Probabilistic Super-Resolution for Urban Micrometeorology via a Schrödinger Bridge
Abstract
A neural network model based on the Schrödinger bridge problem is used for super-resolution of temperature data, offering better accuracy and uncertainty quantification at lower computational cost compared to denoising diffusion models.
This study employs a neural network that represents the solution to a Schrödinger bridge problem to perform super-resolution of 2-m temperature in an urban area. Schrödinger bridges generally describe transformations between two data distributions based on diffusion processes. We use a specific Schrödinger-bridge model (SM) that directly transforms low-resolution data into high-resolution data, unlike denoising diffusion probabilistic models (simply, diffusion models; DMs) that generate high-resolution data from Gaussian noise. Low-resolution and high-resolution data were obtained from separate numerical simulations with a physics-based model under common initial and boundary conditions. Compared with a DM, the SM attains comparable accuracy at one-fifth the computational cost, requiring 50 neural-network evaluations per datum for the DM and only 10 for the SM. Furthermore, high-resolution samples generated by the SM exhibit larger variance, implying superior uncertainty quantification relative to the DM. Owing to the reduced computational cost of the SM, our results suggest the feasibility of real-time ensemble micrometeorological prediction using SM-based super-resolution.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper