate cross-lingual transfer.
Open Korean Historical Corpus: A Millennia-Scale Diachronic Collection of Public Domain Texts
The history of the Korean language is characterized by a discrepancy between its spoken and written forms and a pivotal shift from Chinese characters to the Hangul alphabet. However, this linguistic evolution has remained largely unexplored in NLP due to a lack of accessible historical corpora. To address this gap, we introduce the Open Korean Historical Corpus, a large-scale, openly licensed dataset spanning 1,300 years and 6 languages, as well as under-represented writing systems like Korean-style Sinitic (Idu) and Hanja-Hangul mixed script. This corpus contains 18 million documents and 5 billion tokens from 19 sources, ranging from the 7th century to 2025. We leverage this resource to quantitatively analyze major linguistic shifts: (1) Idu usage peaked in the 1860s before declining sharply; (2) the transition from Hanja to Hangul was a rapid transformation starting around 1890; and (3) North Korea's lexical divergence causes modern tokenizers to produce up to 51 times higher out-of-vocabulary rates. This work provides a foundational resource for quantitative diachronic analysis by capturing the history of the Korean language. Moreover, it can serve as a pre-training corpus for large language models, potentially improving their understanding of Sino-Korean vocabulary in modern Hangul as well as archaic writing systems.
CNMBert: A Model For Hanyu Pinyin Abbreviation to Character Conversion Task
The task of converting hanyu pinyin abbreviations to Chinese characters is a significant branch within the domain of Chinese Spelling Correction (CSC) behind many downstream applications. This task is typically one of text-length alignment and seems easy to solve; however, due to the limited informational content in pinyin abbreviations, achieving accurate conversion is challenging. In this paper, we treat this as a Fill-Mask task then propose CNMBert, which stands for zh-CN Pinyin Multi-mask Bert Model, as a solution to this issue. CNMBert surpasses fine-tuning GPT models, achieving a 60.56 MRR score and 51.09 accuracy on a 10,229-sample pinyin abbreviation test dataset, providing a viable solution to this task.
Development of a New Image-to-text Conversion System for Pashto, Farsi and Traditional Chinese
We report upon the results of a research and prototype building project Worldly~OCR dedicated to developing new, more accurate image-to-text conversion software for several languages and writing systems. These include the cursive scripts Farsi and Pashto, and Latin cursive scripts. We also describe approaches geared towards Traditional Chinese, which is non-cursive, but features an extremely large character set of 65,000 characters. Our methodology is based on Machine Learning, especially Deep Learning, and Data Science, and is directed towards vast quantities of original documents, exceeding a billion pages. The target audience of this paper is a general audience with interest in Digital Humanities or in retrieval of accurate full-text and metadata from digital images.
An open dataset for the evolution of oracle bone characters: EVOBC
The earliest extant Chinese characters originate from oracle bone inscriptions, which are closely related to other East Asian languages. These inscriptions hold immense value for anthropology and archaeology. However, deciphering oracle bone script remains a formidable challenge, with only approximately 1,600 of the over 4,500 extant characters elucidated to date. Further scholarly investigation is required to comprehensively understand this ancient writing system. Artificial Intelligence technology is a promising avenue for deciphering oracle bone characters, particularly concerning their evolution. However, one of the challenges is the lack of datasets mapping the evolution of these characters over time. In this study, we systematically collected ancient characters from authoritative texts and websites spanning six historical stages: Oracle Bone Characters - OBC (15th century B.C.), Bronze Inscriptions - BI (13th to 221 B.C.), Seal Script - SS (11th to 8th centuries B.C.), Spring and Autumn period Characters - SAC (770 to 476 B.C.), Warring States period Characters - WSC (475 B.C. to 221 B.C.), and Clerical Script - CS (221 B.C. to 220 A.D.). Subsequently, we constructed an extensive dataset, namely EVolution Oracle Bone Characters (EVOBC), consisting of 229,170 images representing 13,714 distinct character categories. We conducted validation and simulated deciphering on the constructed dataset, and the results demonstrate its high efficacy in aiding the study of oracle bone script. This openly accessible dataset aims to digitalize ancient Chinese scripts across multiple eras, facilitating the decipherment of oracle bone script by examining the evolution of glyph forms.
ChineseBERT: Chinese Pretraining Enhanced by Glyph and Pinyin Information
Recent pretraining models in Chinese neglect two important aspects specific to the Chinese language: glyph and pinyin, which carry significant syntax and semantic information for language understanding. In this work, we propose ChineseBERT, which incorporates both the {\it glyph} and {\it pinyin} information of Chinese characters into language model pretraining. The glyph embedding is obtained based on different fonts of a Chinese character, being able to capture character semantics from the visual features, and the pinyin embedding characterizes the pronunciation of Chinese characters, which handles the highly prevalent heteronym phenomenon in Chinese (the same character has different pronunciations with different meanings). Pretrained on large-scale unlabeled Chinese corpus, the proposed ChineseBERT model yields significant performance boost over baseline models with fewer training steps. The porpsoed model achieves new SOTA performances on a wide range of Chinese NLP tasks, including machine reading comprehension, natural language inference, text classification, sentence pair matching, and competitive performances in named entity recognition. Code and pretrained models are publicly available at https://github.com/ShannonAI/ChineseBert.
CNN based Cuneiform Sign Detection Learned from Annotated 3D Renderings and Mapped Photographs with Illumination Augmentation
Motivated by the challenges of the Digital Ancient Near Eastern Studies (DANES) community, we develop digital tools for processing cuneiform script being a 3D script imprinted into clay tablets used for more than three millennia and at least eight major languages. It consists of thousands of characters that have changed over time and space. Photographs are the most common representations usable for machine learning, while ink drawings are prone to interpretation. Best suited 3D datasets that are becoming available. We created and used the HeiCuBeDa and MaiCuBeDa datasets, which consist of around 500 annotated tablets. For our novel OCR-like approach to mixed image data, we provide an additional mapping tool for transferring annotations between 3D renderings and photographs. Our sign localization uses a RepPoints detector to predict the locations of characters as bounding boxes. We use image data from GigaMesh's MSII (curvature, see https://gigamesh.eu) based rendering, Phong-shaded 3D models, and photographs as well as illumination augmentation. The results show that using rendered 3D images for sign detection performs better than other work on photographs. In addition, our approach gives reasonably good results for photographs only, while it is best used for mixed datasets. More importantly, the Phong renderings, and especially the MSII renderings, improve the results on photographs, which is the largest dataset on a global scale.
Kanbun-LM: Reading and Translating Classical Chinese in Japanese Methods by Language Models
Recent studies in natural language processing (NLP) have focused on modern languages and achieved state-of-the-art results in many tasks. Meanwhile, little attention has been paid to ancient texts and related tasks. Classical Chinese first came to Japan approximately 2,000 years ago. It was gradually adapted to a Japanese form called Kanbun-Kundoku (Kanbun) in Japanese reading and translating methods, which has significantly impacted Japanese literature. However, compared to the rich resources for ancient texts in mainland China, Kanbun resources remain scarce in Japan. To solve this problem, we construct the first Classical-Chinese-to-Kanbun dataset in the world. Furthermore, we introduce two tasks, character reordering and machine translation, both of which play a significant role in Kanbun comprehension. We also test the current language models on these tasks and discuss the best evaluation method by comparing the results with human scores. We release our code and dataset on GitHub.
Chinese Text Recognition with A Pre-Trained CLIP-Like Model Through Image-IDS Aligning
Scene text recognition has been studied for decades due to its broad applications. However, despite Chinese characters possessing different characteristics from Latin characters, such as complex inner structures and large categories, few methods have been proposed for Chinese Text Recognition (CTR). Particularly, the characteristic of large categories poses challenges in dealing with zero-shot and few-shot Chinese characters. In this paper, inspired by the way humans recognize Chinese texts, we propose a two-stage framework for CTR. Firstly, we pre-train a CLIP-like model through aligning printed character images and Ideographic Description Sequences (IDS). This pre-training stage simulates humans recognizing Chinese characters and obtains the canonical representation of each character. Subsequently, the learned representations are employed to supervise the CTR model, such that traditional single-character recognition can be improved to text-line recognition through image-IDS matching. To evaluate the effectiveness of the proposed method, we conduct extensive experiments on both Chinese character recognition (CCR) and CTR. The experimental results demonstrate that the proposed method performs best in CCR and outperforms previous methods in most scenarios of the CTR benchmark. It is worth noting that the proposed method can recognize zero-shot Chinese characters in text images without fine-tuning, whereas previous methods require fine-tuning when new classes appear. The code is available at https://github.com/FudanVI/FudanOCR/tree/main/image-ids-CTR.
Enhanced Generative Structure Prior for Chinese Text Image Super-resolution
Faithful text image super-resolution (SR) is challenging because each character has a unique structure and usually exhibits diverse font styles and layouts. While existing methods primarily focus on English text, less attention has been paid to more complex scripts like Chinese. In this paper, we introduce a high-quality text image SR framework designed to restore the precise strokes of low-resolution (LR) Chinese characters. Unlike methods that rely on character recognition priors to regularize the SR task, we propose a novel structure prior that offers structure-level guidance to enhance visual quality. Our framework incorporates this structure prior within a StyleGAN model, leveraging its generative capabilities for restoration. To maintain the integrity of character structures while accommodating various font styles and layouts, we implement a codebook-based mechanism that restricts the generative space of StyleGAN. Each code in the codebook represents the structure of a specific character, while the vector w in StyleGAN controls the character's style, including typeface, orientation, and location. Through the collaborative interaction between the codebook and style, we generate a high-resolution structure prior that aligns with LR characters both spatially and structurally. Experiments demonstrate that this structure prior provides robust, character-specific guidance, enabling the accurate restoration of clear strokes in degraded characters, even for real-world LR Chinese text with irregular layouts. Our code and pre-trained models will be available at https://github.com/csxmli2016/MARCONetPlusPlus
KunquDB: An Attempt for Speaker Verification in the Chinese Opera Scenario
This work aims to promote Chinese opera research in both musical and speech domains, with a primary focus on overcoming the data limitations. We introduce KunquDB, a relatively large-scale, well-annotated audio-visual dataset comprising 339 speakers and 128 hours of content. Originating from the Kunqu Opera Art Canon (Kunqu yishu dadian), KunquDB is meticulously structured by dialogue lines, providing explicit annotations including character names, speaker names, gender information, vocal manner classifications, and accompanied by preliminary text transcriptions. KunquDB provides a versatile foundation for role-centric acoustic studies and advancements in speech-related research, including Automatic Speaker Verification (ASV). Beyond enriching opera research, this dataset bridges the gap between artistic expression and technological innovation. Pioneering the exploration of ASV in Chinese opera, we construct four test trials considering two distinct vocal manners in opera voices: stage speech (ST) and singing (S). Implementing domain adaptation methods effectively mitigates domain mismatches induced by these vocal manner variations while there is still room for further improvement as a benchmark.
General Detection-based Text Line Recognition
We introduce a general detection-based approach to text line recognition, be it printed (OCR) or handwritten (HTR), with Latin, Chinese, or ciphered characters. Detection-based approaches have until now been largely discarded for HTR because reading characters separately is often challenging, and character-level annotation is difficult and expensive. We overcome these challenges thanks to three main insights: (i) synthetic pre-training with sufficiently diverse data enables learning reasonable character localization for any script; (ii) modern transformer-based detectors can jointly detect a large number of instances, and, if trained with an adequate masking strategy, leverage consistency between the different detections; (iii) once a pre-trained detection model with approximate character localization is available, it is possible to fine-tune it with line-level annotation on real data, even with a different alphabet. Our approach, dubbed DTLR, builds on a completely different paradigm than state-of-the-art HTR methods, which rely on autoregressive decoding, predicting character values one by one, while we treat a complete line in parallel. Remarkably, we demonstrate good performance on a large range of scripts, usually tackled with specialized approaches. In particular, we improve state-of-the-art performances for Chinese script recognition on the CASIA v2 dataset, and for cipher recognition on the Borg and Copiale datasets. Our code and models are available at https://github.com/raphael-baena/DTLR.
General OCR Theory: Towards OCR-2.0 via a Unified End-to-end Model
Traditional OCR systems (OCR-1.0) are increasingly unable to meet people's usage due to the growing demand for intelligent processing of man-made optical characters. In this paper, we collectively refer to all artificial optical signals (e.g., plain texts, math/molecular formulas, tables, charts, sheet music, and even geometric shapes) as "characters" and propose the General OCR Theory along with an excellent model, namely GOT, to promote the arrival of OCR-2.0. The GOT, with 580M parameters, is a unified, elegant, and end-to-end model, consisting of a high-compression encoder and a long-contexts decoder. As an OCR-2.0 model, GOT can handle all the above "characters" under various OCR tasks. On the input side, the model supports commonly used scene- and document-style images in slice and whole-page styles. On the output side, GOT can generate plain or formatted results (markdown/tikz/smiles/kern) via an easy prompt. Besides, the model enjoys interactive OCR features, i.e., region-level recognition guided by coordinates or colors. Furthermore, we also adapt dynamic resolution and multi-page OCR technologies to GOT for better practicality. In experiments, we provide sufficient results to prove the superiority of our model.
Character-level Chinese-English Translation through ASCII Encoding
Character-level Neural Machine Translation (NMT) models have recently achieved impressive results on many language pairs. They mainly do well for Indo-European language pairs, where the languages share the same writing system. However, for translating between Chinese and English, the gap between the two different writing systems poses a major challenge because of a lack of systematic correspondence between the individual linguistic units. In this paper, we enable character-level NMT for Chinese, by breaking down Chinese characters into linguistic units similar to that of Indo-European languages. We use the Wubi encoding scheme, which preserves the original shape and semantic information of the characters, while also being reversible. We show promising results from training Wubi-based models on the character- and subword-level with recurrent as well as convolutional models.
Disentangled Phonetic Representation for Chinese Spelling Correction
Chinese Spelling Correction (CSC) aims to detect and correct erroneous characters in Chinese texts. Although efforts have been made to introduce phonetic information (Hanyu Pinyin) in this task, they typically merge phonetic representations with character representations, which tends to weaken the representation effect of normal texts. In this work, we propose to disentangle the two types of features to allow for direct interaction between textual and phonetic information. To learn useful phonetic representations, we introduce a pinyin-to-character objective to ask the model to predict the correct characters based solely on phonetic information, where a separation mask is imposed to disable attention from phonetic input to text. To avoid overfitting the phonetics, we further design a self-distillation module to ensure that semantic information plays a major role in the prediction. Extensive experiments on three CSC benchmarks demonstrate the superiority of our method in using phonetic information.
