File size: 26,547 Bytes
61754a3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 |
{
"bomFormat": "CycloneDX",
"specVersion": "1.6",
"serialNumber": "urn:uuid:47a63261-3969-4c57-9e56-fb97f0d285a2",
"version": 1,
"metadata": {
"timestamp": "2025-06-05T09:41:28.741689+00:00",
"component": {
"type": "machine-learning-model",
"bom-ref": "openchat/openchat_3.5-7973a308-bdbf-59a9-9f73-be9d9f2b78c3",
"name": "openchat/openchat_3.5",
"externalReferences": [
{
"url": "https://huggingface.co/openchat/openchat_3.5",
"type": "documentation"
}
],
"modelCard": {
"modelParameters": {
"task": "text-generation",
"architectureFamily": "mistral",
"modelArchitecture": "MistralForCausalLM",
"datasets": [
{
"ref": "openchat/openchat_sharegpt4_dataset-79a9a029-636a-5348-a67b-03818aca7f78"
},
{
"ref": "imone/OpenOrca_FLAN-56466c9b-33bb-5f23-ab7c-388f28f07644"
},
{
"ref": "LDJnr/LessWrong-Amplify-Instruct-fd396583-6aa0-5026-9748-4409738f0812"
},
{
"ref": "LDJnr/Pure-Dove-e5138f01-f77d-5510-9285-df11d660b143"
},
{
"ref": "LDJnr/Verified-Camel-6c954918-6150-534c-952b-ea2cff17c0b2"
},
{
"ref": "tiedong/goat-38642401-79d7-541d-a92f-d3d7acdb8db8"
},
{
"ref": "glaiveai/glaive-code-assistant-4cf9eb44-c4b0-5c31-b48c-ce95c2926a6d"
},
{
"ref": "meta-math/MetaMathQA-c6cf810a-8b06-5552-a876-53681c5fe9a1"
},
{
"ref": "OpenAssistant/oasst_top1_2023-08-25-10cff0b1-2289-5b35-8ea8-59253cea318a"
},
{
"ref": "TIGER-Lab/MathInstruct-9d9c997d-f6c1-5029-96fd-6003c4f0ec06"
}
]
},
"properties": [
{
"name": "library_name",
"value": "transformers"
}
]
},
"authors": [
{
"name": "openchat"
}
],
"licenses": [
{
"license": {
"id": "Apache-2.0",
"url": "https://spdx.org/licenses/Apache-2.0.html"
}
}
],
"tags": [
"transformers",
"pytorch",
"mistral",
"text-generation",
"openchat",
"C-RLFT",
"conversational",
"dataset:openchat/openchat_sharegpt4_dataset",
"dataset:imone/OpenOrca_FLAN",
"dataset:LDJnr/LessWrong-Amplify-Instruct",
"dataset:LDJnr/Pure-Dove",
"dataset:LDJnr/Verified-Camel",
"dataset:tiedong/goat",
"dataset:glaiveai/glaive-code-assistant",
"dataset:meta-math/MetaMathQA",
"dataset:OpenAssistant/oasst_top1_2023-08-25",
"dataset:TIGER-Lab/MathInstruct",
"arxiv:2309.11235",
"arxiv:2303.08774",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
]
}
},
"components": [
{
"type": "data",
"bom-ref": "openchat/openchat_sharegpt4_dataset-79a9a029-636a-5348-a67b-03818aca7f78",
"name": "openchat/openchat_sharegpt4_dataset",
"data": [
{
"type": "dataset",
"bom-ref": "openchat/openchat_sharegpt4_dataset-79a9a029-636a-5348-a67b-03818aca7f78",
"name": "openchat/openchat_sharegpt4_dataset",
"contents": {
"url": "https://huggingface.co/datasets/openchat/openchat_sharegpt4_dataset",
"properties": [
{
"name": "task_categories",
"value": "conversational, text-generation"
},
{
"name": "language",
"value": "en"
},
{
"name": "size_categories",
"value": "1K<n<10K"
},
{
"name": "pretty_name",
"value": "OpenChat"
}
]
},
"governance": {
"owners": [
{
"organization": {
"name": "openchat",
"url": "https://huggingface.co/openchat"
}
}
]
},
"description": "This repository contains cleaned and filtered ShareGPT GPT-4 data used to train OpenChat. Details can be found in the OpenChat repository.\n"
}
]
},
{
"type": "data",
"bom-ref": "imone/OpenOrca_FLAN-56466c9b-33bb-5f23-ab7c-388f28f07644",
"name": "imone/OpenOrca_FLAN",
"data": [
{
"type": "dataset",
