omkar334 commited on
Commit
7a576f3
·
verified ·
1 Parent(s): 87ffb30

Upload coreplant_mendeley.ipynb with huggingface_hub

Browse files
Files changed (1) hide show
  1. coreplant_mendeley.ipynb +45 -19
coreplant_mendeley.ipynb CHANGED
@@ -1025,8 +1025,8 @@
1025
  },
1026
  {
1027
  "cell_type": "code",
1028
- "execution_count": 18,
1029
- "id": "3ba39fd7-eb71-41bf-b61c-689dfcea94c4",
1030
  "metadata": {},
1031
  "outputs": [
1032
  {
@@ -1040,27 +1040,53 @@
1040
  "name": "stdout",
1041
  "output_type": "stream",
1042
  "text": [
1043
- "Validation Accuracy: 0.6914\n",
1044
- "Validation Precision: 0.7020\n",
1045
- "Validation Recall: 0.6241\n",
1046
- "Validation F1 Score: 0.6460\n",
1047
- "Number of samples validated on: 256\n"
1048
  ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1049
  }
1050
  ],
1051
  "source": [
1052
- "torch.save(student_model.state_dict(), 'models/coreplant_mendeley.pth')\n",
1053
- "validate_model(student_model, val_loader_labeled, 11)"
1054
- ]
1055
- },
1056
- {
1057
- "cell_type": "code",
1058
- "execution_count": 15,
1059
- "id": "2f37d07b-66d9-49ca-a921-21120f901300",
1060
- "metadata": {},
1061
- "outputs": [],
1062
- "source": [
1063
- "import time"
 
 
 
 
 
 
1064
  ]
1065
  }
1066
  ],
 
1025
  },
1026
  {
1027
  "cell_type": "code",
1028
+ "execution_count": 6,
1029
+ "id": "c9069e56-2e0b-46d9-b17c-f8ccf2649aa9",
1030
  "metadata": {},
1031
  "outputs": [
1032
  {
 
1040
  "name": "stdout",
1041
  "output_type": "stream",
1042
  "text": [
1043
+ "Validation Accuracy: 0.8074\n",
1044
+ "Validation Precision: 0.7156\n",
1045
+ "Validation Recall: 0.7085\n",
1046
+ "Validation F1 Score: 0.6858\n"
 
1047
  ]
1048
+ },
1049
+ {
1050
+ "data": {
1051
+ "text/plain": [
1052
+ "<Figure size 720x576 with 0 Axes>"
1053
+ ]
1054
+ },
1055
+ "metadata": {},
1056
+ "output_type": "display_data"
1057
+ },
1058
+ {
1059
+ "data": {
1060
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAATgAAAEWCAYAAADy2YssAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAA2RUlEQVR4nO2dd5xU5fX/32cX6Z2lCoIEgiIKLCgICSKCBQmWxNhQrMSfFTWxf1U0GjXRKMYUFA1RREU0sUVBRBFUpFkAUQwWEKR3Qdjl/P64d3FcdmfvzDyz88zsefO6r5m588znnmfm7uGp54iqYhiGkYvkZdoAwzCMdGEOzjCMnMUcnGEYOYs5OMMwchZzcIZh5Czm4AzDyFnMwVUhRKSWiLwoIptEZGIKOmeKyGSXtmUCEfmviAzPtB1G+jAH5yEicoaIzBGRrSKyMvxD/JkD6V8BzYEmqnpKsiKqOl5Vj3Zgz48Qkf4ioiLyXKnzXcPzb0bUuVVEnqionKoep6rjkjTXyALMwXmGiFwF3A/cSeCM9gP+CpzgQL4t8JmqFjnQShdrgD4i0iTm3HDgM1cXkAC796sCqmqHJwfQANgKnBKnTA0CB7giPO4HaoTv9QeWA1cDq4GVwLnhe6OAncCu8BrnA7cCT8RotwMUqBa+PgdYCmwBvgDOjDk/I+ZzfYDZwKbwsU/Me28CtwMzQ53JQEE5dSux/+/AJeG5/PDczcCbMWUfAJYBm4G5wM/D88eWqueHMXbcEdqxHegQnrsgfP9vwLMx+ncDUwHJ9H1hR/KH/S/mF4cDNYHn45S5EegNdAO6AocBN8W834LAUe5L4MQeEpFGqnoLQavwaVWtq6pj4xkiInWA0cBxqlqPwIl9UEa5xsDLYdkmwH3Ay6VaYGcA5wLNgOrAb+NdG/gXcHb4/BhgIYEzj2U2wXfQGHgSmCgiNVX11VL17BrzmbOAEUA94KtSelcDh4jIOSLyc4LvbriG3s7ITszB+UUTYK3G70KeCdymqqtVdQ1By+ysmPd3he/vUtVXCFoxnZK0ZzfQRURqqepKVV1YRpnjgSWq+riqFqnqBGAx8IuYMo+p6mequh14hsAxlYuqvgM0FpFOBI7uX2WUeUJV14XXvJegZVtRPf+pqgvDz+wqpfcdMIzAQT8BXKaqyyvQMzzHHJxfrAMKRKRanDKt+HHr46vw3B6NUg7yO6Buooao6jbgVOAiYKWIvCwiB0Swp8SmfWNef5uEPY8DlwJHUkaLVkSuFpFPwhnhjQSt1oIKNJfFe1NV3yfokguBIzayHHNwfvEusAM4MU6ZFQSTBSXsx97dt6hsA2rHvG4R+6aqvqaqg4CWBK2yhyPYU2LTN0naVMLjwMXAK2Hrag9hF/Ja4NdAI1VtSDD+JyWml6MZt7spIpcQtARXANckbbnhDebgPEJVNxEMpj8kIieKSG0R2UdEjhORe8JiE4CbRKSpiBSE5StcElEOHwD9RGQ/EWkAXF/yhog0F5Gh4Vjc9wRd3eIyNF4BfhoubakmIqcCnYGXkrQJAFX9AjiCYMyxNPWAIoIZ12oicjNQP+b9VUC7RGZKReSnwO8JuqlnAdeISLfkrDd8wRycZ6jqfcBVBBMHawi6VZcC/w6L/B6YA3wEfAzMC88lc60pwNOh1lx+7JTyCAbeVwDrCZzNxWVorAOGhGXXEbR8hqjq2mRsKqU9Q1XLap2+BvyXYOnIVwSt3tjuZ8ki5nUiMq+i64RDAk8Ad6vqh6q6BLgBeFxEaqRSByOziE0SGYaRq1gLzjCMnMUcnGEY3iEinUTkg5hjs4iMFJHGIjJFRJaEj43i6lgX1TAMnxGRfIJZ+V7AJcB6Vb1LRK4jmEW/trzPWgvOMAzfOQr4n6p+RbAnuyRAwjjiL6ki3oJSb2jUuEBbtd7PmV7Nfcyv+4Lr/oNUXCRj+FzXr776krVr16YkmV+/rWrR9khldfuahQSz3yWMUdUx5RQ/jWB5FEBzVV0JoKorRaRZvOtkhYNr1Xo/nnplujO9ji0SXthvpIni3W7/7PPz/HVxPte1b6+eKWto0Q5qHHBapLI75j+4Q1UrvKiIVAeGErNGMxGsKWMYhhsEEIl2ROc4YJ6qrgpfrxKRlgDh4+p4HzYHZxiGOyQv2hGd0/mhewrwAkF8QMLH/8T7sDk4wzDc4bAFJyK1gUFAbITnu4BBIrIkfO+ueBpZMQZnGEY2IJCX70wtDLLQpNS5dQSzqpHIWgd3+wMTmTF7MY0a1OWph64E4O9PTGb6rEWICI0b1OXmkafQtEn9CpT25vV3FnH9vc9SvHs3Z53QhyvPSS39gM96Ptt2+e3jmTxzAQWN6jFjwg0p2ZUO+1x/d67r69q+ChES7X6mnYxYIyLHisinIvJ5uFgvYY4/qgcP3Hrej84NO7kfTz44kvGjr+Bnhx7AI09NTVi3uHg3v7vnGSY+cDHvPXMTkybPZfHSlcmY6L2ez7YBnDakF0/fv9f+fi/sc11XcFvfdNhXMRG7p4lNMqREpTu4cFXyQwSzI52B00Wkc6I6hV3aU79erR+dq1u75p7n27/fmdT3OHfhl7RvU0C71gVU36caJw8q5JW3PkpcKAv0fLYNoE/3DjSqX7vighmwz3VdwW1902FfJNxPMqREJlpwhwGfq+pSVd0JPIWbjFEA/PVfrzHk3D/w6psf8JszByX8+ZVrNrFv8x+2t7Vq3oiVazYlbY/Pej7blg58/u5ckzH7qnoLjiCUdWzsruX8OLw1ACIyIswNOmfD+uihxS4++xheeux6ju3fjYkvvZuwcWXtzU3l9/BZz2fb0oHP351rMmOfWAuOsneY7PVrqOoYVe2pqj0bNa4o1P7eHHNEN954Z0HCn2vVrCHfrNqw5/WKVRtoUdAgYZ1s0PPZtnTg83fnmozYJwSzqFGOSiITDm450CbmdWuSzynwI75e8UNLb/qsRbRr3TRhjcLObfnf12v46pu17NxVxHNT5nFcv0OStslnPZ9tSwc+f3euyYx9/rXgMrFMZDbQUUT2JwiBchpB3syEuOmPE5j78VI2bt7GkHPu5MIzBvHOnMV89c1a8vKEFk0bct0lJyVsXLVq+dxzza/55eUPUVysnDm0Nwf+pGXCOtmg57NtABfe9Bgz533O+o1bOXjI/3HtiMEMG3q4F/a5riu4rW867IuEZ3uBMxIPTkQGE2RkzwceVdU74pU/6JBCtc32uYnPG9Bd43Nd+/bqydy5c1ISzKu/r9boGW2Zy45pN82Nstk+VTKy0DdMSPxKJq5tGEYa8WmmhSzeyWAYhm+43arlAnNwhmG4w7OtWubgDMNwQyUv4o2COTjDMNxhLbjEqbFPHu2b1XGm1+jQS51pAWyY/RenelWJHTuLnerVqen2lnY58+nzDK8zrAVnGEZuItaCMwwjRynZquUR5uAMw3CEteAMw8hlbAzOMIycxVpw7kk1ln2Hts149M4fwp+3bdWEP4x5madefp9H7zyP/Vo25uuV6zn3+rFs2hItc3csPuc98Nm2EoqLdzP4