HistRED: A Historical Document-Level Relation Extraction Dataset
Despite the extensive applications of relation extraction (RE) tasks in various domains, little has been explored in the historical context, which contains promising data across hundreds and thousands of years. To promote the historical RE research, we present HistRED constructed from Yeonhaengnok. Yeonhaengnok is a collection of records originally written in Hanja, the classical Chinese writing, which has later been translated into Korean. HistRED provides bilingual annotations such that RE can be performed on Korean and Hanja texts. In addition, HistRED supports various self-contained subtexts with different lengths, from a sentence level to a document level, supporting diverse context settings for researchers to evaluate the robustness of their RE models. To demonstrate the usefulness of our dataset, we propose a bilingual RE model that leverages both Korean and Hanja contexts to predict relations between entities. Our model outperforms monolingual baselines on HistRED, showing that employing multiple language contexts supplements the RE predictions. The dataset is publicly available at: https://huggingface.co/datasets/Soyoung/HistRED under CC BY-NC-ND 4.0 license.
AISHELL-3: A Multi-speaker Mandarin TTS Corpus and the Baselines
In this paper, we present AISHELL-3, a large-scale and high-fidelity multi-speaker Mandarin speech corpus which could be used to train multi-speaker Text-to-Speech (TTS) systems. The corpus contains roughly 85 hours of emotion-neutral recordings spoken by 218 native Chinese mandarin speakers. Their auxiliary attributes such as gender, age group and native accents are explicitly marked and provided in the corpus. Accordingly, transcripts in Chinese character-level and pinyin-level are provided along with the recordings. We present a baseline system that uses AISHELL-3 for multi-speaker Madarin speech synthesis. The multi-speaker speech synthesis system is an extension on Tacotron-2 where a speaker verification model and a corresponding loss regarding voice similarity are incorporated as the feedback constraint. We aim to use the presented corpus to build a robust synthesis model that is able to achieve zero-shot voice cloning. The system trained on this dataset also generalizes well on speakers that are never seen in the training process. Objective evaluation results from our experiments show that the proposed multi-speaker synthesis system achieves high voice similarity concerning both speaker embedding similarity and equal error rate measurement. The dataset, baseline system code and generated samples are available online.
Learning Character-level Compositionality with Visual Features
Previous work has modeled the compositionality of words by creating character-level models of meaning, reducing problems of sparsity for rare words. However, in many writing systems compositionality has an effect even on the character-level: the meaning of a character is derived by the sum of its parts. In this paper, we model this effect by creating embeddings for characters based on their visual characteristics, creating an image for the character and running it through a convolutional neural network to produce a visual character embedding. Experiments on a text classification task demonstrate that such model allows for better processing of instances with rare characters in languages such as Chinese, Japanese, and Korean. Additionally, qualitative analyses demonstrate that our proposed model learns to focus on the parts of characters that carry semantic content, resulting in embeddings that are coherent in visual space.
Which Encoding is the Best for Text Classification in Chinese, English, Japanese and Korean?
This article offers an empirical study on the different ways of encoding Chinese, Japanese, Korean (CJK) and English languages for text classification. Different encoding levels are studied, including UTF-8 bytes, characters, words, romanized characters and romanized words. For all encoding levels, whenever applicable, we provide comparisons with linear models, fastText and convolutional networks. For convolutional networks, we compare between encoding mechanisms using character glyph images, one-hot (or one-of-n) encoding, and embedding. In total there are 473 models, using 14 large-scale text classification datasets in 4 languages including Chinese, English, Japanese and Korean. Some conclusions from these results include that byte-level one-hot encoding based on UTF-8 consistently produces competitive results for convolutional networks, that word-level n-grams linear models are competitive even without perfect word segmentation, and that fastText provides the best result using character-level n-gram encoding but can overfit when the features are overly rich.
Disentangling Writer and Character Styles for Handwriting Generation
Training machines to synthesize diverse handwritings is an intriguing task. Recently, RNN-based methods have been proposed to generate stylized online Chinese characters. However, these methods mainly focus on capturing a person's overall writing style, neglecting subtle style inconsistencies between characters written by the same person. For example, while a person's handwriting typically exhibits general uniformity (e.g., glyph slant and aspect ratios), there are still small style variations in finer details (e.g., stroke length and curvature) of characters. In light of this, we propose to disentangle the style representations at both writer and character levels from individual handwritings to synthesize realistic stylized online handwritten characters. Specifically, we present the style-disentangled Transformer (SDT), which employs two complementary contrastive objectives to extract the style commonalities of reference samples and capture the detailed style patterns of each sample, respectively. Extensive experiments on various language scripts demonstrate the effectiveness of SDT. Notably, our empirical findings reveal that the two learned style representations provide information at different frequency magnitudes, underscoring the importance of separate style extraction. Our source code is public at: https://github.com/dailenson/SDT.
UniCalli: A Unified Diffusion Framework for Column-Level Generation and Recognition of Chinese Calligraphy
Computational replication of Chinese calligraphy remains challenging. Existing methods falter, either creating high-quality isolated characters while ignoring page-level aesthetics like ligatures and spacing, or attempting page synthesis at the expense of calligraphic correctness. We introduce UniCalli, a unified diffusion framework for column-level recognition and generation. Training both tasks jointly is deliberate: recognition constrains the generator to preserve character structure, while generation provides style and layout priors. This synergy fosters concept-level abstractions that improve both tasks, especially in limited-data regimes. We curated a dataset of over 8,000 digitized pieces, with ~4,000 densely annotated. UniCalli employs asymmetric noising and a rasterized box map for spatial priors, trained on a mix of synthetic, labeled, and unlabeled data. The model achieves state-of-the-art generative quality with superior ligature continuity and layout fidelity, alongside stronger recognition. The framework successfully extends to other ancient scripts, including Oracle bone inscriptions and Egyptian hieroglyphs. Code and data can be viewed in https://github.com/EnVision-Research/UniCalli{this URL}.
Text Classification through Glyph-aware Disentangled Character Embedding and Semantic Sub-character Augmentation
We propose a new character-based text classification framework for non-alphabetic languages, such as Chinese and Japanese. Our framework consists of a variational character encoder (VCE) and character-level text classifier. The VCE is composed of a beta-variational auto-encoder (beta-VAE) that learns the proposed glyph-aware disentangled character embedding (GDCE). Since our GDCE provides zero-mean unit-variance character embeddings that are dimensionally independent, it is applicable for our interpretable data augmentation, namely, semantic sub-character augmentation (SSA). In this paper, we evaluated our framework using Japanese text classification tasks at the document- and sentence-level. We confirmed that our GDCE and SSA not only provided embedding interpretability but also improved the classification performance. Our proposal achieved a competitive result to the state-of-the-art model while also providing model interpretability. Our code is available on https://github.com/IyatomiLab/GDCE-SSA
DKDS: A Benchmark Dataset of Degraded Kuzushiji Documents with Seals for Detection and Binarization
Kuzushiji, a pre-modern Japanese cursive script, can currently be read and understood by only a few thousand trained experts in Japan. With the rapid development of deep learning, researchers have begun applying Optical Character Recognition (OCR) techniques to transcribe Kuzushiji into modern Japanese. Although existing OCR methods perform well on clean pre-modern Japanese documents written in Kuzushiji, they often fail to consider various types of noise, such as document degradation and seals, which significantly affect recognition accuracy. To the best of our knowledge, no existing dataset specifically addresses these challenges. To address this gap, we introduce the Degraded Kuzushiji Documents with Seals (DKDS) dataset as a new benchmark for related tasks. We describe the dataset construction process, which required the assistance of a trained Kuzushiji expert, and define two benchmark tracks: (1) text and seal detection and (2) document binarization. For the text and seal detection track, we provide baseline results using multiple versions of the You Only Look Once (YOLO) models for detecting Kuzushiji characters and seals. For the document binarization track, we present baseline results from traditional binarization algorithms, traditional algorithms combined with K-means clustering, and Generative Adversarial Network (GAN)-based methods. The DKDS dataset and the implementation code for baseline methods are available at https://ruiyangju.github.io/DKDS.
MangaNinja: Line Art Colorization with Precise Reference Following
Derived from diffusion models, MangaNinjia specializes in the task of reference-guided line art colorization. We incorporate two thoughtful designs to ensure precise character detail transcription, including a patch shuffling module to facilitate correspondence learning between the reference color image and the target line art, and a point-driven control scheme to enable fine-grained color matching. Experiments on a self-collected benchmark demonstrate the superiority of our model over current solutions in terms of precise colorization. We further showcase the potential of the proposed interactive point control in handling challenging cases, cross-character colorization, multi-reference harmonization, beyond the reach of existing algorithms.
Sub-Character Tokenization for Chinese Pretrained Language Models
Tokenization is fundamental to pretrained language models (PLMs). Existing tokenization methods for Chinese PLMs typically treat each character as an indivisible token. However, they ignore the unique feature of the Chinese writing system where additional linguistic information exists below the character level, i.e., at the sub-character level. To utilize such information, we propose sub-character (SubChar for short) tokenization. Specifically, we first encode the input text by converting each Chinese character into a short sequence based on its glyph or pronunciation, and then construct the vocabulary based on the encoded text with sub-word segmentation. Experimental results show that SubChar tokenizers have two main advantages over existing tokenizers: 1) They can tokenize inputs into much shorter sequences, thus improving the computational efficiency. 2) Pronunciation-based SubChar tokenizers can encode Chinese homophones into the same transliteration sequences and produce the same tokenization output, hence being robust to homophone typos. At the same time, models trained with SubChar tokenizers perform competitively on downstream tasks. We release our code and models at https://github.com/thunlp/SubCharTokenization to facilitate future work.
Character-Adapter: Prompt-Guided Region Control for High-Fidelity Character Customization
Customized image generation, which seeks to synthesize images with consistent characters, holds significant relevance for applications such as storytelling, portrait generation, and character design. However, previous approaches have encountered challenges in preserving characters with high-fidelity consistency due to inadequate feature extraction and concept confusion of reference characters. Therefore, we propose Character-Adapter, a plug-and-play framework designed to generate images that preserve the details of reference characters, ensuring high-fidelity consistency. Character-Adapter employs prompt-guided segmentation to ensure fine-grained regional features of reference characters and dynamic region-level adapters to mitigate concept confusion. Extensive experiments are conducted to validate the effectiveness of Character-Adapter. Both quantitative and qualitative results demonstrate that Character-Adapter achieves the state-of-the-art performance of consistent character generation, with an improvement of 24.8% compared with other methods. Our code will be released at https://github.com/Character-Adapter/Character-Adapte
Learning Chinese Word Representations From Glyphs Of Characters
In this paper, we propose new methods to learn Chinese word representations. Chinese characters are composed of graphical components, which carry rich semantics. It is common for a Chinese learner to comprehend the meaning of a word from these graphical components. As a result, we propose models that enhance word representations by character glyphs. The character glyph features are directly learned from the bitmaps of characters by convolutional auto-encoder(convAE), and the glyph features improve Chinese word representations which are already enhanced by character embeddings. Another contribution in this paper is that we created several evaluation datasets in traditional Chinese and made them public.
AGTGAN: Unpaired Image Translation for Photographic Ancient Character Generation
The study of ancient writings has great value for archaeology and philology. Essential forms of material are photographic characters, but manual photographic character recognition is extremely time-consuming and expertise-dependent. Automatic classification is therefore greatly desired. However, the current performance is limited due to the lack of annotated data. Data generation is an inexpensive but useful solution for data scarcity. Nevertheless, the diverse glyph shapes and complex background textures of photographic ancient characters make the generation task difficult, leading to the unsatisfactory results of existing methods. In this paper, we propose an unsupervised generative adversarial network called AGTGAN. By the explicit global and local glyph shape style modeling followed by the stroke-aware texture transfer, as well as an associate adversarial learning mechanism, our method can generate characters with diverse glyphs and realistic textures. We evaluate our approach on the photographic ancient character datasets, e.g., OBC306 and CSDD. Our method outperforms the state-of-the-art approaches in various metrics and performs much better in terms of the diversity and authenticity of generated samples. With our generated images, experiments on the largest photographic oracle bone character dataset show that our method can achieve a significant increase in classification accuracy, up to 16.34%.
Decoupling Layout from Glyph in Online Chinese Handwriting Generation
Text plays a crucial role in the transmission of human civilization, and teaching machines to generate online handwritten text in various styles presents an interesting and significant challenge. However, most prior work has concentrated on generating individual Chinese fonts, leaving {complete text line generation largely unexplored}. In this paper, we identify that text lines can naturally be divided into two components: layout and glyphs. Based on this division, we designed a text line layout generator coupled with a diffusion-based stylized font synthesizer to address this challenge hierarchically. More concretely, the layout generator performs in-context-like learning based on the text content and the provided style references to generate positions for each glyph autoregressively. Meanwhile, the font synthesizer which consists of a character embedding dictionary, a multi-scale calligraphy style encoder, and a 1D U-Net based diffusion denoiser will generate each font on its position while imitating the calligraphy style extracted from the given style references. Qualitative and quantitative experiments on the CASIA-OLHWDB demonstrate that our method is capable of generating structurally correct and indistinguishable imitation samples.