"bom-ref": "imone/OpenOrca_FLAN-56466c9b-33bb-5f23-ab7c-388f28f07644",
"name": "imone/OpenOrca_FLAN",
"contents": {
"url": "https://huggingface.co/datasets/imone/OpenOrca_FLAN",
"properties": [
{
"name": "license",
"value": "mit"
}
]
},
"governance": {
"owners": [
{
"organization": {
"name": "imone",
"url": "https://huggingface.co/imone"
}
}
]
},
"description": "This is the OpenOrca GPT4 subset with the original FLAN answers. Each even row (indexed starting from 0) contains the OpenOrca GPT4 answer, while each odd row contains the corresponding FLAN answer.\n"
}
]
},
{
"type": "data",
"bom-ref": "LDJnr/LessWrong-Amplify-Instruct-fd396583-6aa0-5026-9748-4409738f0812",
"name": "LDJnr/LessWrong-Amplify-Instruct",
"data": [
{
"type": "dataset",
"bom-ref": "LDJnr/LessWrong-Amplify-Instruct-fd396583-6aa0-5026-9748-4409738f0812",
"name": "LDJnr/LessWrong-Amplify-Instruct",
"contents": {
"url": "https://huggingface.co/datasets/LDJnr/LessWrong-Amplify-Instruct",
"properties": [
{
"name": "task_categories",
"value": "conversational, question-answering, text-generation"
},
{
"name": "language",
"value": "en"
},
{
"name": "size_categories",
"value": "n<1K"
},
{
"name": "pretty_name",
"value": "LessWrong-Amplify-Instruct"
},
{
"name": "license",
"value": "apache-2.0"
}
]
},
"governance": {
"owners": [
{
"organization": {
"name": "LDJnr",
"url": "https://huggingface.co/LDJnr"
}
}
]
},
"description": "\n\t\n\t\t\n\t\tThis is the Official LessWrong-Amplify-Instruct dataset. Over 500 multi-turn examples, and many more coming soon!\n\t\n\n\nThis leverages Amplify-Instruct method to extend thousands of scraped Less-Wrong posts into advanced in-depth multi-turn conversations.\n\nComprised of over 500 highly filtered multi-turn synthetic conversations.\n\nAverage context length per conversation is over 2,000 tokens. (will measure this more accurately soon)\n\nSynthetically created using a newly developed pipeline\u2026 See the full description on the dataset page: https://huggingface.co/datasets/LDJnr/LessWrong-Amplify-Instruct."
}
]
},
{
"type": "data",
"bom-ref": "LDJnr/Pure-Dove-e5138f01-f77d-5510-9285-df11d660b143",
"name": "LDJnr/Pure-Dove",
"data": [
{
"type": "dataset",
"bom-ref": "LDJnr/Pure-Dove-e5138f01-f77d-5510-9285-df11d660b143",
"name": "LDJnr/Pure-Dove",
"contents": {
"url": "https://huggingface.co/datasets/LDJnr/Pure-Dove",
"properties": [
{
"name": "task_categories",
"value": "conversational, question-answering, text-generation"
},
{
"name": "language",
"value": "en"
},
{
"name": "size_categories",
"value": "1K<n<10K"
},
{
"name": "pretty_name",
"value": "Pure-Dove"
},
{
"name": "license",
"value": "apache-2.0"
}
]
},
"governance": {
"owners": [
{
"organization": {
"name": "LDJnr",
"url": "https://huggingface.co/LDJnr"
}
}
]
},
"description": "\n\t\n\t\t\n\t\tThis is the Official Pure-Dove dataset. Over 3K multi-turn examples, and many more coming soon!\n\t\n\nThis dataset aims to be the largest highest quality cluster of real human back and forth conversations with GPT-4.\nSteps have even been done to ensure that only the best GPT-4 conversations in comparisons are kept, there are many instances where two GPT-4 responses are rated as equal to eachother or as both bad. We exclude all such responses from Pure Dove and make sure to only include\u2026 See the full description on the dataset page: https://huggingface.co/datasets/LDJnr/Pure-Dove."