wntpUdCAcfeM8MY+33MoVHpOBvCuBZepnAyPishqEUk8YFsZpBrL/vOvVtPvzLvod+Zd9D/rbrZ/v4uXp33IlcMHMX32p/T85W1Mn/0pVw5P/AbxOe+Bz7bFMnbiW3Ro2zxlHZ9zRmTLbxEX8S9cUqbak/8EjnUl5jKW/RGHduLL5WtY9u0GjjviECa8NAuACS/NYnD/xONp+Zz3wGfbSlixeiNT313EGUN6p6STDvt8zqGQqZwMkpcX6YikJdJQRJ4VkcUi8omIHC4ijUVkiogsCR8bxdPIiINT1enA+kxcuyJOProHk16bC0CzxvVYtW4zAKvWbaZpo3oJ6/mc98Bn20q4dfTz3HjxUMTBIlmf8yhkw29REQKISKQjIg8Ar6rqAUBX4BPgOmCqqnYEpoavy8WvEcEYYnMyrF27plKuuU+1fI7rdzD/njrfmabPeQ98tg3g9ZkLKWhUl0M6tam4cAR8zqPg+28RCUngqEhKpD7QDxgLoKo7VXUjQYKqcWGxccCJ8XS8nWRQ1THAGIDCHj0rJSrnwD6d+XDxMtas3wLA6vVbaN6kPqvWbaZ5k/qs2bAlYU2f8x74bBvA7I+XMnnmAt54bxHf7yxiy7YdXHbb4zx481le2OcS33+LaCTUOisQkTkxr8eEf/MltAfWAI+JSFdgLnAF0FxVVwKo6koRaRbvIt624DLBr47pyaTJc/e8fnX6x5w+pBcApw/pxX+TGMPwOe+Bz7YBXH/RL5jz3Cjem3gLD916Nn0LOybt3NJhn0t8/y2ikkAXdW1JUqnwGFNKqhpQCPxNVbsD26igO1oW3rbgEsFFLPtaNfah/2EHcOWdE/ac+/O4KTz2h/MYNvRwlq/awDnXjU3YNp/zHvhsWzrwOWdErvwWeREnECKwHFiuqrPC188SOLhVItIybL21BFbHE8lUToYJQH+gAFgF3KKq5XqPwh499e13Zzu7fkGvy5xpgUUTSYVtO4qc6lk0keRwkZMhv8n+WveY2yKV3Tzh7ApzMojI28AFqvqpiNwKlIQUWqeqd4nIdUBjVb2mPI1M5WQ4PRPXNQwjfUhiY3BRuAwYLyLVgaXAuQTDas+IyPnA18Ap8QRyootqGIYfuHRwqvoBUFYr76ioGubgDMNwhuMWXMqYgzMMwxnm4AzDyE0EJztOXJIVDk5xO5tVlWY9fc6mDlCzutsIsDuLdjvVq17N3VJRn21zQRomGVImKxycYRjZgTk4wzByF7/8mzk4wzAcIdaCMwwjhzEHZxhGTiKIy72oTsh6B/fNqg1cetvjrFm3hbw8YdgJfRhxav+UNH2PjV9V8gq4ts31veKyrtlwH0fCrwZc5YdLEpE2IjItDEG8UESuSEWvWn4eoy4/iRlP3cgrD1/FY5Pe5tMv/Ill77uez3kFXNoGbu8V13X1/T6OhDiP6JsymWhPFgFXq+qBQG/gEhHpnKxY84IGeyK+1q1Tk47tmvNtCqGZfY+NX5XyCri0DdzeK67r6vt9HJUq7+BUdaWqzgufbyGIs76vC+2vV65jwWffUHhQ26Q1fI+NX5XyCqSTVO+VdNbVx/s4Kr45uIyOwYlIO6A7MKuM90YAIwDatNmvQq1t333P+deP5faRJ1OvTq2kbfI9Nn5VyiuQLlzcK+mqq6/3cVR826qVsSkPEakLTAJGqurm0u+r6piScMZNmjaNq7WrqJjzbhjLL4/pyfH9u6Zkl++x8atSXoF04OpeSUddfb6PoxC19ZbTXVQAEdmHwLmNV9XnUtFSVa6840k6tm3ORacPSNk232PjV6W8Aq5xea+4rqvv93FUfHNwld5FlaB2Y4FPVPW+VPXe/2gpE1+dzYE/acWAs+8G4IaLhjCwz0FJ6fkeG78q5RVwaRu4vVdc19X3+zgqvi30rfScDCLyM+Bt4GOgJLzCDar6Snmf6d6jp741831nNvgWhSGd+B5NxLV9rvWqSjQRFzkZajTvqK3OuD9S2S/vH1JhTgYXVHoLTlVn4N1yQMMwXOBbCy7rdzIYhuEHIpDn2SyqOTjDMBxhAS8Nw8hhPPNv2eHg8qg6EwPL1n3nVK9NE3dbndLBLscD765DoLtkt+MJEB9x2YITkS+BLUAxUKSqPUWkMfA00A74Evi1qm4oT6NqeA3DMNKPBC24KEcCHKmq3WJmXK8DpqpqR2Bq+LpczMEZhuEEIZhkiHKkwAnAuPD5OODEeIXNwRmG4YwEHFyBiMyJOUaUIafAZBGZG/N+c1VdCUHgDqBZPHuyYgzOMIwsILHu59oIC337quoKEWkGTBGRxYmaZC04wzCcILjdi6qqK8LH1cDzwGHAKhFpSXCtlsDqeBo50YLzOSS4C72b73uGt2Z9QuOGdXn+H1cDsGnLd/zuzvGsWLWeVs0b86cbzqR+vcRnTH2rayw7vt/FSZeMZueuIoqKdjPkyK787oLB3thXleoaDXfr4ESkDpCnqlvC50cDtwEvAMOBu8LH/8TTyUTI8poi8r6IfBiGLB+Vip7vIcFd6A0d1JO//f78H50b+/Q0enXrwEuPXkuvbh0Y+8ybGbEtnXo1qlfj2dGXMnXctbw+7hqmzVrM3AVfemFfVaprIjicRW0OzBCRD4H3gZdV9VUCxzZIRJYAg8LX5ZKJLur3wABV7Qp0A44Vkd7JivkeEtyFXs+D29OgVOts2rsLGTqwBwBDB/bgjXcWZMS2dOqJCHVq1wCCWGm7iopTWkjq0r6qVNfIiLtZVFVdqqpdw+MgVb0jPL9OVY9S1Y7h4/p4OpkIWa6qujV8uU94JL0C0veQ4OkKHb1+41aaNqkPQNMm9Vm/aVvGbUtHXYuLdzNw+D0cPORGjji0E4UHtfPCvqpU16i4HoNzQaYCXuaLyAcEA4RTVHWvkOVR8T0kuM9hvLOhrvn5ebw+7hrmPT+K+Yu+YvHSFUlrubSvKtU1EdKw0DclMuLgVLVYVbsBrYHDRKRL6TIiMqJkjcyatWvK1fI9JHi6Qkc3bliXNeuCSO9r1m2mcYM6GbctnWGyG9SrTZ/CDkx7L+GVAntwaV9VqmsiWAsuBlXdCLwJHFvGe3tyMjQtKD8ng+8hwdMVOrp/78688PpcAF54fS5HHp545Fff67p2w1Y2bQn25m7/fifTZ39Gh7Zx13VWmn1Vqa6J4FsLLhMhy5sCu1R1o4jUAgYCdyer53tIcBd61/xhPHM+WsrGzdsYOOwOLh42iPNPPZLf3jme5197nxbNGnHvjcMyYls69Vav28QVvx9P8e7d7N6tDB3QnUF992rsZ8S+qlTXyIh/AS8zEbL8EII9ZPkELchnVPW2eJ/p0aOnzpw1pzLMyzhVLZrIjp3FTvV8jibic11dhCyv2/oAPfiyMZHKvnfdETkbsvwjglyohmHkGJ414HJjJ4NhGH7gWxfVHJxhGG6o5AmEKJiDMwzDCSULfX3CHJxhGM4wB2fExfWs56Llm53qdW5d36mez7OerqkKdbW0gYZh5CY2BmcYRq4ilhfVMIxcxjP/Zg7OMAx35Hnm4czBGYbhBBGbZEgLPucV8FHvzgcnMXPOYho1qMMTo0cCMPap13lhyhwa1g/CLv1m2NH06dGp0m3LJj2fbUuHXhQ882+ZC5cUBr2cLyIvpaLje14BH/UGDyjkvpvP2ev8qb/oy7g/X8a4P1+WlHPzsa7p0vPZtnToRSVr4sGJyIMiMrq8w8G1rwA+SVXE97wCPup1O2j/pDJwVYZt2aLns23p0IuKb/Hg4rXg5gBz4xxJIyKtgeOBR1LRAf/zCviuF8ukV97l7JGjufPBSWzeuj3jtvms57Nt6dCLghAuFYnwr7IodwxOVcfFvhaROqqaeGaTsrkfuAaoV14BERkBjABos99+5Qr5nlfAd70STjq2F+ecMgARePjJ1/nLY69ww2W/zKhtPuv5bFs69KKSdWNwInK4iCwi7E6KSFcR+WuyFxSRIcBqVY3bCowastz3vAK+65XQuGE98vPzyMvLY+jRh7JoybKM2+azns+2pUMvEhItZWDUmdbS4/Qi0lhEpojIkvCxUUUaUSYZ7geOAdYBqOqHQL9IFpZNX2CoiHwJPAUMEJEnkhXzPa+A73olrF3/w57Vt95bSPu2zTNum896PtuWDr0oCME6uChHREqP018HTFXVjsDU8HVcIi0TUdVlpWY+ko69rKrXA9cDiEh/4LeqmnhCgRDf8wr4qHfLvU8xf+EXbNy8jRMvuIvzTxvI/AVLWfLFSkSEFs0acs1FJ2bEtmzR89m2dOhFxVU3OGac/g7gqvD0CUD/8Pk4goRV18bVqSgng4g8C9wH/AXoDVwO9FTV05Iz/Ufa/Qkc3JB45apSTgbX+B5NxPADFzkZGrXrrEfdEq0zNum8HnFzMoR+5w8E4/S/VdUhIrJRVRvGlNmgqnG7qVG6qBcBlwD7At8A3cLXKaOqb1bk3AzDyA6iLhEJW3kFJXmPw2PEDzrRxumjUGEXVVXXAmemeiHDMHKf/Oh91LVxWnAl4/SDgZpA/XCcfpWItFTVlSLSElhd0UWizKK2F5EXRWSNiKwWkf+ISPuotTAMo+rgYieDql6vqq1VtR1wGvBGOE7/AjA8LDYc+E9F9kTpoj4JPAO0BFoBE4EJET5nGEYVIphFjXYkyV3AIBFZAgwKX8clyiyqqOrjMa+fEJFLkzTQMIxcJQ37TFX1TYLZUlR1HXBUIp8v18GJSOPw6TQRuY5gzZoCpwIvJ2GrkQFcz3pO+7TCYY+EOLJTM6d6rineHX+VQSLk+7bMPw14Fg4ubgtuLoFDKzH5NzHvKXB7uowyDCM7yZqQ5aq6f2UaYhhGdiP410qNtJNBRLoAnQmmbAFQ1X+lyyjDMLITv9xbBAcnIrcQbI/oDLwCHAfMAMzBGYaxBxH/cjJEWSbyK4KZi29V9VygK1AjrVYZhpGV+BbwMkoXdbuq7haRIhGpT7B62KuFvr7HsvdZL1Wttes2Mfrv/2bDpm3kiTDoyEKGHNuLd2Yt4unn3mL5ijXcPeoCOrRvlRH70ql3+e3jmTxzAQWN6jFjwg0p2eXatnToRcG3SYYoLbg5ItIQeJhgZnUe8H4qFxWRL0XkYxH5QERS2kXveyx7n/VcaOXl5TH8jKN58J6LuevW8/jv67NZ9s0a9mvdlGuuOIXOndomZZsr+9Kpd9qQXjx9/8VJfz6dtmUuJ4NfLbgKHZyqXqyqG1X17wSrh4eHXdVUOVJVu8WLKBAF32PZ+6znQqtxo3r8ZP8gDE+tWjVo3aqAdes303rfpuzbqiApu1zal069Pt070Ki+m9wWvtc1CiJCfl60o7KIl3SmsPQBNAaqhc+9wPdY9j7rubZt9ZqNfPHVt/z0J62T1ojF5+/ONblSV9+yasUbg7s3znsKDEjhugpMFhEF/qGqY0oXsJwM6ddzqbV9x07ueWAi5w07htq13cxB+fzduSZX6pqxPKTlEG+h75FpvG5fVV0hIs2AKSKyWFWnl7r+GGAMBAEvyxPyPZa9z3qutIqKivnjA8/Qr08Xeh96YFK2pNO+dOm5JBfqKmTnJINzVHVF+LgaeB44LFkt32PZ+6znQktVeeiRF9m3VVOGDj48KTvSaV869VySK3VNczSRhIm0k8ElIlIHyFPVLeHzo4HbktXzPZa9z3outBZ/toy3ZnxE2zbNuOqGfwBw5q8HsGtXMY/8679s3vIdd/xpAvu3bc7N1yaWesPn7w7gwpseY+a8z1m/cSsHD/k/rh0xmGFDk3Pyvtc1CiL+bdWqMCeD8wsGwTKfD19WA55U1TvifcZyMviDRRNJHt/++GNxkZOhRccuetafJ0Uq+6dfHBA3J4MromzVEoKQ5e1V9TYR2Q9ooapJrYVT1aUEuyEMw8gxPBuCizQG91fgcOD08PUW4KG0WWQYRlaShryoKRNlDK6XqhaKyHwAVd0gItXTbJdhGFlI1iwTiWGXiOQTrF1DRJoCu9NqlWEYWYlvXdQoDm40waRAMxG5gyC6yE1ptcowjKyjZKuWT0TJizpeROYShEwS4ERV/STtlqWRnUVuG6DVq/nWMP8Bl7OA4H7Wc8m3W53qdWxR16meb3+wvuPb1xVlFnU/4Dvgxdhzqvp1Og0zDCO7KJlk8IkoXdSX+SH5TE1gf+BT4KA02mUYRhbiyr+JSE1gOkFw3WrAs6p6S5jt72mgHfAl8GtV3VCeTpRwSQer6iHhY0eCbVUzUq+CYRg5RcRtWhG7sd8DA1S1K9ANOFZEegPXAVNDXzQ1fF0uCQ8eqeo84NBEP2cYRu4jEf9VhAaUDNDuEx4KnACMC8+PA06MpxNlDO6qmJd5QCGwpkILDcOoUgjgcr4tXJ42F+gAPKSqs0SkuaquBFDVlWFEonKJMgZXL+Z5EcGYXLQNZ5WEy9jz36zawKW3Pc6adVvIyxOGndCHEaf298Y+13q+5RW4/YGJzJi9mEYN6vLUQ1cC8PcnJjN91iJEhMYN6nLzyFNo2qR+RuxLl1Y26EUhgXBJBaXSFYwpHRdSVYuBbmHKhOfD9KUJEdffhh60rqqOCo87VHW8qu5I9EKldBuKyLMislhEPhGRpOPsuI49Xy0/j1GXn8SMp27klYev4rFJb/PpF/7Exs/1vALHH9WDB24970fnhp3cjycfHMn40Vfws0MP4JGnpmbMvnRoZYNeFIJZ1MhjcGtVtWfMsVfQ2xJUdSPwJnAssEpEWgKEj3GjP8QLWV4t9KDpCE/+APCqqh5AsPE+6XV1rmPPNy9owCGd2gBQt05NOrZrzrcphHr2Pda+b3kFCru0p369Wj86V7f2nnzjbP9+Z9Izdb7ls8gmvUhETDgT5fcTkaZhyw0RqQUMBBYDLwDDw2LDgf/E04nXgiuJFvKBiLwgImeJyMklR8Umlmt4faAfMBZAVXeGHjop0hl7/uuV61jw2TcUHpR8ZqhcibUfhXTa9td/vcaQc//Aq29+wG/OHJRx+3z/XTN1nzjcbN8SmCYiHwGzgSmq+hJwFzBIRJYQJMG6K55IlDG4xsA6ghwMJevhFHguipVl0J5gkuIxEelKMIh4hapuiy2UqZwMJWz77nvOv34st488mXp1alX8gXLIlVj7UUinbReffQwXn30M/5w4jYkvvcuIJJycr/ksskEvCgLkO5pkUNWPgO5lnF9HsKsqEvHMaRbOoC4APg4fF4aPCxKy9sdUI+j2/k1VuwPbKGMti6qOKemfNy1oWq5YOmLP7yoq5rwbxvLLY3pyfP/UQtflQqz9qFSGbccc0Y033knu9vMxn0W26EVDyIt4VBbxHFw+UDc86sU8LzmSZTmwXFVnha+fJYVxPtex51WVK+94ko5tm3PR6akkDkuPfVUpr0AJX69Yu+f59FmLaNe6/P/wKss+33/XTNwnQdIZvxI/x+uirlTVpHMllIeqfisiy0Skk6p+StDcXJSsnuvY8+9/tJSJr87mwJ+0YsDZdwNww0VDGNgnuZ1pvsfa9y2vwE1/nMDcj5eycfM2hpxzJxeeMYh35izmq2/WkpcntGjakOsuOSlj9qVDKxv0IlHJCWWiUG5OBhGZH3Yh3V9UpBvwCFAdWAqcG28/meucDBZNJHlcR9fwPZpIVcFFToa2Bx6iNz72YsUFgd8c3i7jORkiD+Qliqp+AKS9coZhVB4lXVSfiJf4eX1lGmIYRvbjW/y8Ss+LahhGbiJkZ04GwzCMipGE9qJWCubgDMNwhl/urYo6OJ9nPV2zY2exU706Nd3eMq5nPRct3+xUr3Pr5KKWVEWyNWS5YRhGJPxyb+bgDMNwhpBns6iGYeQiNotqGEZOY7OoacD3UM++6xUX72bwhffSoqAB4+4Z4ZVtqerd+eAkZs5ZTKMGdXhi9EgAxj71Oi9MmUPD+nUA+M2wo+nTo1Ol25ZtelHwy71loEUpIp1E5IOYY7OIjExWz/dQz77rAYyd+BYd2jZPSSMdtrnQGzygkPtuPmev86f+oi/j/nwZ4/58WVLOzce6plMvEuE6uChHZVHpDk5VP1XVbqraDegBfAc8n6ye76GefddbsXojU99dxBlDeietkS7bXOh1O2h/6tdzE5LdtW3ZpBcFAfJFIh2VRabHBI8C/qeqXyUr4