PictOBI-20k: Unveiling Large Multimodal Models in Visual Decipherment for Pictographic Oracle Bone Characters
Deciphering oracle bone characters (OBCs), the oldest attested form of written Chinese, has remained the ultimate, unwavering goal of scholars, offering an irreplaceable key to understanding humanity's early modes of production. Current decipherment methodologies of OBC are primarily constrained by the sporadic nature of archaeological excavations and the limited corpus of inscriptions. With the powerful visual perception capability of large multimodal models (LMMs), the potential of using LMMs for visually deciphering OBCs has increased. In this paper, we introduce PictOBI-20k, a dataset designed to evaluate LMMs on the visual decipherment tasks of pictographic OBCs. It includes 20k meticulously collected OBC and real object images, forming over 15k multi-choice questions. We also conduct subjective annotations to investigate the consistency of the reference point between humans and LMMs in visual reasoning. Experiments indicate that general LMMs possess preliminary visual decipherment skills, and LMMs are not effectively using visual information, while most of the time they are limited by language priors. We hope that our dataset can facilitate the evaluation and optimization of visual attention in future OBC-oriented LMMs. The code and dataset will be available at https://github.com/OBI-Future/PictOBI-20k.
edATLAS: An Efficient Disambiguation Algorithm for Texting in Languages with Abugida Scripts
Abugida refers to a phonogram writing system where each syllable is represented using a single consonant or typographic ligature, along with a default vowel or optional diacritic(s) to denote other vowels. However, texting in these languages has some unique challenges in spite of the advent of devices with soft keyboard supporting custom key layouts. The number of characters in these languages is large enough to require characters to be spread over multiple views in the layout. Having to switch between views many times to type a single word hinders the natural thought process. This prevents popular usage of native keyboard layouts. On the other hand, supporting romanized scripts (native words transcribed using Latin characters) with language model based suggestions is also set back by the lack of uniform romanization rules. To this end, we propose a disambiguation algorithm and showcase its usefulness in two novel mutually non-exclusive input methods for languages natively using the abugida writing system: (a) disambiguation of ambiguous input for abugida scripts, and (b) disambiguation of word variants in romanized scripts. We benchmark these approaches using public datasets, and show an improvement in typing speed by 19.49%, 25.13%, and 14.89%, in Hindi, Bengali, and Thai, respectively, using Ambiguous Input, owing to the human ease of locating keys combined with the efficiency of our inference method. Our Word Variant Disambiguation (WDA) maps valid variants of romanized words, previously treated as Out-of-Vocab, to a vocabulary of 100k words with high accuracy, leading to an increase in Error Correction F1 score by 10.03% and Next Word Prediction (NWP) by 62.50% on average.
Character Queries: A Transformer-based Approach to On-Line Handwritten Character Segmentation
On-line handwritten character segmentation is often associated with handwriting recognition and even though recognition models include mechanisms to locate relevant positions during the recognition process, it is typically insufficient to produce a precise segmentation. Decoupling the segmentation from the recognition unlocks the potential to further utilize the result of the recognition. We specifically focus on the scenario where the transcription is known beforehand, in which case the character segmentation becomes an assignment problem between sampling points of the stylus trajectory and characters in the text. Inspired by the k-means clustering algorithm, we view it from the perspective of cluster assignment and present a Transformer-based architecture where each cluster is formed based on a learned character query in the Transformer decoder block. In order to assess the quality of our approach, we create character segmentation ground truths for two popular on-line handwriting datasets, IAM-OnDB and HANDS-VNOnDB, and evaluate multiple methods on them, demonstrating that our approach achieves the overall best results.
GlyphDraw: Seamlessly Rendering Text with Intricate Spatial Structures in Text-to-Image Generation
Recent breakthroughs in the field of language-guided image generation have yielded impressive achievements, enabling the creation of high-quality and diverse images based on user instructions.Although the synthesis performance is fascinating, one significant limitation of current image generation models is their insufficient ability to generate text coherently within images, particularly for complex glyph structures like Chinese characters. To address this problem, we introduce GlyphDraw, a general learning framework aiming to endow image generation models with the capacity to generate images coherently embedded with text for any specific language.We first sophisticatedly design the image-text dataset's construction strategy, then build our model specifically on a diffusion-based image generator and carefully modify the network structure to allow the model to learn drawing language characters with the help of glyph and position information.Furthermore, we maintain the model's open-domain image synthesis capability by preventing catastrophic forgetting by using parameter-efficient fine-tuning techniques.Extensive qualitative and quantitative experiments demonstrate that our method not only produces accurate language characters as in prompts, but also seamlessly blends the generated text into the background.Please refer to our https://1073521013.github.io/glyph-draw.github.io/{project page}. abstract
Handwritten Text Generation from Visual Archetypes
Generating synthetic images of handwritten text in a writer-specific style is a challenging task, especially in the case of unseen styles and new words, and even more when these latter contain characters that are rarely encountered during training. While emulating a writer's style has been recently addressed by generative models, the generalization towards rare characters has been disregarded. In this work, we devise a Transformer-based model for Few-Shot styled handwritten text generation and focus on obtaining a robust and informative representation of both the text and the style. In particular, we propose a novel representation of the textual content as a sequence of dense vectors obtained from images of symbols written as standard GNU Unifont glyphs, which can be considered their visual archetypes. This strategy is more suitable for generating characters that, despite having been seen rarely during training, possibly share visual details with the frequently observed ones. As for the style, we obtain a robust representation of unseen writers' calligraphy by exploiting specific pre-training on a large synthetic dataset. Quantitative and qualitative results demonstrate the effectiveness of our proposal in generating words in unseen styles and with rare characters more faithfully than existing approaches relying on independent one-hot encodings of the characters.
Shuo Wen Jie Zi: Rethinking Dictionaries and Glyphs for Chinese Language Pre-training
We introduce CDBERT, a new learning paradigm that enhances the semantics understanding ability of the Chinese PLMs with dictionary knowledge and structure of Chinese characters. We name the two core modules of CDBERT as Shuowen and Jiezi, where Shuowen refers to the process of retrieving the most appropriate meaning from Chinese dictionaries and Jiezi refers to the process of enhancing characters' glyph representations with structure understanding. To facilitate dictionary understanding, we propose three pre-training tasks, i.e., Masked Entry Modeling, Contrastive Learning for Synonym and Antonym, and Example Learning. We evaluate our method on both modern Chinese understanding benchmark CLUE and ancient Chinese benchmark CCLUE. Moreover, we propose a new polysemy discrimination task PolyMRC based on the collected dictionary of ancient Chinese. Our paradigm demonstrates consistent improvements on previous Chinese PLMs across all tasks. Moreover, our approach yields significant boosting on few-shot setting of ancient Chinese understanding.
Exploiting Cultural Biases via Homoglyphs in Text-to-Image Synthesis
Models for text-to-image synthesis, such as DALL-E~2 and Stable Diffusion, have recently drawn a lot of interest from academia and the general public. These models are capable of producing high-quality images that depict a variety of concepts and styles when conditioned on textual descriptions. However, these models adopt cultural characteristics associated with specific Unicode scripts from their vast amount of training data, which may not be immediately apparent. We show that by simply inserting single non-Latin characters in a textual description, common models reflect cultural stereotypes and biases in their generated images. We analyze this behavior both qualitatively and quantitatively, and identify a model's text encoder as the root cause of the phenomenon. Additionally, malicious users or service providers may try to intentionally bias the image generation to create racist stereotypes by replacing Latin characters with similarly-looking characters from non-Latin scripts, so-called homoglyphs. To mitigate such unnoticed script attacks, we propose a novel homoglyph unlearning method to fine-tune a text encoder, making it robust against homoglyph manipulations.
The Learnable Typewriter: A Generative Approach to Text Analysis
We present a generative document-specific approach to character analysis and recognition in text lines. Our main idea is to build on unsupervised multi-object segmentation methods and in particular those that reconstruct images based on a limited amount of visual elements, called sprites. Taking as input a set of text lines with similar font or handwriting, our approach can learn a large number of different characters and leverage line-level annotations when available. Our contribution is twofold. First, we provide the first adaptation and evaluation of a deep unsupervised multi-object segmentation approach for text line analysis. Since these methods have mainly been evaluated on synthetic data in a completely unsupervised setting, demonstrating that they can be adapted and quantitatively evaluated on real images of text and that they can be trained using weak supervision are significant progresses. Second, we show the potential of our method for new applications, more specifically in the field of paleography, which studies the history and variations of handwriting, and for cipher analysis. We demonstrate our approach on three very different datasets: a printed volume of the Google1000 dataset, the Copiale cipher and historical handwritten charters from the 12th and early 13th century.
A Clustering Framework for Lexical Normalization of Roman Urdu
Roman Urdu is an informal form of the Urdu language written in Roman script, which is widely used in South Asia for online textual content. It lacks standard spelling and hence poses several normalization challenges during automatic language processing. In this article, we present a feature-based clustering framework for the lexical normalization of Roman Urdu corpora, which includes a phonetic algorithm UrduPhone, a string matching component, a feature-based similarity function, and a clustering algorithm Lex-Var. UrduPhone encodes Roman Urdu strings to their pronunciation-based representations. The string matching component handles character-level variations that occur when writing Urdu using Roman script.
Comparative analysis of optical character recognition methods for Sámi texts from the National Library of Norway
Optical Character Recognition (OCR) is crucial to the National Library of Norway's (NLN) digitisation process as it converts scanned documents into machine-readable text. However, for the S\'ami documents in NLN's collection, the OCR accuracy is insufficient. Given that OCR quality affects downstream processes, evaluating and improving OCR for text written in S\'ami languages is necessary to make these resources accessible. To address this need, this work fine-tunes and evaluates three established OCR approaches, Transkribus, Tesseract and TrOCR, for transcribing S\'ami texts from NLN's collection. Our results show that Transkribus and TrOCR outperform Tesseract on this task, while Tesseract achieves superior performance on an out-of-domain dataset. Furthermore, we show that fine-tuning pre-trained models and supplementing manual annotations with machine annotations and synthetic text images can yield accurate OCR for S\'ami languages, even with a moderate amount of manually annotated data.
InstantCharacter: Personalize Any Characters with a Scalable Diffusion Transformer Framework
Current learning-based subject customization approaches, predominantly relying on U-Net architectures, suffer from limited generalization ability and compromised image quality. Meanwhile, optimization-based methods require subject-specific fine-tuning, which inevitably degrades textual controllability. To address these challenges, we propose InstantCharacter, a scalable framework for character customization built upon a foundation diffusion transformer. InstantCharacter demonstrates three fundamental advantages: first, it achieves open-domain personalization across diverse character appearances, poses, and styles while maintaining high-fidelity results. Second, the framework introduces a scalable adapter with stacked transformer encoders, which effectively processes open-domain character features and seamlessly interacts with the latent space of modern diffusion transformers. Third, to effectively train the framework, we construct a large-scale character dataset containing 10-million-level samples. The dataset is systematically organized into paired (multi-view character) and unpaired (text-image combinations) subsets. This dual-data structure enables simultaneous optimization of identity consistency and textual editability through distinct learning pathways. Qualitative experiments demonstrate the advanced capabilities of InstantCharacter in generating high-fidelity, text-controllable, and character-consistent images, setting a new benchmark for character-driven image generation. Our source code is available at https://github.com/Tencent/InstantCharacter.
Tails Tell Tales: Chapter-Wide Manga Transcriptions with Character Names
Enabling engagement of manga by visually impaired individuals presents a significant challenge due to its inherently visual nature. With the goal of fostering accessibility, this paper aims to generate a dialogue transcript of a complete manga chapter, entirely automatically, with a particular emphasis on ensuring narrative consistency. This entails identifying (i) what is being said, i.e., detecting the texts on each page and classifying them into essential vs non-essential, and (ii) who is saying it, i.e., attributing each dialogue to its speaker, while ensuring the same characters are named consistently throughout the chapter. To this end, we introduce: (i) Magiv2, a model that is capable of generating high-quality chapter-wide manga transcripts with named characters and significantly higher precision in speaker diarisation over prior works; (ii) an extension of the PopManga evaluation dataset, which now includes annotations for speech-bubble tail boxes, associations of text to corresponding tails, classifications of text as essential or non-essential, and the identity for each character box; and (iii) a new character bank dataset, which comprises over 11K characters from 76 manga series, featuring 11.5K exemplar character images in total, as well as a list of chapters in which they appear. The code, trained model, and both datasets can be found at: https://github.com/ragavsachdeva/magi
MegaHan97K: A Large-Scale Dataset for Mega-Category Chinese Character Recognition with over 97K Categories
Foundational to the Chinese language and culture, Chinese characters encompass extraordinarily extensive and ever-expanding categories, with the latest Chinese GB18030-2022 standard containing 87,887 categories. The accurate recognition of this vast number of characters, termed mega-category recognition, presents a formidable yet crucial challenge for cultural heritage preservation and digital applications. Despite significant advances in Optical Character Recognition (OCR), mega-category recognition remains unexplored due to the absence of comprehensive datasets, with the largest existing dataset containing merely 16,151 categories. To bridge this critical gap, we introduce MegaHan97K, a mega-category, large-scale dataset covering an unprecedented 97,455 categories of Chinese characters. Our work offers three major contributions: (1) MegaHan97K is the first dataset to fully support the latest GB18030-2022 standard, providing at least six times more categories than existing datasets; (2) It effectively addresses the long-tail distribution problem by providing balanced samples across all categories through its three distinct subsets: handwritten, historical and synthetic subsets; (3) Comprehensive benchmarking experiments reveal new challenges in mega-category scenarios, including increased storage demands, morphologically similar character recognition, and zero-shot learning difficulties, while also unlocking substantial opportunities for future research. To the best of our knowledge, the MetaHan97K is likely the dataset with the largest classes not only in the field of OCR but may also in the broader domain of pattern recognition. The dataset is available at https://github.com/SCUT-DLVCLab/MegaHan97K.
Detecting and recognizing characters in Greek papyri with YOLOv8, DeiT and SimCLR
Purpose: The capacity to isolate and recognize individual characters from facsimile images of papyrus manuscripts yields rich opportunities for digital analysis. For this reason the `ICDAR 2023 Competition on Detection and Recognition of Greek Letters on Papyri' was held as part of the 17th International Conference on Document Analysis and Recognition. This paper discusses our submission to the competition. Methods: We used an ensemble of YOLOv8 models to detect and classify individual characters and employed two different approaches for refining the character predictions, including a transformer based DeiT approach and a ResNet-50 model trained on a large corpus of unlabelled data using SimCLR, a self-supervised learning method. Results: Our submission won the recognition challenge with a mAP of 42.2%, and was runner-up in the detection challenge with a mean average precision (mAP) of 51.4%. At the more relaxed intersection over union threshold of 0.5, we achieved the highest mean average precision and mean average recall results for both detection and classification. Conclusion: The results demonstrate the potential for these techniques for automated character recognition on historical manuscripts. We ran the prediction pipeline on more than 4,500 images from the Oxyrhynchus Papyri to illustrate the utility of our approach, and we release the results publicly in multiple formats.