}
]
},
{
"type": "data",
"bom-ref": "LDJnr/Verified-Camel-6c954918-6150-534c-952b-ea2cff17c0b2",
"name": "LDJnr/Verified-Camel",
"data": [
{
"type": "dataset",
"bom-ref": "LDJnr/Verified-Camel-6c954918-6150-534c-952b-ea2cff17c0b2",
"name": "LDJnr/Verified-Camel",
"contents": {
"url": "https://huggingface.co/datasets/LDJnr/Verified-Camel",
"properties": [
{
"name": "task_categories",
"value": "conversational, question-answering, text-generation"
},
{
"name": "language",
"value": "en"
},
{
"name": "size_categories",
"value": "n<1K"
},
{
"name": "pretty_name",
"value": "Verified-Camel"
},
{
"name": "license",
"value": "apache-2.0"
}
]
},
"governance": {
"owners": [
{
"organization": {
"name": "LDJnr",
"url": "https://huggingface.co/LDJnr"
}
}
]
},
"description": "\n\t\n\t\t\n\t\tThis is the Official Verified Camel dataset. Just over 100 verified examples, and many more coming soon!\n\t\n\n\nComprised of over 100 highly filtered and curated examples from specific portions of CamelAI stem datasets. \n\nThese examples are verified to be true by experts in the specific related field, with atleast a bachelors degree in the subject.\n\nRoughly 30-40% of the originally curated data from CamelAI was found to have atleast minor errors and/or incoherent questions(as determined\u2026 See the full description on the dataset page: https://huggingface.co/datasets/LDJnr/Verified-Camel."
}
]
},
{
"type": "data",
"bom-ref": "tiedong/goat-38642401-79d7-541d-a92f-d3d7acdb8db8",
"name": "tiedong/goat",
"data": [
{
"type": "dataset",
"bom-ref": "tiedong/goat-38642401-79d7-541d-a92f-d3d7acdb8db8",
"name": "tiedong/goat",
"contents": {
"url": "https://huggingface.co/datasets/tiedong/goat",
"properties": [
{
"name": "task_categories",
"value": "question-answering"
},
{
"name": "language",
"value": "en"
},
{
"name": "size_categories",
"value": "1M<n<10M"
},
{
"name": "license",
"value": "apache-2.0"
}
]
},
"governance": {
"owners": [
{
"organization": {
"name": "tiedong",
"url": "https://huggingface.co/tiedong"
}
}
]
},
"description": "\n\t\n\t\t\n\t\tDataset Card for Dataset Name\n\t\n\n\n\t\n\t\t\n\t\tDataset Summary\n\t\n\nThe dataset.json file contains ~1.7 million synthetic data for arithmetic tasks, generated by dataset.ipynb.\n\n\t\n\t\t\n\t\tSupported Tasks and Leaderboards\n\t\n\n[More Information Needed]\n\n\t\n\t\t\n\t\tLanguages\n\t\n\n[More Information Needed]\n\n\t\n\t\t\n\t\tDataset Structure\n\t\n\n\n\t\n\t\t\n\t\tData Instances\n\t\n\n[More Information Needed]\n\n\t\n\t\t\n\t\tData Fields\n\t\n\n[More Information Needed]\n\n\t\n\t\t\n\t\tData Splits\n\t\n\n[More Information Needed]\n\n\t\n\t\t\n\t\tDataset Creation\u2026 See the full description on the dataset page: https://huggingface.co/datasets/tiedong/goat."
