katerynaCh commited on
Commit
df916cc
·
verified ·
1 Parent(s): 266fb95

Upload folder using huggingface_hub

Browse files
example.py CHANGED
@@ -14,7 +14,7 @@ AutoImageProcessor.register("nemotron_parse", NemotronParseImageProcessor)
14
 
15
 
16
  # Load model and processor
17
- model_path = "nvidia/NVIDIA-Nemotron-Parse-v1.1" #Nano-12B-v2-VL-BF16" # Or use a local path
18
  device = "cuda:0"
19
 
20
  model = AutoModel.from_pretrained(
 
14
 
15
 
16
  # Load model and processor
17
+ model_path = "." #nvidia/NVIDIA-Nemotron-Parse-v1.1" #Nano-12B-v2-VL-BF16" # Or use a local path
18
  device = "cuda:0"
19
 
20
  model = AutoModel.from_pretrained(
hf_nemotron_parse_processor.py CHANGED
@@ -252,7 +252,7 @@ class NemotronParseImageProcessor(BaseImageProcessor, ImageProcessingMixin):
252
  class NemotronParseProcessor(ProcessorMixin):
253
 
254
  attributes = ["image_processor", "tokenizer"]
255
- image_processor_class = "NemotronParseImageProcessor"
256
  tokenizer_class = ("PreTrainedTokenizer", "PreTrainedTokenizerFast")
257
 
258
  def __init__(self, image_processor=None, tokenizer=None, **kwargs):
@@ -350,8 +350,24 @@ class NemotronParseProcessor(ProcessorMixin):
350
 
351
  This method is compatible with AutoProcessor.from_pretrained().
352
  """
353
- # Use the parent class's from_pretrained method which handles auto-loading
354
- return super().from_pretrained(pretrained_model_name_or_path, **kwargs)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
355
 
356
  def save_pretrained(self, save_directory, **kwargs):
357
  """
 
252
  class NemotronParseProcessor(ProcessorMixin):
253
 
254
  attributes = ["image_processor", "tokenizer"]
255
+ image_processor_class = "AutoImageProcessor"
256
  tokenizer_class = ("PreTrainedTokenizer", "PreTrainedTokenizerFast")
257
 
258
  def __init__(self, image_processor=None, tokenizer=None, **kwargs):
 
350
 
351
  This method is compatible with AutoProcessor.from_pretrained().
352
  """
353
+ # Explicitly load subcomponents via Auto* to ensure remote auto_map is honored.
354
+ from transformers import AutoImageProcessor, AutoTokenizer
355
+ trust_remote_code = kwargs.get("trust_remote_code", None)
356
+ revision = kwargs.get("revision", None)
357
+ token = kwargs.get("token", None)
358
+ image_processor = AutoImageProcessor.from_pretrained(
359
+ pretrained_model_name_or_path,
360
+ trust_remote_code=trust_remote_code,
361
+ revision=revision,
362
+ token=token,
363
+ )
364
+ tokenizer = AutoTokenizer.from_pretrained(
365
+ pretrained_model_name_or_path,
366
+ trust_remote_code=trust_remote_code,
367
+ revision=revision,
368
+ token=token,
369
+ )
370
+ return cls(image_processor=image_processor, tokenizer=tokenizer)
371
 
372
  def save_pretrained(self, save_directory, **kwargs):
373
  """
preprocessor_config.json CHANGED
@@ -3,10 +3,9 @@
3
  "image_processor_type": "NemotronParseImageProcessor",
4
  "processor_class": "NemotronParseProcessor",
5
  "auto_map": {
6
- "AutoProcessor": "hf_nemotron_parse_processor.NemotronParseProcessor",
7
- "AutoImageProcessor": "hf_nemotron_parse_processor.NemotronParseImageProcessor"
8
  },
9
-
10
  "do_normalize": false,
11
  "do_rescale": true,
12
  "rescale_factor": 0.00392156862745098,
 
3
  "image_processor_type": "NemotronParseImageProcessor",
4
  "processor_class": "NemotronParseProcessor",
5
  "auto_map": {
6
+ "AutoImageProcessor": "hf_nemotron_parse_processor.NemotronParseImageProcessor",
7
+ "AutoProcessor": "hf_nemotron_parse_processor.NemotronParseProcessor"
8
  },
 
9
  "do_normalize": false,
10
  "do_rescale": true,
11
  "rescale_factor": 0.00392156862745098,