Unveiling the Impact of Multimodal Features on Chinese Spelling Correction: From Analysis to Design
The Chinese Spelling Correction (CSC) task focuses on detecting and correcting spelling errors in sentences. Current research primarily explores two approaches: traditional multimodal pre-trained models and large language models (LLMs). However, LLMs face limitations in CSC, particularly over-correction, making them suboptimal for this task. While existing studies have investigated the use of phonetic and graphemic information in multimodal CSC models, effectively leveraging these features to enhance correction performance remains a challenge. To address this, we propose the Multimodal Analysis for Character Usage (MACU) experiment, identifying potential improvements for multimodal correctison. Based on empirical findings, we introduce NamBert, a novel multimodal model for Chinese spelling correction. Experiments on benchmark datasets demonstrate NamBert's superiority over SOTA methods. We also conduct a comprehensive comparison between NamBert and LLMs, systematically evaluating their strengths and limitations in CSC. Our code and model are available at https://github.com/iioSnail/NamBert.
The Chosen One: Consistent Characters in Text-to-Image Diffusion Models
Recent advances in text-to-image generation models have unlocked vast potential for visual creativity. However, these models struggle with generation of consistent characters, a crucial aspect for numerous real-world applications such as story visualization, game development asset design, advertising, and more. Current methods typically rely on multiple pre-existing images of the target character or involve labor-intensive manual processes. In this work, we propose a fully automated solution for consistent character generation, with the sole input being a text prompt. We introduce an iterative procedure that, at each stage, identifies a coherent set of images sharing a similar identity and extracts a more consistent identity from this set. Our quantitative analysis demonstrates that our method strikes a better balance between prompt alignment and identity consistency compared to the baseline methods, and these findings are reinforced by a user study. To conclude, we showcase several practical applications of our approach. Project page is available at https://omriavrahami.com/the-chosen-one
Romanization-based Large-scale Adaptation of Multilingual Language Models
Large multilingual pretrained language models (mPLMs) have become the de facto state of the art for cross-lingual transfer in NLP. However, their large-scale deployment to many languages, besides pretraining data scarcity, is also hindered by the increase in vocabulary size and limitations in their parameter budget. In order to boost the capacity of mPLMs to deal with low-resource and unseen languages, we explore the potential of leveraging transliteration on a massive scale. In particular, we explore the UROMAN transliteration tool, which provides mappings from UTF-8 to Latin characters for all the writing systems, enabling inexpensive romanization for virtually any language. We first focus on establishing how UROMAN compares against other language-specific and manually curated transliterators for adapting multilingual PLMs. We then study and compare a plethora of data- and parameter-efficient strategies for adapting the mPLMs to romanized and non-romanized corpora of 14 diverse low-resource languages. Our results reveal that UROMAN-based transliteration can offer strong performance for many languages, with particular gains achieved in the most challenging setups: on languages with unseen scripts and with limited training data without any vocabulary augmentation. Further analyses reveal that an improved tokenizer based on romanized data can even outperform non-transliteration-based methods in the majority of languages.
Character-based Joint Segmentation and POS Tagging for Chinese using Bidirectional RNN-CRF
We present a character-based model for joint segmentation and POS tagging for Chinese. The bidirectional RNN-CRF architecture for general sequence tagging is adapted and applied with novel vector representations of Chinese characters that capture rich contextual information and lower-than-character level features. The proposed model is extensively evaluated and compared with a state-of-the-art tagger respectively on CTB5, CTB9 and UD Chinese. The experimental results indicate that our model is accurate and robust across datasets in different sizes, genres and annotation schemes. We obtain state-of-the-art performance on CTB5, achieving 94.38 F1-score for joint segmentation and POS tagging.
BPE Stays on SCRIPT: Structured Encoding for Robust Multilingual Pretokenization
Byte Pair Encoding (BPE) tokenizers, widely used in Large Language Models, face challenges in multilingual settings, including penalization of non-Western scripts and the creation of tokens with partial UTF-8 sequences. Pretokenization, often reliant on complex regular expressions, can also introduce fragility and unexpected edge cases. We propose SCRIPT (Script Category Representation in PreTokenization), a novel encoding scheme that bypasses UTF-8 byte conversion by using initial tokens based on Unicode script and category properties. This approach enables a simple, rule-based pretokenization strategy that respects script boundaries, offering a robust alternative to pretokenization strategies based on regular expressions. We also introduce and validate a constrained BPE merging strategy that enforces character integrity, applicable to both SCRIPT-BPE and byte-based BPE. Our experiments demonstrate that SCRIPT-BPE achieves competitive compression while eliminating encoding-based penalties for non-Latin-script languages.
GlyphMastero: A Glyph Encoder for High-Fidelity Scene Text Editing
Scene text editing, a subfield of image editing, requires modifying texts in images while preserving style consistency and visual coherence with the surrounding environment. While diffusion-based methods have shown promise in text generation, they still struggle to produce high-quality results. These methods often generate distorted or unrecognizable characters, particularly when dealing with complex characters like Chinese. In such systems, characters are composed of intricate stroke patterns and spatial relationships that must be precisely maintained. We present GlyphMastero, a specialized glyph encoder designed to guide the latent diffusion model for generating texts with stroke-level precision. Our key insight is that existing methods, despite using pretrained OCR models for feature extraction, fail to capture the hierarchical nature of text structures - from individual strokes to stroke-level interactions to overall character-level structure. To address this, our glyph encoder explicitly models and captures the cross-level interactions between local-level individual characters and global-level text lines through our novel glyph attention module. Meanwhile, our model implements a feature pyramid network to fuse the multi-scale OCR backbone features at the global-level. Through these cross-level and multi-scale fusions, we obtain more detailed glyph-aware guidance, enabling precise control over the scene text generation process. Our method achieves an 18.02\% improvement in sentence accuracy over the state-of-the-art multi-lingual scene text editing baseline, while simultaneously reducing the text-region Fr\'echet inception distance by 53.28\%.
Fast and Accurate Capitalization and Punctuation for Automatic Speech Recognition Using Transformer and Chunk Merging
In recent years, studies on automatic speech recognition (ASR) have shown outstanding results that reach human parity on short speech segments. However, there are still difficulties in standardizing the output of ASR such as capitalization and punctuation restoration for long-speech transcription. The problems obstruct readers to understand the ASR output semantically and also cause difficulties for natural language processing models such as NER, POS and semantic parsing. In this paper, we propose a method to restore the punctuation and capitalization for long-speech ASR transcription. The method is based on Transformer models and chunk merging that allows us to (1), build a single model that performs punctuation and capitalization in one go, and (2), perform decoding in parallel while improving the prediction accuracy. Experiments on British National Corpus showed that the proposed approach outperforms existing methods in both accuracy and decoding speed.
Few Shots Are All You Need: A Progressive Few Shot Learning Approach for Low Resource Handwritten Text Recognition
Handwritten text recognition in low resource scenarios, such as manuscripts with rare alphabets, is a challenging problem. The main difficulty comes from the very few annotated data and the limited linguistic information (e.g. dictionaries and language models). Thus, we propose a few-shot learning-based handwriting recognition approach that significantly reduces the human labor annotation process, requiring only few images of each alphabet symbol. The method consists in detecting all the symbols of a given alphabet in a textline image and decoding the obtained similarity scores to the final sequence of transcribed symbols. Our model is first pretrained on synthetic line images generated from any alphabet, even though different from the target domain. A second training step is then applied to diminish the gap between the source and target data. Since this retraining would require annotation of thousands of handwritten symbols together with their bounding boxes, we propose to avoid such human effort through an unsupervised progressive learning approach that automatically assigns pseudo-labels to the non-annotated data. The evaluation on different manuscript datasets show that our model can lead to competitive results with a significant reduction in human effort. The code will be publicly available in this repository: https://github.com/dali92002/HTRbyMatching
JSUT corpus: free large-scale Japanese speech corpus for end-to-end speech synthesis
Thanks to improvements in machine learning techniques including deep learning, a free large-scale speech corpus that can be shared between academic institutions and commercial companies has an important role. However, such a corpus for Japanese speech synthesis does not exist. In this paper, we designed a novel Japanese speech corpus, named the "JSUT corpus," that is aimed at achieving end-to-end speech synthesis. The corpus consists of 10 hours of reading-style speech data and its transcription and covers all of the main pronunciations of daily-use Japanese characters. In this paper, we describe how we designed and analyzed the corpus. The corpus is freely available online.
Mergen: The First Manchu-Korean Machine Translation Model Trained on Augmented Data
The Manchu language, with its roots in the historical Manchurian region of Northeast China, is now facing a critical threat of extinction, as there are very few speakers left. In our efforts to safeguard the Manchu language, we introduce Mergen, the first-ever attempt at a Manchu-Korean Machine Translation (MT) model. To develop this model, we utilize valuable resources such as the Manwen Laodang(a historical book) and a Manchu-Korean dictionary. Due to the scarcity of a Manchu-Korean parallel dataset, we expand our data by employing word replacement guided by GloVe embeddings, trained on both monolingual and parallel texts. Our approach is built around an encoder-decoder neural machine translation model, incorporating a bi-directional Gated Recurrent Unit (GRU) layer. The experiments have yielded promising results, showcasing a significant enhancement in Manchu-Korean translation, with a remarkable 20-30 point increase in the BLEU score.
Teochew-Wild: The First In-the-wild Teochew Dataset with Orthographic Annotations
This paper reports the construction of the Teochew-Wild, a speech corpus of the Teochew dialect. The corpus includes 18.9 hours of in-the-wild Teochew speech data from multiple speakers, covering both formal and colloquial expressions, with precise orthographic and pinyin annotations. Additionally, we provide supplementary text processing tools and resources to propel research and applications in speech tasks for this low-resource language, such as automatic speech recognition (ASR) and text-to-speech (TTS). To the best of our knowledge, this is the first publicly available Teochew dataset with accurate orthographic annotations. We conduct experiments on the corpus, and the results validate its effectiveness in ASR and TTS tasks.
Chinese Grammatical Error Correction: A Survey
Chinese Grammatical Error Correction (CGEC) is a critical task in Natural Language Processing, addressing the growing demand for automated writing assistance in both second-language (L2) and native (L1) Chinese writing. While L2 learners struggle with mastering complex grammatical structures, L1 users also benefit from CGEC in academic, professional, and formal contexts where writing precision is essential. This survey provides a comprehensive review of CGEC research, covering datasets, annotation schemes, evaluation methodologies, and system advancements. We examine widely used CGEC datasets, highlighting their characteristics, limitations, and the need for improved standardization. We also analyze error annotation frameworks, discussing challenges such as word segmentation ambiguity and the classification of Chinese-specific error types. Furthermore, we review evaluation metrics, focusing on their adaptation from English GEC to Chinese, including character-level scoring and the use of multiple references. In terms of system development, we trace the evolution from rule-based and statistical approaches to neural architectures, including Transformer-based models and the integration of large pre-trained language models. By consolidating existing research and identifying key challenges, this survey provides insights into the current state of CGEC and outlines future directions, including refining annotation standards to address segmentation challenges, and leveraging multilingual approaches to enhance CGEC.
TRIDIS: A Comprehensive Medieval and Early Modern Corpus for HTR and NER
This paper introduces TRIDIS (Tria Digita Scribunt), an open-source corpus of medieval and early modern manuscripts. TRIDIS aggregates multiple legacy collections (all published under open licenses) and incorporates large metadata descriptions. While prior publications referenced some portions of this corpus, here we provide a unified overview with a stronger focus on its constitution. We describe (i) the narrative, chronological, and editorial background of each major sub-corpus, (ii) its semi-diplomatic transcription rules (expansion, normalization, punctuation), (iii) a strategy for challenging out-of-domain test splits driven by outlier detection in a joint embedding space, and (iv) preliminary baseline experiments using TrOCR and MiniCPM2.5 comparing random and outlier-based test partitions. Overall, TRIDIS is designed to stimulate joint robust Handwritten Text Recognition (HTR) and Named Entity Recognition (NER) research across medieval and early modern textual heritage.
The Manga Whisperer: Automatically Generating Transcriptions for Comics
In the past few decades, Japanese comics, commonly referred to as Manga, have transcended both cultural and linguistic boundaries to become a true worldwide sensation. Yet, the inherent reliance on visual cues and illustration within manga renders it largely inaccessible to individuals with visual impairments. In this work, we seek to address this substantial barrier, with the aim of ensuring that manga can be appreciated and actively engaged by everyone. Specifically, we tackle the problem of diarisation i.e. generating a transcription of who said what and when, in a fully automatic way. To this end, we make the following contributions: (1) we present a unified model, Magi, that is able to (a) detect panels, text boxes and character boxes, (b) cluster characters by identity (without knowing the number of clusters apriori), and (c) associate dialogues to their speakers; (2) we propose a novel approach that is able to sort the detected text boxes in their reading order and generate a dialogue transcript; (3) we annotate an evaluation benchmark for this task using publicly available [English] manga pages. The code, evaluation datasets and the pre-trained model can be found at: https://github.com/ragavsachdeva/magi.
TextDiffuser: Diffusion Models as Text Painters
Diffusion models have gained increasing attention for their impressive generation abilities but currently struggle with rendering accurate and coherent text. To address this issue, we introduce TextDiffuser, focusing on generating images with visually appealing text that is coherent with backgrounds. TextDiffuser consists of two stages: first, a Transformer model generates the layout of keywords extracted from text prompts, and then diffusion models generate images conditioned on the text prompt and the generated layout. Additionally, we contribute the first large-scale text images dataset with OCR annotations, MARIO-10M, containing 10 million image-text pairs with text recognition, detection, and character-level segmentation annotations. We further collect the MARIO-Eval benchmark to serve as a comprehensive tool for evaluating text rendering quality. Through experiments and user studies, we show that TextDiffuser is flexible and controllable to create high-quality text images using text prompts alone or together with text template images, and conduct text inpainting to reconstruct incomplete images with text. The code, model, and dataset will be available at https://aka.ms/textdiffuser.
Component-Enhanced Chinese Character Embeddings
Distributed word representations are very useful for capturing semantic information and have been successfully applied in a variety of NLP tasks, especially on English. In this work, we innovatively develop two component-enhanced Chinese character embedding models and their bigram extensions. Distinguished from English word embeddings, our models explore the compositions of Chinese characters, which often serve as semantic indictors inherently. The evaluations on both word similarity and text classification demonstrate the effectiveness of our models.
