new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 11

APT-36K: A Large-scale Benchmark for Animal Pose Estimation and Tracking

Animal pose estimation and tracking (APT) is a fundamental task for detecting and tracking animal keypoints from a sequence of video frames. Previous animal-related datasets focus either on animal tracking or single-frame animal pose estimation, and never on both aspects. The lack of APT datasets hinders the development and evaluation of video-based animal pose estimation and tracking methods, limiting real-world applications, e.g., understanding animal behavior in wildlife conservation. To fill this gap, we make the first step and propose APT-36K, i.e., the first large-scale benchmark for animal pose estimation and tracking. Specifically, APT-36K consists of 2,400 video clips collected and filtered from 30 animal species with 15 frames for each video, resulting in 36,000 frames in total. After manual annotation and careful double-check, high-quality keypoint and tracking annotations are provided for all the animal instances. Based on APT-36K, we benchmark several representative models on the following three tracks: (1) supervised animal pose estimation on a single frame under intra- and inter-domain transfer learning settings, (2) inter-species domain generalization test for unseen animals, and (3) animal pose estimation with animal tracking. Based on the experimental results, we gain some empirical insights and show that APT-36K provides a valuable animal pose estimation and tracking benchmark, offering new challenges and opportunities for future research. The code and dataset will be made publicly available at https://github.com/pandorgan/APT-36K.

  • 6 authors
·
Jun 12, 2022

ViTPose++: Vision Transformer for Generic Body Pose Estimation

In this paper, we show the surprisingly good properties of plain vision transformers for body pose estimation from various aspects, namely simplicity in model structure, scalability in model size, flexibility in training paradigm, and transferability of knowledge between models, through a simple baseline model dubbed ViTPose. Specifically, ViTPose employs the plain and non-hierarchical vision transformer as an encoder to encode features and a lightweight decoder to decode body keypoints in either a top-down or a bottom-up manner. It can be scaled up from about 20M to 1B parameters by taking advantage of the scalable model capacity and high parallelism of the vision transformer, setting a new Pareto front for throughput and performance. Besides, ViTPose is very flexible regarding the attention type, input resolution, and pre-training and fine-tuning strategy. Based on the flexibility, a novel ViTPose+ model is proposed to deal with heterogeneous body keypoint categories in different types of body pose estimation tasks via knowledge factorization, i.e., adopting task-agnostic and task-specific feed-forward networks in the transformer. We also empirically demonstrate that the knowledge of large ViTPose models can be easily transferred to small ones via a simple knowledge token. Experimental results show that our ViTPose model outperforms representative methods on the challenging MS COCO Human Keypoint Detection benchmark at both top-down and bottom-up settings. Furthermore, our ViTPose+ model achieves state-of-the-art performance simultaneously on a series of body pose estimation tasks, including MS COCO, AI Challenger, OCHuman, MPII for human keypoint detection, COCO-Wholebody for whole-body keypoint detection, as well as AP-10K and APT-36K for animal keypoint detection, without sacrificing inference speed.

  • 4 authors
·
Dec 7, 2022