HuoZ9/1bh39PDdePBRxMPvle11jmfTKu5w9cjR3PjiJzVu3Z9w23/WiIhGPyiLTDu40YEIqAr6HevZZ7/WZCyloVHdPkp1U8bmusZx0bC+e+dtv+ed9l9KkUT3+8tgrGbfNd72o+BbwMmMOTkSqA0OBieW8P0JE5ojInDVry88z7XuoZ5/1Zn+8lMkzF9D7lFFccuu/mDlvCZfd9rgXtqVDr4TGDeuRn59HXl4eQ48+lEVLlmXcNt/1ohAsE8mekOXp5jhgnqquKuvNqDkZfA/17LPe9Rf9gjnPjeK9ibfw0K1n07ewIw/efJYXtqVDr4S163/YzvXWewtpn8QEi+91zVRoe99acJlcJnI6KXZPwf9Qz77rucTHut5y71PMX/gFGzdv48QL7uL80wYyf8FSlnyxEhGhRbOGXHPRiRmxLZv0oiGIZwtFyg1ZntaLitQGlgHtVbXCkU/XIcurEtt2FDnVc73Z3jW22T45XIQs/+lB3XT0M1MilT2uS7NKCVmekS6qqn6nqk2iODfDMLKEiN3TiJnt24jINBH5REQWisgV4fnGIjJFRJaEj43i6WR6FtUwjBzC4RhcEXC1qh4I9AYuEZHOBDmUp6pqR2AqZeRUjsUcnGEYzpCI/ypCVVeq6rzw+RbgE2Bf4ARgXFhsHHBiPB2/B1QMw8gagoCXkYsXiEjswPoYVR1Tpq5IO6A7MAtorqorIXCCItIs3kXMwRmG4YwEIvqujTLJICJ1gUnASFXdnOg+VuuiGobhDFddVAAR2YfAuY1X1efC06tEpGX4fktgdTyNrGjB7cZtNvqqlJPB92UdrnG9rMPlspP2zeo40wLYx+F97GKxWIJd1PhaQVNtLPCJqt4X89YLwHDgrvDxP/F0qtbdbxhGGnG60LcvcBbwsYh8EJ67gcCxPSMi5wNfA6fEEzEHZxiGGxxuw1LVGZQfeOSoqDrm4AzDcIZfG7XMwRmG4YiSgJc+kfUO7ptVG7j0tsdZs24LeXnCsBP6MOLU/ilp+h4b36Wez7b5qJeuHA87vt/FSZeMZueuIoqKdjPkyK787oLBCWnEcvnt45k8cwEFjeoxY8INSeskjF/+LTMOTkSuBC4gmLz5GDhXVXcko1UtP49Rl5/EIZ3asHXbDgad+0eOOKwTnfZPLnJCSSz75/9yKa2aN2TA8D9yXL+DOaB97un5bJuveoMHFPLLwb25/YEfhzE89Rd9OePEnydlF0CN6tV4dvSl1Kldg11FxZzw/x5gQO/O9OjSLim904b04vxT+nHJqOTj+yWDb9FEMpF0Zl/gcqCnqnYB8gki+yZF84IGeyLS1q1Tk47tmvNtCqGZfY+N71LPZ9t81UtXjgcRoU7tGgDsKipmV1FxSgP2fbp3oFF993ZWhG/x4DK1IKwaUEtEqgG1gRUuRL9euY4Fn31D4UFtk9bwPTa+Sz2fbcsGvVhSzfEAQQtz4PB7OHjIjRxxaCcKD2rnxLbKpMrnZFDVb4A/EaxhWQlsUtXJpcvFhixft6b8kOUlbPvue86/fiy3jzyZenVqpWLfXud8io3vUs9n27JBrwQXOR4A8vPzeH3cNcx7fhTzF33F4qVO/t+vXDzzcJnoojYiiAiwP9AKqCMiw0qXiw1Z3qRp+SHLIWjSn3fDWH55TE+O7981Jft8j43vUs9n27JBrwQXOR5iaVCvNn0KOzDtvcUp21aZiAR7UaMclUUmuqgDgS9UdY2q7gKeA/okK6aqXHnHk3Rs25yLTh+QsnG+x8Z3qeezbdmgV4KLHA9rN2xl05bvANj+/U6mz/6MDm3jBsrwEs8acBmZRf0a6B2GLd9OsCo56Xjk73+0lImvzubAn7RiwNl3A3DDRUMY2OegpPR8j43vUs9n23zVS1eOh9XrNnHF78dTvHs3u3crQwd0Z1DfLgnrlHDhTY8xc97nrN+4lYOH/B/XjhjMsKGHJ60XGb8mUTOWk2EUcCpB1M75wAWq+n155bv36KlvzXzf2fWr0mZ7IzWqymb7nx9+KPNSzMnQ+ZBCHf/iW5HKFrarXyk5GTKyDk5VbwFuycS1DcNIH55tZMj+nQyGYfiBYA7OMIwcxredDObgDMNwhrXgDMPIWTzzb9nh4ATIdxULGbfhz8FmZVOheLfbWXyX9wlAp1b1nGmd9PAsZ1oAL/ymtzMtJ99aZS9yi0BWODjDMLIDG4MzDCMncZl0xhXm4AzDcIc5OMMwchXrohqGkbPYMpE04DL+fFXL8eCzbenIK+CjfXkC9518MOu27eT2Vz/lzJ6t6dWuEbsVNm3fxQNv/o/13+1KWNf1bxsFV/5NRB4FhgCrw8jfiEhj4GmgHfAl8GtV3VCeBmQooq+IXCEiC0RkoYiMTFXvtCG9ePr+ix1Y9kOOhxlP3cgrD1/FY5Pe5tMvViatV5IHYOIDF/PeMzcxafJcFi/1Q89n28Dt7+qzfb/o0oJlG36IAvzchyu5/NmPGTnpY2Z/vZFTe7ROWNN1XSPjLl7SP4FjS527Dpiqqh2BqeHruGQi4GUX4ELgMKArMEREOqai6TL+fFXK8eCzbeA+r4CP9jWpU52ebRsxZfHqPee27yre87xmtbwgNVOCuK5rFFwGvFTV6cD6UqdPAMaFz8cBJ1akk4kW3IHAe6r6naoWAW8BJ2XAjgrJ9RwPPtuWDny074I+bfnne19Ter3zsEPbMPbM7hzRsYDxcxKPEJypuibQgCsoSUkQHiMiyDdX1ZUA4WOFEUEz4eAWAP1EpEkY9HIw0KZ0odicDGvXVpyTwTVVIceDz7alA9/s67lfQzZt38X/1m7b670nZi/j/PHzeWvJWo7v0iJh7YzVNbqHW1uSkiA8xqTDnEwknfkEuBuYArwKfEgQ+LJ0uT05GQoK4udkcE1VyfHgs23pwDf7Oreox2FtG/HwGd353cAOHNKqPlcN+MmPyrz1+Vr67N84Ye3M1FUi/0uSVSLSEiB8XF1B+cxMMqjqWFUtVNV+BP3sJZmwoyyqUo4Hn21LB77Z96/3l3He+Plc+OR8/vj653y0YjP3vfE/WtavuafMYW0bsXxj4mkIM1XXNOdFfQEYHj4fDvynog9kKrN9M1VdLSL7AScDKQWLdxl/virlePDZNnCfV8B3+0oY3qsN+zashaqyeutO/jp9acIarusaBZcBL0VkAtCfYKxuOUEE8LuAZ0TkfILcLqdUqJOhnAxvA02AXcBVqjo1XvnCHj317XdnO7u+6wgWFk0keXyPJuLSPp+jifTt1ZO5KeZkOKRbD31x6juRyrYrqJnTORl+nonrGoaRXnyaVIIc2clgGIYfeObfzMEZhuGI1CYQ0oI5OMMwHOKXhzMHZxiGEyzgZZK4zsngeqbNJa5nFX2fpdywbadTvYJ6NZzquayvy1lPgB07iysuFBFXt4l1UQ3DyFks4KVhGLmLX/7NHJxhGO7wzL+ZgzMMww0p7jNNC+bgDMNwhnjm4XLCwfmcV8C1nu/5J1zat/Tr1Vxx++N7Xi9buY4rzjmWc3/VL2nNqpLPYsf3uzjpktHs3FVEUdFuhhzZld9dMDgl+6Lgl3tLY7gkEXlURFaLyIKYc41FZIqILAkfG8XTiILveQV8zQMA7vNPuLav/X7NePHhq3nx4av599+vpFaN6hz9sy5J61WlfBY1qlfj2dGXMnXctbw+7hqmzVrM3AVfJq0XlTSHS0qYdIbB+CcOkkZUhO95BXzMA1CC6/wT4D6PQgnvzFvCfq2asG+LxIM/llCV8lmICHVqB2sCdxUVs6uouBIcS9oDXiZM2hycq6QRFeF7XgEf8wCUhYv8E+nk5WnzGTKge0oaVS2fRXHxbgYOv4eDh9zIEYd2ovCgdinpVURJPLiq0oIri8hJI2JzMqyJk5PB97wCvuUBKAtX+SfSxc5dRbzxzkKOOyK18PFVLZ9Ffn4er4+7hnnPj2L+oq9YvHRFaoIRqOoOLjKxORmaxsnJ4HteAd/yAJTGZf6JdDH9/cV07tiagsb1UtKpqvksGtSrTZ/CDkx7b7ETvXhUmS5qOSScNKIifM8r4FsegFhc559IFy+9kXr3FKpWPou1G7ayact3AGz/fifTZ39Gh7YVZtlLjYitt8pswVX2MpGSpBF3ETFpREX4nlfA5zwArvNPuLYPYPuOncyc+xm3X/mrpDVKqEr5LFav28QVvx9P8e7d7N6tDB3QnUF9k5+BjkJMzlNvSFtOhtikEcAqgqQR/waeAfYjTBqhqqUnIvaiR4+eOnPWnLTY6RsWTSQ1XEcT8RmX0USO/Fkv5s9LLSdDYY+e+tY770cqW79mfnbnZFDV08t566h0XdMwjMxi0UQMw8hZfAu16O0sqmEYWYhEPKJIiRwrIp+KyOciktSmAHNwhmE4w9UyERHJBx4CjgM6A6eLSOdE7TEHZxiGExzvZDgM+FxVl6rqTuApgp1QCZEVY3Dz5s1dW2sf+SpC0QJgrcNLu9Tz2Tbf9Xy2LVf0Ut6jN2/e3Ndq7SMFEYvXFJHYpRFjVHVMzOt9gWUxr5cDvRK1KSscnKqWv5UhBhGZ43Lq2aWez7b5ruezbVVRrzxUtXRwjVQoq52X8Jon66IahuEjy4E2Ma9bAwlvpjUHZxiGj8wGOorI/iJSHTiNYCdUQmRFFzUBxlRcJGN6Ptvmu57PtlVFvbSjqkUicinwGpAPPKqqCxPVSdtWLcMwjExjXVTDMHIWc3CGYeQsOeHgXGzpKKW3V8KcFLTaiMg0EflERBaKyBUp6tUUkfdF5MNQb5QDG/NFZL6IvORA60sR+VhEPii1zilZvYYi8qyILA6/w6RjL4lIp9CukmOziIxMQe/K8DdYICITRKRmslqh3hWh1sJk7KqsRE9Zhapm9UEwAPk/oD1QHfgQ6JyiZj+gEFjgwL6WQGH4vB7wWSr2EawPqhs+3weYBfRO0cargCeBlxzU90ugwOHvOw64IHxeHWjo8L75Fmib5Of3Bb4AaoWvnwHOScGeLsACoDbB5N/rQMcENfa6b4F7gOvC59cBd7v6bbLhyIUWnJMtHbFo2QlzktVaqarzwudbgE8I/jiS1VNV3Rq+3Cc8kp4pEpHWwPHAI8lqpAsRqU/wRzsWQFV3qupGR/JHAf9T1Sg7ZMqjGlBLRKoROKZUkh4cCLynqt+pahHwFnBSIgLl3LfOEz1lE7ng4Mra0pG0A0knItIO6E7Q6kpFJ19EPiAI+T5FVVPRux+4Btidik0xKDBZROaKyIgUtdoDa4DHwi70IyJSJ3UTgWBd1YRkP6yq3wB/IgjcuhLYpKqTU7BnAdBPRJqISG1gMD9e6JoskRM95SK54OCcbOlINyJSF5gEjFTVzaloqWqxqnYjWN19mIgkFYtaRIYAq1V1bir2lKKvqhYSRIG4RESST0MftJAKgb+pandgGw5y6YYLR4cCE1PQaETQOtofaAXUEZFhyeqp6ifA3cAU4FWCoZaiZPWMgFxwcE62dKQTEdmHwLmNV9XnXOmG3bU32TvBdlT6AkNF5EuCrv0AEXkiRZtWhI+rgecJhhCSZTmwPKaF+iyBw0uV44B5qroqBY2BwBequkZVdwHPAX1SMUpVx6pqoar2I+hqLklFL8R5oqdsIhccnJMtHelCRIRgDOkTVb3PgV5TEWkYPq9F8IeWVD44Vb1eVVurajuC7+0NVU26FSIidUSkXslz4GiCrldSqOq3wDIR6RSeOgpYlKxeDKeTQvc05Gugt4jUDn/jowjGV5NGRJqFj/sBJzuwEX5I9ASOEj1lFZme5XBxEIxXfEYwm3qjA70JBOMquwhaEeenoPUzgi7zR8AH4TE4Bb1DgPmh3gLgZkffYX9SnEUlGDP7MDwWOvotugFzwvr+G2iUol5tYB3QwIFtowj+c1kAPA7USFHvbQIH/iFwVBKf3+u+BZoAUwlag1OBxi7ul2w5bKuWYRg5Sy50UQ3DMMrEHJxhGDmLOTjDMHIWc3CGYeQs5uAMw8hZzMHlACJSHEbHWCAiE8OtPslq/VNEfhU+fyReLkoR6S8iCS9uDSOO7JV9qbzzpcpsjfd+GeVvFZHfJmqjkRuYg8sNtqtqN1XtAuwELop9U4IkugmjqheoaryFtf1JcfW+YaQTc3C5x9tAh7B1NU1EngQ+Djfo/1FEZovIRyLyGwh2WojIX0RkkYi8TMxmbBF5U0R6hs+PFZF5YRy6qWHggIuAK8PW48/DXRaTwmvMFpG+4WebiMjkcMP8Pyh7//CPEJF/hxv2F5betC8i94a2TBWRpuG5n4jIq+Fn3haRA5x8m0ZWk2tJZ6o0Ydie4wg2a0OwD7SLqn4ROolNqnqoiNQAZorIZILoJp2Ag4HmBCvpHy2l2xR4GOgXajVW1fUi8ndgq6r+KSz3JPBnVZ0Rbjd6jSAM0C3ADFW9TUSOB6JEGTkvvEYtYLaITFLVdUAdgn2kV4vIzaH2pQSJVS5S1SUi0gv4KzAgia/RyCHMweUGtcLwSRC04MYSdB3fV9UvwvNHA4eUjK8BDYCOBPHWJqhqMbBCRN4oQ783ML1ES1XLi5U3EOgcbM0EoH64N7Ufwd5KVPVlEdkQoU6Xi0hJPLQ2oa3rCMI6PR2efwJ4LozU0geYGHPtGhGuYeQ45uByg+0ahE/aQ/iHvi32FHCZqr5WqtxgKg4vJRHKQDDkcbiqbi/Dlsh7AkWkP4GzPFxVvxORN4HywoFreN2Npb8Dw7AxuKrDa8D/C0M3ISI/DSN+TAdOC8foWgJHlvHZd4EjRGT/8LONw/NbCMKwlzCZoLtIWK5b+HQ6cGZ47jigorwADYANoXM7gKAFWUIeUNIKPYOg67sZ+EJETgmvISLStYJrGFUAc3BVh0cIxtfmSZCU5B8ELfjnCSJNfAz8jSBU9o9Q1TUE42bPiciH/NBFfBE4qWSSAbgc6BlOYizih9ncUQTRaucRdJW/rsDWV4FqIvIRcDvwXsx724CDRGQuwRjbbeH5M4HzQ/sWkmLYeiM3sGgihmHkLNaCMwwjZzEHZxhGzmIOzjCMnMUcnGEYOYs5OMMwchZzcIZh5Czm4AzDyFn+P8Vz7PbfISIzAAAAAElFTkSuQmCC\n",
1061
+ "text/plain": [
1062
+ "<Figure size 432x288 with 2 Axes>"
1063
+ ]
1064
+ },
1065
+ "metadata": {
1066
+ "needs_background": "light"
1067
+ },
1068
+ "output_type": "display_data"
1069
  }
1070
  ],
1071
  "source": [
1072
+ "from train import validate\n",
1073
+ "from dataset import get_mean_teacher_dataloaders\n",
1074
+ "from coreplant import Classifier\n",
1075
+ "import torch\n",
1076
+ "\n",
1077
+ "NUM_CLASSES = 11\n",
1078
+ "device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
1079
+ "\n",
1080
+ "model = Classifier(512, 256, NUM_CLASSES).to(device)\n",
1081
+ "state_dict = torch.load('models/coreplant_mendeley.pth')\n",
1082
+ "\n",
1083
+ "# Load the state dict into the model\n",
1084
+ "model.load_state_dict(state_dict)\n",
1085
+ "model.eval()\n",
1086
+ "\n",
1087
+ "\n",
1088
+ "train_loader, test_loader, unlabeled_loader, unlabeled_student_loader = get_mean_teacher_dataloaders('data3/mendeley', 0.2, 16)\n",
1089
+ "validate(model, test_loader, 11)"
1090
  ]
1091
  }
1092
  ],