EasyText: Controllable Diffusion Transformer for Multilingual Text Rendering
Generating accurate multilingual text with diffusion models has long been desired but remains challenging. Recent methods have made progress in rendering text in a single language, but rendering arbitrary languages is still an unexplored area. This paper introduces EasyText, a text rendering framework based on DiT (Diffusion Transformer), which connects denoising latents with multilingual character tokens encoded as character tokens. We propose character positioning encoding and position encoding interpolation techniques to achieve controllable and precise text rendering. Additionally, we construct a large-scale synthetic text image dataset with 1 million multilingual image-text annotations as well as a high-quality dataset of 20K annotated images, which are used for pretraining and fine-tuning respectively. Extensive experiments and evaluations demonstrate the effectiveness and advancement of our approach in multilingual text rendering, visual quality, and layout-aware text integration.
Exploring and Adapting Chinese GPT to Pinyin Input Method
While GPT has become the de-facto method for text generation tasks, its application to pinyin input method remains unexplored. In this work, we make the first exploration to leverage Chinese GPT for pinyin input method. We find that a frozen GPT achieves state-of-the-art performance on perfect pinyin. However, the performance drops dramatically when the input includes abbreviated pinyin. A reason is that an abbreviated pinyin can be mapped to many perfect pinyin, which links to even larger number of Chinese characters. We mitigate this issue with two strategies, including enriching the context with pinyin and optimizing the training process to help distinguish homophones. To further facilitate the evaluation of pinyin input method, we create a dataset consisting of 270K instances from 15 domains. Results show that our approach improves performance on abbreviated pinyin across all domains. Model analysis demonstrates that both strategies contribute to the performance boost.
Authorship Attribution in Bangla literature using Character-level CNN
Characters are the smallest unit of text that can extract stylometric signals to determine the author of a text. In this paper, we investigate the effectiveness of character-level signals in Authorship Attribution of Bangla Literature and show that the results are promising but improvable. The time and memory efficiency of the proposed model is much higher than the word level counterparts but accuracy is 2-5% less than the best performing word-level models. Comparison of various word-based models is performed and shown that the proposed model performs increasingly better with larger datasets. We also analyze the effect of pre-training character embedding of diverse Bangla character set in authorship attribution. It is seen that the performance is improved by up to 10% on pre-training. We used 2 datasets from 6 to 14 authors, balancing them before training and compare the results.
Baybayin Character Instance Detection
The Philippine Government recently passed the "National Writing System Act," which promotes using Baybayin in Philippine texts. In support of this effort to promote the use of Baybayin, we present a computer vision system which can aid individuals who cannot easily read Baybayin script. In this paper, we survey the existing methods of identifying Baybayin scripts using computer vision and machine learning techniques and discuss their capabilities and limitations. Further, we propose a Baybayin Optical Character Instance Segmentation and Classification model using state-of-the-art Convolutional Neural Networks (CNNs) that detect Baybayin character instances in an image then outputs the Latin alphabet counterparts of each character instance in the image. Most existing systems are limited to character-level image classification and often misclassify or not natively support characters with diacritics. In addition, these existing models often have specific input requirements that limit it to classifying Baybayin text in a controlled setting, such as limitations in clarity and contrast, among others. To our knowledge, our proposed method is the first end-to-end character instance detection model for Baybayin, achieving a mAP50 score of 93.30%, mAP50-95 score of 80.50%, and F1-Score of 84.84%.
TextMastero: Mastering High-Quality Scene Text Editing in Diverse Languages and Styles
Scene text editing aims to modify texts on images while maintaining the style of newly generated text similar to the original. Given an image, a target area, and target text, the task produces an output image with the target text in the selected area, replacing the original. This task has been studied extensively, with initial success using Generative Adversarial Networks (GANs) to balance text fidelity and style similarity. However, GAN-based methods struggled with complex backgrounds or text styles. Recent works leverage diffusion models, showing improved results, yet still face challenges, especially with non-Latin languages like CJK characters (Chinese, Japanese, Korean) that have complex glyphs, often producing inaccurate or unrecognizable characters. To address these issues, we present TextMastero - a carefully designed multilingual scene text editing architecture based on latent diffusion models (LDMs). TextMastero introduces two key modules: a glyph conditioning module for fine-grained content control in generating accurate texts, and a latent guidance module for providing comprehensive style information to ensure similarity before and after editing. Both qualitative and quantitative experiments demonstrate that our method surpasses all known existing works in text fidelity and style similarity.
CharacterGen: Efficient 3D Character Generation from Single Images with Multi-View Pose Canonicalization
In the field of digital content creation, generating high-quality 3D characters from single images is challenging, especially given the complexities of various body poses and the issues of self-occlusion and pose ambiguity. In this paper, we present CharacterGen, a framework developed to efficiently generate 3D characters. CharacterGen introduces a streamlined generation pipeline along with an image-conditioned multi-view diffusion model. This model effectively calibrates input poses to a canonical form while retaining key attributes of the input image, thereby addressing the challenges posed by diverse poses. A transformer-based, generalizable sparse-view reconstruction model is the other core component of our approach, facilitating the creation of detailed 3D models from multi-view images. We also adopt a texture-back-projection strategy to produce high-quality texture maps. Additionally, we have curated a dataset of anime characters, rendered in multiple poses and views, to train and evaluate our model. Our approach has been thoroughly evaluated through quantitative and qualitative experiments, showing its proficiency in generating 3D characters with high-quality shapes and textures, ready for downstream applications such as rigging and animation.
DISC: Plug-and-Play Decoding Intervention with Similarity of Characters for Chinese Spelling Check
One key characteristic of the Chinese spelling check (CSC) task is that incorrect characters are usually similar to the correct ones in either phonetics or glyph. To accommodate this, previous works usually leverage confusion sets, which suffer from two problems, i.e., difficulty in determining which character pairs to include and lack of probabilities to distinguish items in the set. In this paper, we propose a light-weight plug-and-play DISC (i.e., decoding intervention with similarity of characters) module for CSC models.DISC measures phonetic and glyph similarities between characters and incorporates this similarity information only during the inference phase. This method can be easily integrated into various existing CSC models, such as ReaLiSe, SCOPE, and ReLM, without additional training costs. Experiments on three CSC benchmarks demonstrate that our proposed method significantly improves model performance, approaching and even surpassing the current state-of-the-art models.
FineFreq: A Multilingual Character Frequency Dataset from Web-Scale Text
We present FineFreq, a large-scale multilingual character frequency dataset derived from the FineWeb and FineWeb2 corpora, covering over 1900 languages and spanning 2013-2025. The dataset contains frequency counts for 96 trillion characters processed from 57 TB of compressed text. For each language, FineFreq provides per-character statistics with aggregate and year-level frequencies, allowing fine-grained temporal analysis. The dataset preserves naturally occurring multilingual features such as cross-script borrowings, emoji, and acronyms without applying artificial filtering. Each character entry includes Unicode metadata (category, script, block), enabling domain-specific or other downstream filtering and analysis. The full dataset is released in both CSV and Parquet formats, with associated metadata, available on GitHub and HuggingFace. https://github.com/Bin-2/FineFreq
Hanfu-Bench: A Multimodal Benchmark on Cross-Temporal Cultural Understanding and Transcreation
Culture is a rich and dynamic domain that evolves across both geography and time. However, existing studies on cultural understanding with vision-language models (VLMs) primarily emphasize geographic diversity, often overlooking the critical temporal dimensions. To bridge this gap, we introduce Hanfu-Bench, a novel, expert-curated multimodal dataset. Hanfu, a traditional garment spanning ancient Chinese dynasties, serves as a representative cultural heritage that reflects the profound temporal aspects of Chinese culture while remaining highly popular in Chinese contemporary society. Hanfu-Bench comprises two core tasks: cultural visual understanding and cultural image transcreation.The former task examines temporal-cultural feature recognition based on single- or multi-image inputs through multiple-choice visual question answering, while the latter focuses on transforming traditional attire into modern designs through cultural element inheritance and modern context adaptation. Our evaluation shows that closed VLMs perform comparably to non-experts on visual cutural understanding but fall short by 10\% to human experts, while open VLMs lags further behind non-experts. For the transcreation task, multi-faceted human evaluation indicates that the best-performing model achieves a success rate of only 42\%. Our benchmark provides an essential testbed, revealing significant challenges in this new direction of temporal cultural understanding and creative adaptation.
SerialGen: Personalized Image Generation by First Standardization Then Personalization
In this work, we are interested in achieving both high text controllability and overall appearance consistency in the generation of personalized human characters. We propose a novel framework, named SerialGen, which is a serial generation method consisting of two stages: first, a standardization stage that standardizes reference images, and then a personalized generation stage based on the standardized reference. Furthermore, we introduce two modules aimed at enhancing the standardization process. Our experimental results validate the proposed framework's ability to produce personalized images that faithfully recover the reference image's overall appearance while accurately responding to a wide range of text prompts. Through thorough analysis, we highlight the critical contribution of the proposed serial generation method and standardization model, evidencing enhancements in appearance consistency between reference and output images and across serial outputs generated from diverse text prompts. The term "Serial" in this work carries a double meaning: it refers to the two-stage method and also underlines our ability to generate serial images with consistent appearance throughout.
Enhancing Taiwanese Hokkien Dual Translation by Exploring and Standardizing of Four Writing Systems
Machine translation focuses mainly on high-resource languages (HRLs), while low-resource languages (LRLs) like Taiwanese Hokkien are relatively under-explored. The study aims to address this gap by developing a dual translation model between Taiwanese Hokkien and both Traditional Mandarin Chinese and English. We employ a pre-trained LLaMA 2-7B model specialized in Traditional Mandarin Chinese to leverage the orthographic similarities between Taiwanese Hokkien Han and Traditional Mandarin Chinese. Our comprehensive experiments involve translation tasks across various writing systems of Taiwanese Hokkien as well as between Taiwanese Hokkien and other HRLs. We find that the use of a limited monolingual corpus still further improves the model's Taiwanese Hokkien capabilities. We then utilize our translation model to standardize all Taiwanese Hokkien writing systems into Hokkien Han, resulting in further performance improvements. Additionally, we introduce an evaluation method incorporating back-translation and GPT-4 to ensure reliable translation quality assessment even for LRLs. The study contributes to narrowing the resource gap for Taiwanese Hokkien and empirically investigates the advantages and limitations of pre-training and fine-tuning based on LLaMA 2.
What do tokens know about their characters and how do they know it?
Pre-trained language models (PLMs) that use subword tokenization schemes can succeed at a variety of language tasks that require character-level information, despite lacking explicit access to the character composition of tokens. Here, studying a range of models (e.g., GPT- J, BERT, RoBERTa, GloVe), we probe what word pieces encode about character-level information by training classifiers to predict the presence or absence of a particular alphabetical character in a token, based on its embedding (e.g., probing whether the model embedding for "cat" encodes that it contains the character "a"). We find that these models robustly encode character-level information and, in general, larger models perform better at the task. We show that these results generalize to characters from non-Latin alphabets (Arabic, Devanagari, and Cyrillic). Then, through a series of experiments and analyses, we investigate the mechanisms through which PLMs acquire English-language character information during training and argue that this knowledge is acquired through multiple phenomena, including a systematic relationship between particular characters and particular parts of speech, as well as natural variability in the tokenization of related strings.
UDiffText: A Unified Framework for High-quality Text Synthesis in Arbitrary Images via Character-aware Diffusion Models
Text-to-Image (T2I) generation methods based on diffusion model have garnered significant attention in the last few years. Although these image synthesis methods produce visually appealing results, they frequently exhibit spelling errors when rendering text within the generated images. Such errors manifest as missing, incorrect or extraneous characters, thereby severely constraining the performance of text image generation based on diffusion models. To address the aforementioned issue, this paper proposes a novel approach for text image generation, utilizing a pre-trained diffusion model (i.e., Stable Diffusion [27]). Our approach involves the design and training of a light-weight character-level text encoder, which replaces the original CLIP encoder and provides more robust text embeddings as conditional guidance. Then, we fine-tune the diffusion model using a large-scale dataset, incorporating local attention control under the supervision of character-level segmentation maps. Finally, by employing an inference stage refinement process, we achieve a notably high sequence accuracy when synthesizing text in arbitrarily given images. Both qualitative and quantitative results demonstrate the superiority of our method to the state of the art. Furthermore, we showcase several potential applications of the proposed UDiffText, including text-centric image synthesis, scene text editing, etc. Code and model will be available at https://github.com/ZYM-PKU/UDiffText .
Transfer Learning across Several Centuries: Machine and Historian Integrated Method to Decipher Royal Secretary's Diary
A named entity recognition and classification plays the first and foremost important role in capturing semantics in data and anchoring in translation as well as downstream study for history. However, NER in historical text has faced challenges such as scarcity of annotated corpus, multilanguage variety, various noise, and different convention far different from the contemporary language model. This paper introduces Korean historical corpus (Diary of Royal secretary which is named SeungJeongWon) recorded over several centuries and recently added with named entity information as well as phrase markers which historians carefully annotated. We fined-tuned the language model on history corpus, conducted extensive comparative experiments using our language model and pretrained muti-language models. We set up the hypothesis of combination of time and annotation information and tested it based on statistical t test. Our finding shows that phrase markers clearly improve the performance of NER model in predicting unseen entity in documents written far different time period. It also shows that each of phrase marker and corpus-specific trained model does not improve the performance. We discuss the future research directions and practical strategies to decipher the history document.
TADA! Text to Animatable Digital Avatars
We introduce TADA, a simple-yet-effective approach that takes textual descriptions and produces expressive 3D avatars with high-quality geometry and lifelike textures, that can be animated and rendered with traditional graphics pipelines. Existing text-based character generation methods are limited in terms of geometry and texture quality, and cannot be realistically animated due to inconsistent alignment between the geometry and the texture, particularly in the face region. To overcome these limitations, TADA leverages the synergy of a 2D diffusion model and an animatable parametric body model. Specifically, we derive an optimizable high-resolution body model from SMPL-X with 3D displacements and a texture map, and use hierarchical rendering with score distillation sampling (SDS) to create high-quality, detailed, holistic 3D avatars from text. To ensure alignment between the geometry and texture, we render normals and RGB images of the generated character and exploit their latent embeddings in the SDS training process. We further introduce various expression parameters to deform the generated character during training, ensuring that the semantics of our generated character remain consistent with the original SMPL-X model, resulting in an animatable character. Comprehensive evaluations demonstrate that TADA significantly surpasses existing approaches on both qualitative and quantitative measures. TADA enables creation of large-scale digital character assets that are ready for animation and rendering, while also being easily editable through natural language. The code will be public for research purposes.