}
]
},
{
"type": "data",
"bom-ref": "glaiveai/glaive-code-assistant-4cf9eb44-c4b0-5c31-b48c-ce95c2926a6d",
"name": "glaiveai/glaive-code-assistant",
"data": [
{
"type": "dataset",
"bom-ref": "glaiveai/glaive-code-assistant-4cf9eb44-c4b0-5c31-b48c-ce95c2926a6d",
"name": "glaiveai/glaive-code-assistant",
"contents": {
"url": "https://huggingface.co/datasets/glaiveai/glaive-code-assistant",
"properties": [
{
"name": "size_categories",
"value": "100K<n<1M"
},
{
"name": "license",
"value": "apache-2.0"
}
]
},
"governance": {
"owners": [
{
"organization": {
"name": "glaiveai",
"url": "https://huggingface.co/glaiveai"
}
}
]
},
"description": "\n\t\n\t\t\n\t\tGlaive-code-assistant\n\t\n\nGlaive-code-assistant is a dataset of ~140k code problems and solutions generated using Glaive\u2019s synthetic data generation platform.\nThe data is intended to be used to make models act as code assistants, and so the data is structured in a QA format where the questions are worded similar to how real users will ask code related questions.\nThe data has ~60% python samples.\nTo report any problems or suggestions in the data, join the Glaive discord\n"
}
]
},
{
"type": "data",
"bom-ref": "meta-math/MetaMathQA-c6cf810a-8b06-5552-a876-53681c5fe9a1",
"name": "meta-math/MetaMathQA",
"data": [
{
"type": "dataset",
"bom-ref": "meta-math/MetaMathQA-c6cf810a-8b06-5552-a876-53681c5fe9a1",
"name": "meta-math/MetaMathQA",
"contents": {
"url": "https://huggingface.co/datasets/meta-math/MetaMathQA",
"properties": [
{
"name": "license",
"value": "mit"
}
]
},
"governance": {
"owners": [
{
"organization": {
"name": "meta-math",
"url": "https://huggingface.co/meta-math"
}
}
]
},
"description": "View the project page:\nhttps://meta-math.github.io/\nsee our paper at https://arxiv.org/abs/2309.12284\n\n\t\n\t\t\n\t\tNote\n\t\n\nAll MetaMathQA data are augmented from the training sets of GSM8K and MATH. \nNone of the augmented data is from the testing set.\nYou can check the original_question in meta-math/MetaMathQA, each item is from the GSM8K or MATH train set.\n\n\t\n\t\t\n\t\tModel Details\n\t\n\nMetaMath-Mistral-7B is fully fine-tuned on the MetaMathQA datasets and based on the powerful Mistral-7B model. It is\u2026 See the full description on the dataset page: https://huggingface.co/datasets/meta-math/MetaMathQA."
}
]
},
{
"type": "data",
"bom-ref": "OpenAssistant/oasst_top1_2023-08-25-10cff0b1-2289-5b35-8ea8-59253cea318a",
"name": "OpenAssistant/oasst_top1_2023-08-25",
"data": [
{
"type": "dataset",
"bom-ref": "OpenAssistant/oasst_top1_2023-08-25-10cff0b1-2289-5b35-8ea8-59253cea318a",
"name": "OpenAssistant/oasst_top1_2023-08-25",
"contents": {
"url": "https://huggingface.co/datasets/OpenAssistant/oasst_top1_2023-08-25",
"properties": [
{
"name": "task_categories",
"value": "conversational"
},
{
"name": "size_categories",
"value": "10K<n<100K"
},
{
"name": "license",
"value": "apache-2.0"
}
]
},
"governance": {
"owners": [
{
"organization": {
"name": "OpenAssistant",
"url": "https://huggingface.co/OpenAssistant"
}
}
]
},
"description": "\n\t\n\t\t\n\t\tOpenAssistant TOP-1 Conversation Threads\n\t\n\n\nGuanacco style export of the best conversation threads from the open-assistant.io database\nexported August 25, 2023\njsonl files with chatml formatted conversations\ntrain: 12,947 samples / valid: 680 samples\n\n"
}
]
},
{
"type": "data",
"bom-ref": "TIGER-Lab/MathInstruct-9d9c997d-f6c1-5029-96fd-6003c4f0ec06",
"name": "TIGER-Lab/MathInstruct",
"data": [
{
"type": "dataset",
"bom-ref": "TIGER-Lab/MathInstruct-9d9c997d-f6c1-5029-96fd-6003c4f0ec06",
"name": "TIGER-Lab/MathInstruct",
"contents": {
"url": "https://huggingface.co/datasets/TIGER-Lab/MathInstruct",
"properties": [
{
"name": "task_categories",
"value": "text-generation"
},
{
"name": "language",
"value": "en"
},
{
"name": "size_categories",
"value": "100K<n<1M"
},
{
"name": "pretty_name",
"value": "MathInstruct"
},
{
"name": "license",
"value": "mit"
}
]
},
"governance": {
"owners": [
{
"organization": {
"name": "TIGER-Lab",
"url": "https://huggingface.co/TIGER-Lab"
}
}
]
},
"description": "\n\t\n\t\t\n\t\t\ud83e\udda3 MAmmoTH: Building Math Generalist Models through Hybrid Instruction Tuning\n\t\n\nMathInstruct is a meticulously curated instruction tuning dataset that is lightweight yet generalizable. MathInstruct is compiled from 13 math rationale datasets, six of which are newly curated by this work. It uniquely focuses on the hybrid use of chain-of-thought (CoT) and program-of-thought (PoT) rationales, and ensures extensive coverage of diverse mathematical fields. \nProject Page:\u2026 See the full description on the dataset page: https://huggingface.co/datasets/TIGER-Lab/MathInstruct."
}
]
}
]
} |