Are Character-level Translations Worth the Wait? Comparing Character- and Subword-level Models for Machine Translation
Pretrained character-level language models were recently shown to be competitive with popular subword models across a range of NLP tasks. However, there has been little research on their effectiveness for neural machine translation (NMT). This work performs an extensive comparison across multiple languages and experimental conditions of state-of-the-art character- and subword-level pre-trained models (ByT5 and mT5, respectively) on NMT, showing the effectiveness of character-level modeling in translation, particularly in cases where training data is limited. In our analysis, we show how character models' performance gains are reflected in better translations of orthographically similar words and rare words. While evaluating the importance of source texts in driving model predictions, we highlight ByT5 word-level patterns suggesting an ability to modulate word and character-level information during the translation, providing insights into a potential weakness of character-level modeling. We conclude by assessing the efficiency tradeoff of character models, suggesting their usage in non-time-critical scenarios to boost translation quality.
10 hours data is all you need
We propose a novel procedure to generate pseudo mandarin speech data named as CAMP (character audio mix up), which aims at generating audio from a character scale. We also raise a method for building a mandarin character scale audio database adaptive to CAMP named as META-AUDIO, which makes full use of audio data and can greatly increase the data diversity of the database. Experiments show that our CAMP method is simple and quite effective. For example, we train models with 10 hours of audio data in AISHELL-1 and pseudo audio data generated by CAMP, and achieve a competitive 11.07 character error rate (CER). Besides, we also perform training with only 10 hours of audio data in AIDATATANG dataset and pseudo audio data generated by CAMP, which again achieves a competitive 8.26 CER.
Artistic Glyph Image Synthesis via One-Stage Few-Shot Learning
Automatic generation of artistic glyph images is a challenging task that attracts many research interests. Previous methods either are specifically designed for shape synthesis or focus on texture transfer. In this paper, we propose a novel model, AGIS-Net, to transfer both shape and texture styles in one-stage with only a few stylized samples. To achieve this goal, we first disentangle the representations for content and style by using two encoders, ensuring the multi-content and multi-style generation. Then we utilize two collaboratively working decoders to generate the glyph shape image and its texture image simultaneously. In addition, we introduce a local texture refinement loss to further improve the quality of the synthesized textures. In this manner, our one-stage model is much more efficient and effective than other multi-stage stacked methods. We also propose a large-scale dataset with Chinese glyph images in various shape and texture styles, rendered from 35 professional-designed artistic fonts with 7,326 characters and 2,460 synthetic artistic fonts with 639 characters, to validate the effectiveness and extendability of our method. Extensive experiments on both English and Chinese artistic glyph image datasets demonstrate the superiority of our model in generating high-quality stylized glyph images against other state-of-the-art methods.
RomanSetu: Efficiently unlocking multilingual capabilities of Large Language Models models via Romanization
This study addresses the challenge of extending Large Language Models (LLMs) to non-English languages, specifically those using non-Latin scripts. We propose an innovative approach that utilizes the romanized form of text as an interface for LLMs, hypothesizing that its frequent informal use and shared tokens with English enhance cross-lingual alignment. Focusing on Hindi, we demonstrate through Hindi-to-English translation and sentiment analysis tasks that romanized text not only significantly improves inference efficiency due to its lower fertility compared to native text but also achieves competitive performance with limited pre-training. Additionally, our novel multi-script prompting approach, which combines romanized and native texts, shows promise in further enhancing task performance. These findings suggest the potential of romanization in bridging the language gap for LLM applications, with future work aimed at expanding this approach to more languages and tasks.
Seedream 2.0: A Native Chinese-English Bilingual Image Generation Foundation Model
Rapid advancement of diffusion models has catalyzed remarkable progress in the field of image generation. However, prevalent models such as Flux, SD3.5 and Midjourney, still grapple with issues like model bias, limited text rendering capabilities, and insufficient understanding of Chinese cultural nuances. To address these limitations, we present Seedream 2.0, a native Chinese-English bilingual image generation foundation model that excels across diverse dimensions, which adeptly manages text prompt in both Chinese and English, supporting bilingual image generation and text rendering. We develop a powerful data system that facilitates knowledge integration, and a caption system that balances the accuracy and richness for image description. Particularly, Seedream is integrated with a self-developed bilingual large language model as a text encoder, allowing it to learn native knowledge directly from massive data. This enable it to generate high-fidelity images with accurate cultural nuances and aesthetic expressions described in either Chinese or English. Beside, Glyph-Aligned ByT5 is applied for flexible character-level text rendering, while a Scaled ROPE generalizes well to untrained resolutions. Multi-phase post-training optimizations, including SFT and RLHF iterations, further improve the overall capability. Through extensive experimentation, we demonstrate that Seedream 2.0 achieves state-of-the-art performance across multiple aspects, including prompt-following, aesthetics, text rendering, and structural correctness. Furthermore, Seedream 2.0 has been optimized through multiple RLHF iterations to closely align its output with human preferences, as revealed by its outstanding ELO score. In addition, it can be readily adapted to an instruction-based image editing model, such as SeedEdit, with strong editing capability that balances instruction-following and image consistency.
Instruct-Tuning Pretrained Causal Language Models for Ancient Greek Papyrology and Epigraphy
This article presents an experiment in fine-tuning a pretrained causal language model (Meta's Llama 3.1 8B Instruct) for aiding in three fundamental tasks of philological research: chronological and geographic attribution as well as text restoration in ancient Greek inscriptions and documentary papyri. Using a prompt-based instruct approach, the fine-tuned models surpass the state of the art in key metrics. For inscriptions, the models achieve a lower average character error rate (CER) of 22.5% (vs. 26.3%), while closely matching top-1 accuracy (60.9% vs. 61.8%) and top-20 accuracy (77.5% vs. 78.3%) for sequences up to 10 characters. They also provide a practical advantage by ignoring spaces during reconstruction, aligning better with the scriptio continua typically used in ancient written artifacts. In geographic attribution, the model outperforms previous benchmarks with a top-1 accuracy of 75.0% (vs. 70.8%) and a top-3 accuracy of 83.7% (vs. 82.1%). For dating, it achieves an average deviation of 26.2 years (vs. 29.3) and a median deviation of 1 year (vs. 3) from the actual date range. The models also set new baselines for documentary papyri, with a CER of 16.3%, a top-1 accuracy of 71.3%, and top-20 of 85.0% in text reconstruction; a top-1 accuracy of 66.4% and top-3 of 79.9% in geographic attribution; and, in chronological attribution, a deviation of 21.7 years from the actual termini post/ante quem, with a median deviation of 0 years.
SPGISpeech: 5,000 hours of transcribed financial audio for fully formatted end-to-end speech recognition
In the English speech-to-text (STT) machine learning task, acoustic models are conventionally trained on uncased Latin characters, and any necessary orthography (such as capitalization, punctuation, and denormalization of non-standard words) is imputed by separate post-processing models. This adds complexity and limits performance, as many formatting tasks benefit from semantic information present in the acoustic signal but absent in transcription. Here we propose a new STT task: end-to-end neural transcription with fully formatted text for target labels. We present baseline Conformer-based models trained on a corpus of 5,000 hours of professionally transcribed earnings calls, achieving a CER of 1.7. As a contribution to the STT research community, we release the corpus free for non-commercial use at https://datasets.kensho.com/datasets/scribe.
Char2Subword: Extending the Subword Embedding Space Using Robust Character Compositionality
Byte-pair encoding (BPE) is a ubiquitous algorithm in the subword tokenization process of language models as it provides multiple benefits. However, this process is solely based on pre-training data statistics, making it hard for the tokenizer to handle infrequent spellings. On the other hand, though robust to misspellings, pure character-level models often lead to unreasonably long sequences and make it harder for the model to learn meaningful words. To alleviate these challenges, we propose a character-based subword module (char2subword) that learns the subword embedding table in pre-trained models like BERT. Our char2subword module builds representations from characters out of the subword vocabulary, and it can be used as a drop-in replacement of the subword embedding table. The module is robust to character-level alterations such as misspellings, word inflection, casing, and punctuation. We integrate it further with BERT through pre-training while keeping BERT transformer parameters fixed--and thus, providing a practical method. Finally, we show that incorporating our module to mBERT significantly improves the performance on the social media linguistic code-switching evaluation (LinCE) benchmark.
GlotScript: A Resource and Tool for Low Resource Writing System Identification
We present GlotScript, an open resource and tool for low resource writing system identification. GlotScript-R is a resource that provides the attested writing systems for more than 7,000 languages. It is compiled by aggregating information from existing writing system resources. GlotScript-T is a writing system identification tool that covers all 161 Unicode 15.0 scripts. For an input text, it returns its script distribution where scripts are identified by ISO 15924 codes. We also present two use cases for GlotScript. First, we demonstrate that GlotScript supports cleaning multilingual corpora such as mC4 and OSCAR. Second, we analyze the tokenization of a number of language models such as GPT-4 using GlotScript and provide insights on the coverage of low resource scripts and languages by each language model. We hope that GlotScript will become a useful resource for work on low resource languages in the NLP community. GlotScript-R and GlotScript-T are available at https://github.com/cisnlp/GlotScript.
LongCat-Image Technical Report
We introduce LongCat-Image, a pioneering open-source and bilingual (Chinese-English) foundation model for image generation, designed to address core challenges in multilingual text rendering, photorealism, deployment efficiency, and developer accessibility prevalent in current leading models. 1) We achieve this through rigorous data curation strategies across the pre-training, mid-training, and SFT stages, complemented by the coordinated use of curated reward models during the RL phase. This strategy establishes the model as a new state-of-the-art (SOTA), delivering superior text-rendering capabilities and remarkable photorealism, and significantly enhancing aesthetic quality. 2) Notably, it sets a new industry standard for Chinese character rendering. By supporting even complex and rare characters, it outperforms both major open-source and commercial solutions in coverage, while also achieving superior accuracy. 3) The model achieves remarkable efficiency through its compact design. With a core diffusion model of only 6B parameters, it is significantly smaller than the nearly 20B or larger Mixture-of-Experts (MoE) architectures common in the field. This ensures minimal VRAM usage and rapid inference, significantly reducing deployment costs. Beyond generation, LongCat-Image also excels in image editing, achieving SOTA results on standard benchmarks with superior editing consistency compared to other open-source works. 4) To fully empower the community, we have established the most comprehensive open-source ecosystem to date. We are releasing not only multiple model versions for text-to-image and image editing, including checkpoints after mid-training and post-training stages, but also the entire toolchain of training procedure. We believe that the openness of LongCat-Image will provide robust support for developers and researchers, pushing the frontiers of visual content creation.
Neural Machine Translation with Byte-Level Subwords
Almost all existing machine translation models are built on top of character-based vocabularies: characters, subwords or words. Rare characters from noisy text or character-rich languages such as Japanese and Chinese however can unnecessarily take up vocabulary slots and limit its compactness. Representing text at the level of bytes and using the 256 byte set as vocabulary is a potential solution to this issue. High computational cost has however prevented it from being widely deployed or used in practice. In this paper, we investigate byte-level subwords, specifically byte-level BPE (BBPE), which is compacter than character vocabulary and has no out-of-vocabulary tokens, but is more efficient than using pure bytes only is. We claim that contextualizing BBPE embeddings is necessary, which can be implemented by a convolutional or recurrent layer. Our experiments show that BBPE has comparable performance to BPE while its size is only 1/8 of that for BPE. In the multilingual setting, BBPE maximizes vocabulary sharing across many languages and achieves better translation quality. Moreover, we show that BBPE enables transferring models between languages with non-overlapping character sets.
A Benchmark for Chinese-English Scene Text Image Super-resolution
Scene Text Image Super-resolution (STISR) aims to recover high-resolution (HR) scene text images with visually pleasant and readable text content from the given low-resolution (LR) input. Most existing works focus on recovering English texts, which have relatively simple character structures, while little work has been done on the more challenging Chinese texts with diverse and complex character structures. In this paper, we propose a real-world Chinese-English benchmark dataset, namely Real-CE, for the task of STISR with the emphasis on restoring structurally complex Chinese characters. The benchmark provides 1,935/783 real-world LR-HR text image pairs~(contains 33,789 text lines in total) for training/testing in 2times and 4times zooming modes, complemented by detailed annotations, including detection boxes and text transcripts. Moreover, we design an edge-aware learning method, which provides structural supervision in image and feature domains, to effectively reconstruct the dense structures of Chinese characters. We conduct experiments on the proposed Real-CE benchmark and evaluate the existing STISR models with and without our edge-aware loss. The benchmark, including data and source code, is available at https://github.com/mjq11302010044/Real-CE.
Open Source MagicData-RAMC: A Rich Annotated Mandarin Conversational(RAMC) Speech Dataset
This paper introduces a high-quality rich annotated Mandarin conversational (RAMC) speech dataset called MagicData-RAMC. The MagicData-RAMC corpus contains 180 hours of conversational speech data recorded from native speakers of Mandarin Chinese over mobile phones with a sampling rate of 16 kHz. The dialogs in MagicData-RAMC are classified into 15 diversified domains and tagged with topic labels, ranging from science and technology to ordinary life. Accurate transcription and precise speaker voice activity timestamps are manually labeled for each sample. Speakers' detailed information is also provided. As a Mandarin speech dataset designed for dialog scenarios with high quality and rich annotations, MagicData-RAMC enriches the data diversity in the Mandarin speech community and allows extensive research on a series of speech-related tasks, including automatic speech recognition, speaker diarization, topic detection, keyword search, text-to-speech, etc. We also conduct several relevant tasks and provide experimental results to help evaluate the dataset.
Data Generation for Post-OCR correction of Cyrillic handwriting
This paper introduces a novel approach to post-Optical Character Recognition Correction (POC) for handwritten Cyrillic text, addressing a significant gap in current research methodologies. This gap is due to the lack of large text corporas that provide OCR errors for further training of language-based POC models, which are demanding in terms of corpora size. Our study primarily focuses on the development and application of a synthetic handwriting generation engine based on B\'ezier curves. Such an engine generates highly realistic handwritten text in any amounts, which we utilize to create a substantial dataset by transforming Russian text corpora sourced from the internet. We apply a Handwritten Text Recognition (HTR) model to this dataset to identify OCR errors, forming the basis for our POC model training. The correction model is trained on a 90-symbol input context, utilizing a pre-trained T5 architecture with a seq2seq correction task. We evaluate our approach on HWR200 and School_notebooks_RU datasets as they provide significant challenges in the HTR domain. Furthermore, POC can be used to highlight errors for teachers, evaluating student performance. This can be done simply by comparing sentences before and after correction, displaying differences in text. Our primary contribution lies in the innovative use of B\'ezier curves for Cyrillic text generation and subsequent error correction using a specialized POC model. We validate our approach by presenting Word Accuracy Rate (WAR) and Character Accuracy Rate (CAR) results, both with and without post-OCR correction, using real open corporas of handwritten Cyrillic text. These results, coupled with our methodology, are designed to be reproducible, paving the way for further advancements in the field of OCR and handwritten text analysis. Paper contributions can be found in https://github.com/dbrainio/CyrillicHandwritingPOC
Why don't people use character-level machine translation?
We present a literature and empirical survey that critically assesses the state of the art in character-level modeling for machine translation (MT). Despite evidence in the literature that character-level systems are comparable with subword systems, they are virtually never used in competitive setups in WMT competitions. We empirically show that even with recent modeling innovations in character-level natural language processing, character-level MT systems still struggle to match their subword-based counterparts. Character-level MT systems show neither better domain robustness, nor better morphological generalization, despite being often so motivated. However, we are able to show robustness towards source side noise and that translation quality does not degrade with increasing beam size at decoding time.
Correcting diacritics and typos with a ByT5 transformer model
Due to the fast pace of life and online communications and the prevalence of English and the QWERTY keyboard, people tend to forgo using diacritics, make typographical errors (typos) when typing in other languages. Restoring diacritics and correcting spelling is important for proper language use and the disambiguation of texts for both humans and downstream algorithms. However, both of these problems are typically addressed separately: the state-of-the-art diacritics restoration methods do not tolerate other typos, but classical spellcheckers also cannot deal adequately with all the diacritics missing. In this work, we tackle both problems at once by employing the newly-developed universal ByT5 byte-level seq2seq transformer model that requires no language-specific model structures. For a comparison, we perform diacritics restoration on benchmark datasets of 12 languages, with the addition of Lithuanian. The experimental investigation proves that our approach is able to achieve results (> 98%) comparable to the previous state-of-the-art, despite being trained less and on fewer data. Our approach is also able to restore diacritics in words not seen during training with > 76% accuracy. Our simultaneous diacritics restoration and typos correction approach reaches > 94% alpha-word accuracy on the 13 languages. It has no direct competitors and strongly outperforms classical spell-checking or dictionary-based approaches. We also demonstrate all the accuracies to further improve with more training. Taken together, this shows the great real-world application potential of our suggested methods to more data, languages, and error classes.
Improving Yorùbá Diacritic Restoration
Yor\`ub\'a is a widely spoken West African language with a writing system rich in orthographic and tonal diacritics. They provide morphological information, are crucial for lexical disambiguation, pronunciation and are vital for any computational Speech or Natural Language Processing tasks. However diacritic marks are commonly excluded from electronic texts due to limited device and application support as well as general education on proper usage. We report on recent efforts at dataset cultivation. By aggregating and improving disparate texts from the web and various personal libraries, we were able to significantly grow our clean Yor\`ub\'a dataset from a majority Bibilical text corpora with three sources to millions of tokens from over a dozen sources. We evaluate updated diacritic restoration models on a new, general purpose, public-domain Yor\`ub\'a evaluation dataset of modern journalistic news text, selected to be multi-purpose and reflecting contemporary usage. All pre-trained models, datasets and source-code have been released as an open-source project to advance efforts on Yor\`ub\'a language technology.
FullStop:Punctuation and Segmentation Prediction for Dutch with Transformers
When applying automated speech recognition (ASR) for Belgian Dutch (Van Dyck et al. 2021), the output consists of an unsegmented stream of words, without any punctuation. A next step is to perform segmentation and insert punctuation, making the ASR output more readable and easy to manually correct. As far as we know there is no publicly available punctuation insertion system for Dutch that functions at a usable level. The model we present here is an extension of the models of Guhr et al. (2021) for Dutch and is made publicly available. We trained a sequence classification model, based on the Dutch language model RobBERT (Delobelle et al. 2020). For every word in the input sequence, the models predicts a punctuation marker that follows the word. We have also extended a multilingual model, for cases where the language is unknown or where code switching applies. When performing the task of segmentation, the application of the best models onto out of domain test data, a sliding window of 200 words of the ASR output stream is sent to the classifier, and segmentation is applied when the system predicts a segmenting punctuation sign with a ratio above threshold. Results show to be much better than a machine translation baseline approach.
LLMTrace: A Corpus for Classification and Fine-Grained Localization of AI-Written Text
The widespread use of human-like text from Large Language Models (LLMs) necessitates the development of robust detection systems. However, progress is limited by a critical lack of suitable training data; existing datasets are often generated with outdated models, are predominantly in English, and fail to address the increasingly common scenario of mixed human-AI authorship. Crucially, while some datasets address mixed authorship, none provide the character-level annotations required for the precise localization of AI-generated segments within a text. To address these gaps, we introduce LLMTrace, a new large-scale, bilingual (English and Russian) corpus for AI-generated text detection. Constructed using a diverse range of modern proprietary and open-source LLMs, our dataset is designed to support two key tasks: traditional full-text binary classification (human vs. AI) and the novel task of AI-generated interval detection, facilitated by character-level annotations. We believe LLMTrace will serve as a vital resource for training and evaluating the next generation of more nuanced and practical AI detection models. The project page is available at https://sweetdream779.github.io/LLMTrace-info/{iitolstykh/LLMTrace}.
AISHELL-1: An Open-Source Mandarin Speech Corpus and A Speech Recognition Baseline
An open-source Mandarin speech corpus called AISHELL-1 is released. It is by far the largest corpus which is suitable for conducting the speech recognition research and building speech recognition systems for Mandarin. The recording procedure, including audio capturing devices and environments are presented in details. The preparation of the related resources, including transcriptions and lexicon are described. The corpus is released with a Kaldi recipe. Experimental results implies that the quality of audio recordings and transcriptions are promising.
Syntax-Aware Network for Handwritten Mathematical Expression Recognition
Handwritten mathematical expression recognition (HMER) is a challenging task that has many potential applications. Recent methods for HMER have achieved outstanding performance with an encoder-decoder architecture. However, these methods adhere to the paradigm that the prediction is made "from one character to another", which inevitably yields prediction errors due to the complicated structures of mathematical expressions or crabbed handwritings. In this paper, we propose a simple and efficient method for HMER, which is the first to incorporate syntax information into an encoder-decoder network. Specifically, we present a set of grammar rules for converting the LaTeX markup sequence of each expression into a parsing tree; then, we model the markup sequence prediction as a tree traverse process with a deep neural network. In this way, the proposed method can effectively describe the syntax context of expressions, alleviating the structure prediction errors of HMER. Experiments on three benchmark datasets demonstrate that our method achieves better recognition performance than prior arts. To further validate the effectiveness of our method, we create a large-scale dataset consisting of 100k handwritten mathematical expression images acquired from ten thousand writers. The source code, new dataset, and pre-trained models of this work will be publicly available.
Dynamic Context Adaptation for Consistent Role-Playing Agents with Retrieval-Augmented Generations
We propose AMADEUS, which is composed of Adaptive Context-aware Text Splitter (ACTS), Guided Selection (GS), and Attribute Extractor (AE). ACTS finds an optimal chunk length and hierarchical contexts for each character. AE identifies a character's general attributes from the chunks retrieved by GS and uses these attributes as a final context to maintain robust persona consistency even when answering out of knowledge questions. To facilitate the development and evaluation of RAG-based RPAs, we construct CharacterRAG, a role-playing dataset that consists of persona documents for 15 distinct fictional characters totaling 976K written characters, and 450 question and answer pairs. We find that our framework effectively models not only the knowledge possessed by characters, but also various attributes such as personality.
Mitigating Long-tail Distribution in Oracle Bone Inscriptions: Dataset, Model, and Benchmark
The oracle bone inscription (OBI) recognition plays a significant role in understanding the history and culture of ancient China. However, the existing OBI datasets suffer from a long-tail distribution problem, leading to biased performance of OBI recognition models across majority and minority classes. With recent advancements in generative models, OBI synthesis-based data augmentation has become a promising avenue to expand the sample size of minority classes. Unfortunately, current OBI datasets lack large-scale structure-aligned image pairs for generative model training. To address these problems, we first present the Oracle-P15K, a structure-aligned OBI dataset for OBI generation and denoising, consisting of 14,542 images infused with domain knowledge from OBI experts. Second, we propose a diffusion model-based pseudo OBI generator, called OBIDiff, to achieve realistic and controllable OBI generation. Given a clean glyph image and a target rubbing-style image, it can effectively transfer the noise style of the original rubbing to the glyph image. Extensive experiments on OBI downstream tasks and user preference studies show the effectiveness of the proposed Oracle-P15K dataset and demonstrate that OBIDiff can accurately preserve inherent glyph structures while transferring authentic rubbing styles effectively.
Kinetic Typography Diffusion Model
This paper introduces a method for realistic kinetic typography that generates user-preferred animatable 'text content'. We draw on recent advances in guided video diffusion models to achieve visually-pleasing text appearances. To do this, we first construct a kinetic typography dataset, comprising about 600K videos. Our dataset is made from a variety of combinations in 584 templates designed by professional motion graphics designers and involves changing each letter's position, glyph, and size (i.e., flying, glitches, chromatic aberration, reflecting effects, etc.). Next, we propose a video diffusion model for kinetic typography. For this, there are three requirements: aesthetic appearances, motion effects, and readable letters. This paper identifies the requirements. For this, we present static and dynamic captions used as spatial and temporal guidance of a video diffusion model, respectively. The static caption describes the overall appearance of the video, such as colors, texture and glyph which represent a shape of each letter. The dynamic caption accounts for the movements of letters and backgrounds. We add one more guidance with zero convolution to determine which text content should be visible in the video. We apply the zero convolution to the text content, and impose it on the diffusion model. Lastly, our glyph loss, only minimizing a difference between the predicted word and its ground-truth, is proposed to make the prediction letters readable. Experiments show that our model generates kinetic typography videos with legible and artistic letter motions based on text prompts.
Toucan: Token-Aware Character Level Language Modeling
Character-level language models obviate the need for separately trained tokenizers, but efficiency suffers from longer sequence lengths. Learning to combine character representations into tokens has made training these models more efficient, but they still require decoding characters individually. We propose Toucan, an augmentation to character-level models to make them "token-aware". Comparing our method to prior work, we demonstrate significant speed-ups in character generation without a loss in language modeling performance. We then explore differences between our learned dynamic tokenization of character sequences with popular fixed vocabulary solutions such as Byte-Pair Encoding and WordPiece, finding our approach leads to a greater amount of longer sequences tokenized as single items. Our project and code are available at https://nlp.jhu.edu/nuggets/.
IDPL-PFOD2: A New Large-Scale Dataset for Printed Farsi Optical Character Recognition
Optical Character Recognition is a technique that converts document images into searchable and editable text, making it a valuable tool for processing scanned documents. While the Farsi language stands as a prominent and official language in Asia, efforts to develop efficient methods for recognizing Farsi printed text have been relatively limited. This is primarily attributed to the languages distinctive features, such as cursive form, the resemblance between certain alphabet characters, and the presence of numerous diacritics and dot placement. On the other hand, given the substantial training sample requirements of deep-based architectures for effective performance, the development of such datasets holds paramount significance. In light of these concerns, this paper aims to present a novel large-scale dataset, IDPL-PFOD2, tailored for Farsi printed text recognition. The dataset comprises 2003541 images featuring a wide variety of fonts, styles, and sizes. This dataset is an extension of the previously introduced IDPL-PFOD dataset, offering a substantial increase in both volume and diversity. Furthermore, the datasets effectiveness is assessed through the utilization of both CRNN-based and Vision Transformer architectures. The CRNN-based model achieves a baseline accuracy rate of 78.49% and a normalized edit distance of 97.72%, while the Vision Transformer architecture attains an accuracy of 81.32% and a normalized edit distance of 98.74%.
Read, Listen, and See: Leveraging Multimodal Information Helps Chinese Spell Checking
Chinese Spell Checking (CSC) aims to detect and correct erroneous characters for user-generated text in the Chinese language. Most of the Chinese spelling errors are misused semantically, phonetically or graphically similar characters. Previous attempts noticed this phenomenon and try to use the similarity for this task. However, these methods use either heuristics or handcrafted confusion sets to predict the correct character. In this paper, we propose a Chinese spell checker called ReaLiSe, by directly leveraging the multimodal information of the Chinese characters. The ReaLiSe model tackles the CSC task by (1) capturing the semantic, phonetic and graphic information of the input characters, and (2) selectively mixing the information in these modalities to predict the correct output. Experiments on the SIGHAN benchmarks show that the proposed model outperforms strong baselines by a large margin.
Prompting with Phonemes: Enhancing LLM Multilinguality for non-Latin Script Languages
Multilingual LLMs have achieved remarkable benchmark performance, but we find they continue to underperform on non-Latin script languages across contemporary LLM families. This discrepancy arises from the fact that LLMs are pretrained with orthographic scripts, which are dominated by Latin characters that obscure their shared phonology with non-Latin scripts. We propose leveraging phonemic transcriptions as complementary signals to induce script-invariant representations. Our study demonstrates that integrating phonemic signals improves performance across both non-Latin and Latin languages, with a particularly significant impact on closing the performance gap between the two. Through detailed experiments, we show that phonemic and orthographic scripts retrieve distinct examples for in-context learning (ICL). This motivates our proposed Mixed-ICL retrieval strategy, where further aggregation leads to our significant performance improvements for both Latin script languages (up to 12.6%) and non-Latin script languages (up to 15.1%) compared to randomized ICL retrieval.
DreamText: High Fidelity Scene Text Synthesis
Scene text synthesis involves rendering specified texts onto arbitrary images. Current methods typically formulate this task in an end-to-end manner but lack effective character-level guidance during training. Besides, their text encoders, pre-trained on a single font type, struggle to adapt to the diverse font styles encountered in practical applications. Consequently, these methods suffer from character distortion, repetition, and absence, particularly in polystylistic scenarios. To this end, this paper proposes DreamText for high-fidelity scene text synthesis. Our key idea is to reconstruct the diffusion training process, introducing more refined guidance tailored to this task, to expose and rectify the model's attention at the character level and strengthen its learning of text regions. This transformation poses a hybrid optimization challenge, involving both discrete and continuous variables. To effectively tackle this challenge, we employ a heuristic alternate optimization strategy. Meanwhile, we jointly train the text encoder and generator to comprehensively learn and utilize the diverse font present in the training dataset. This joint training is seamlessly integrated into the alternate optimization process, fostering a synergistic relationship between learning character embedding and re-estimating character attention. Specifically, in each step, we first encode potential character-generated position information from cross-attention maps into latent character masks. These masks are then utilized to update the representation of specific characters in the current step, which, in turn, enables the generator to correct the character's attention in the subsequent steps. Both qualitative and quantitative results demonstrate the superiority of our method to the state of the art.
hmBERT: Historical Multilingual Language Models for Named Entity Recognition
Compared to standard Named Entity Recognition (NER), identifying persons, locations, and organizations in historical texts constitutes a big challenge. To obtain machine-readable corpora, the historical text is usually scanned and Optical Character Recognition (OCR) needs to be performed. As a result, the historical corpora contain errors. Also, entities like location or organization can change over time, which poses another challenge. Overall, historical texts come with several peculiarities that differ greatly from modern texts and large labeled corpora for training a neural tagger are hardly available for this domain. In this work, we tackle NER for historical German, English, French, Swedish, and Finnish by training large historical language models. We circumvent the need for large amounts of labeled data by using unlabeled data for pretraining a language model. We propose hmBERT, a historical multilingual BERT-based language model, and release the model in several versions of different sizes. Furthermore, we evaluate the capability of hmBERT by solving downstream NER as part of this year's HIPE-2022 shared task and provide detailed analysis and insights. For the Multilingual Classical Commentary coarse-grained NER challenge, our tagger HISTeria outperforms the other teams' models for two out of three languages.
Text2AC-Zero: Consistent Synthesis of Animated Characters using 2D Diffusion
We propose a zero-shot approach for consistent Text-to-Animated-Characters synthesis based on pre-trained Text-to-Image (T2I) diffusion models. Existing Text-to-Video (T2V) methods are expensive to train and require large-scale video datasets to produce diverse characters and motions. At the same time, their zero-shot alternatives fail to produce temporally consistent videos. We strive to bridge this gap, and we introduce a zero-shot approach that produces temporally consistent videos of animated characters and requires no training or fine-tuning. We leverage existing text-based motion diffusion models to generate diverse motions that we utilize to guide a T2I model. To achieve temporal consistency, we introduce the Spatial Latent Alignment module that exploits cross-frame dense correspondences that we compute to align the latents of the video frames. Furthermore, we propose Pixel-Wise Guidance to steer the diffusion process in a direction that minimizes visual discrepancies. Our proposed approach generates temporally consistent videos with diverse motions and styles, outperforming existing zero-shot T2V approaches in terms of pixel-wise consistency and user preference.
CharacterGPT: A Persona Reconstruction Framework for Role-Playing Agents
The recent introduction of the Assistants API highlights its potential for large language models (LLMs) in role-playing agents (RPA). However, maintaining consistent character personas remains a significant challenge due to variability in information extraction, which frequently omits critical elements such as backstory or interpersonal relationships. To address this limitation, we introduce CharacterGPT, a framework designed to dynamically reconstruct character personas through Character Persona Training (CPT). This approach incrementally updates personas by extracting traits from chapter-wise novel summaries, reflecting the progression of the narrative. Our framework is evaluated through Big Five personality evaluations and creative tasks, in which characters generate original narratives, demonstrating the efficacy of CharacterGPT in preserving persona consistency. The code and results are available at https://github.com/Jeiyoon/charactergpt
Improved Neural Protoform Reconstruction via Reflex Prediction
Protolanguage reconstruction is central to historical linguistics. The comparative method, one of the most influential theoretical and methodological frameworks in the history of the language sciences, allows linguists to infer protoforms (reconstructed ancestral words) from their reflexes (related modern words) based on the assumption of regular sound change. Not surprisingly, numerous computational linguists have attempted to operationalize comparative reconstruction through various computational models, the most successful of which have been supervised encoder-decoder models, which treat the problem of predicting protoforms given sets of reflexes as a sequence-to-sequence problem. We argue that this framework ignores one of the most important aspects of the comparative method: not only should protoforms be inferable from cognate sets (sets of related reflexes) but the reflexes should also be inferable from the protoforms. Leveraging another line of research -- reflex prediction -- we propose a system in which candidate protoforms from a reconstruction model are reranked by a reflex prediction model. We show that this more complete implementation of the comparative method allows us to surpass state-of-the-art protoform reconstruction methods on three of four Chinese and Romance datasets.
WenetSpeech: A 10000+ Hours Multi-domain Mandarin Corpus for Speech Recognition
In this paper, we present WenetSpeech, a multi-domain Mandarin corpus consisting of 10000+ hours high-quality labeled speech, 2400+ hours weakly labeled speech, and about 10000 hours unlabeled speech, with 22400+ hours in total. We collect the data from YouTube and Podcast, which covers a variety of speaking styles, scenarios, domains, topics, and noisy conditions. An optical character recognition (OCR) based method is introduced to generate the audio/text segmentation candidates for the YouTube data on its corresponding video captions, while a high-quality ASR transcription system is used to generate audio/text pair candidates for the Podcast data. Then we propose a novel end-to-end label error detection approach to further validate and filter the candidates. We also provide three manually labelled high-quality test sets along with WenetSpeech for evaluation -- Dev for cross-validation purpose in training, Test_Net, collected from Internet for matched test, and Test\_Meeting, recorded from real meetings for more challenging mismatched test. Baseline systems trained with WenetSpeech are provided for three popular speech recognition toolkits, namely Kaldi, ESPnet, and WeNet, and recognition results on the three test sets are also provided as benchmarks. To the best of our knowledge, WenetSpeech is the current largest open-sourced Mandarin speech corpus with transcriptions, which benefits research on production-level speech recognition.
CalliReader: Contextualizing Chinese Calligraphy via an Embedding-Aligned Vision-Language Model
Chinese calligraphy, a UNESCO Heritage, remains computationally challenging due to visual ambiguity and cultural complexity. Existing AI systems fail to contextualize their intricate scripts, because of limited annotated data and poor visual-semantic alignment. We propose CalliReader, a vision-language model (VLM) that solves the Chinese Calligraphy Contextualization (CC^2) problem through three innovations: (1) character-wise slicing for precise character extraction and sorting, (2) CalliAlign for visual-text token compression and alignment, (3) embedding instruction tuning (e-IT) for improving alignment and addressing data scarcity. We also build CalliBench, the first benchmark for full-page calligraphic contextualization, addressing three critical issues in previous OCR and VQA approaches: fragmented context, shallow reasoning, and hallucination. Extensive experiments including user studies have been conducted to verify our CalliReader's superiority to other state-of-the-art methods and even human professionals in page-level calligraphy recognition and interpretation, achieving higher accuracy while reducing hallucination. Comparisons with reasoning models highlight the importance of accurate recognition as a prerequisite for reliable comprehension. Quantitative analyses validate CalliReader's efficiency; evaluations on document and real-world benchmarks confirm its robust generalization ability.
Hunyuan-DiT: A Powerful Multi-Resolution Diffusion Transformer with Fine-Grained Chinese Understanding
We present Hunyuan-DiT, a text-to-image diffusion transformer with fine-grained understanding of both English and Chinese. To construct Hunyuan-DiT, we carefully design the transformer structure, text encoder, and positional encoding. We also build from scratch a whole data pipeline to update and evaluate data for iterative model optimization. For fine-grained language understanding, we train a Multimodal Large Language Model to refine the captions of the images. Finally, Hunyuan-DiT can perform multi-turn multimodal dialogue with users, generating and refining images according to the context. Through our holistic human evaluation protocol with more than 50 professional human evaluators, Hunyuan-DiT sets a new state-of-the-art in Chinese-to-image generation compared with other open-source models. Code and pretrained models are publicly available at github.com/Tencent/HunyuanDiT
Few shot font generation via transferring similarity guided global style and quantization local style
Automatic few-shot font generation (AFFG), aiming at generating new fonts with only a few glyph references, reduces the labor cost of manually designing fonts. However, the traditional AFFG paradigm of style-content disentanglement cannot capture the diverse local details of different fonts. So, many component-based approaches are proposed to tackle this problem. The issue with component-based approaches is that they usually require special pre-defined glyph components, e.g., strokes and radicals, which is infeasible for AFFG of different languages. In this paper, we present a novel font generation approach by aggregating styles from character similarity-guided global features and stylized component-level representations. We calculate the similarity scores of the target character and the referenced samples by measuring the distance along the corresponding channels from the content features, and assigning them as the weights for aggregating the global style features. To better capture the local styles, a cross-attention-based style transfer module is adopted to transfer the styles of reference glyphs to the components, where the components are self-learned discrete latent codes through vector quantization without manual definition. With these designs, our AFFG method could obtain a complete set of component-level style representations, and also control the global glyph characteristics. The experimental results reflect the effectiveness and generalization of the proposed method on different linguistic scripts, and also show its superiority when compared with other state-of-the-art methods. The source code can be found at https://github.com/awei669/VQ-Font.
CharacterShot: Controllable and Consistent 4D Character Animation
In this paper, we propose CharacterShot, a controllable and consistent 4D character animation framework that enables any individual designer to create dynamic 3D characters (i.e., 4D character animation) from a single reference character image and a 2D pose sequence. We begin by pretraining a powerful 2D character animation model based on a cutting-edge DiT-based image-to-video model, which allows for any 2D pose sequnce as controllable signal. We then lift the animation model from 2D to 3D through introducing dual-attention module together with camera prior to generate multi-view videos with spatial-temporal and spatial-view consistency. Finally, we employ a novel neighbor-constrained 4D gaussian splatting optimization on these multi-view videos, resulting in continuous and stable 4D character representations. Moreover, to improve character-centric performance, we construct a large-scale dataset Character4D, containing 13,115 unique characters with diverse appearances and motions, rendered from multiple viewpoints. Extensive experiments on our newly constructed benchmark, CharacterBench, demonstrate that our approach outperforms current state-of-the-art methods. Code, models, and datasets will be publicly available at https://github.com/Jeoyal/CharacterShot.
Lite Training Strategies for Portuguese-English and English-Portuguese Translation
Despite the widespread adoption of deep learning for machine translation, it is still expensive to develop high-quality translation models. In this work, we investigate the use of pre-trained models, such as T5 for Portuguese-English and English-Portuguese translation tasks using low-cost hardware. We explore the use of Portuguese and English pre-trained language models and propose an adaptation of the English tokenizer to represent Portuguese characters, such as diaeresis, acute and grave accents. We compare our models to the Google Translate API and MarianMT on a subset of the ParaCrawl dataset, as well as to the winning submission to the WMT19 Biomedical Translation Shared Task. We also describe our submission to the WMT20 Biomedical Translation Shared Task. Our results show that our models have a competitive performance to state-of-the-art models while being trained on modest hardware (a single 8GB gaming GPU for nine days). Our data, models and code are available at https://github.com/unicamp-dl/Lite-T5-Translation.
Self-supervised Character-to-Character Distillation for Text Recognition
When handling complicated text images (e.g., irregular structures, low resolution, heavy occlusion, and uneven illumination), existing supervised text recognition methods are data-hungry. Although these methods employ large-scale synthetic text images to reduce the dependence on annotated real images, the domain gap still limits the recognition performance. Therefore, exploring the robust text feature representations on unlabeled real images by self-supervised learning is a good solution. However, existing self-supervised text recognition methods conduct sequence-to-sequence representation learning by roughly splitting the visual features along the horizontal axis, which limits the flexibility of the augmentations, as large geometric-based augmentations may lead to sequence-to-sequence feature inconsistency. Motivated by this, we propose a novel self-supervised Character-to-Character Distillation method, CCD, which enables versatile augmentations to facilitate general text representation learning. Specifically, we delineate the character structures of unlabeled real images by designing a self-supervised character segmentation module. Following this, CCD easily enriches the diversity of local characters while keeping their pairwise alignment under flexible augmentations, using the transformation matrix between two augmented views from images. Experiments demonstrate that CCD achieves state-of-the-art results, with average performance gains of 1.38% in text recognition, 1.7% in text segmentation, 0.24 dB (PSNR) and 0.0321 (SSIM) in text super-resolution. Code is available at https://github.com/TongkunGuan/CCD.
CharPoet: A Chinese Classical Poetry Generation System Based on Token-free LLM
Automatic Chinese classical poetry generation has attracted much research interest, but achieving effective control over format and content simultaneously remains challenging. Traditional systems usually accept keywords as user inputs, resulting in limited control over content. Large language models (LLMs) improve content control by allowing unrestricted user instructions, but the token-by-token generation process frequently makes format errors. Motivated by this, we propose CharPoet, a Chinese classical poetry generation system based on token-free LLM, which provides effective control over both format and content. Our token-free architecture generates in a character-by-character manner, enabling precise control over the number of characters. Pruned from existing token-based LLMs, CharPoet inherits their pretrained capabilities and can generate poetry following instructions like "Write me a poem for my mother's birthday." CharPoet achieves format accuracy above 0.96, outperforming Jiuge-GPT-2 (0.91) and GPT-4 (0.38). In terms of content quality, CharPoet surpasses traditional systems including Jiuge, and is comparable to other LLMs. Our system is open source and available at https://modelscope.cn/models/CharPoet/CharPoet. A video demonstration of CharPoet is available at https://youtu.be/voZ25qEp3Dc.
Local Byte Fusion for Neural Machine Translation
Subword tokenization schemes are the dominant technique used in current NLP models. However, such schemes can be rigid and tokenizers built on one corpus do not adapt well to other parallel corpora. It has also been observed that in multilingual corpora, subword tokenization schemes over-segment low-resource languages leading to a drop in translation performance. A simple alternative to subword tokenizers is byte-based methods i.e. tokenization into byte sequences using encoding schemes such as UTF-8. Byte tokens often represent inputs at a sub-character granularity i.e. one character can be represented by a sequence of multiple byte tokens. This results in byte sequences that are significantly longer than character sequences. Enforcing aggregation of local information in the lower layers can guide the model to build higher-level semantic information. We propose a Local Byte Fusion (LOBEF) method for byte-based machine translation -- utilizing byte n-gram and word boundaries -- to aggregate local semantic information. Extensive experiments on multilingual translation, zero-shot cross-lingual transfer, and domain adaptation reveal a consistent improvement over traditional byte-based models and even over subword techniques. Further analysis also indicates that our byte-based models are parameter-efficient and can be trained faster than subword models.
