NVIDIA-Nemotron-Parse-v1.1 / hf_nemotron_parse_modeling.py
katerynaCh's picture
Upload folder using huggingface_hub
3c63eb4 verified
raw
history blame
28.2 kB
import math
import torch
import torch.nn as nn
from torch.nn import CrossEntropyLoss
from transformers import PreTrainedModel, GenerationMixin
from transformers.models.vision_encoder_decoder.modeling_vision_encoder_decoder import VisionEncoderDecoderModel
from transformers.models.vision_encoder_decoder.configuration_vision_encoder_decoder import VisionEncoderDecoderConfig
from transformers.modeling_outputs import Seq2SeqLMOutput
from transformers.models.mbart.modeling_mbart import MBartPreTrainedModel, MBartConfig, MBartScaledWordEmbedding, MBartDecoderLayer, BaseModelOutputWithPastAndCrossAttentions
from transformers.models.donut.modeling_donut_swin import DonutSwinModelOutput
from einops import rearrange
from typing import Optional, List, Union, Tuple
import warnings
from transformers.modeling_outputs import BaseModelOutput
from transformers.models.encoder_decoder.modeling_encoder_decoder import shift_tokens_right
from .hf_nemotron_parse_config import NemotronParseConfig
from transformers import AutoModel
import time
from transformers.modeling_attn_mask_utils import (
_prepare_4d_attention_mask,
_prepare_4d_attention_mask_for_sdpa,
_prepare_4d_causal_attention_mask,
_prepare_4d_causal_attention_mask_for_sdpa,
)
class NemotronParseDecoder(MBartPreTrainedModel):
"""
Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`MBartDecoderLayer`]
Args:
config: MBartConfig
embed_tokens (nn.Embedding): output embedding
"""
def __init__(self, config: MBartConfig, embed_tokens: Optional[nn.Embedding] = None):
super().__init__(config)
self.dropout = config.dropout
self.layerdrop = config.decoder_layerdrop
self.padding_idx = config.pad_token_id
embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0
self.embed_tokens = MBartScaledWordEmbedding(
config.vocab_size, config.d_model, self.padding_idx, embed_scale=embed_scale
)
if embed_tokens is not None:
self.embed_tokens.weight = embed_tokens.weight
self.layers = nn.ModuleList([MBartDecoderLayer(config) for _ in range(config.decoder_layers)])
self.config = config
self.layernorm_embedding = nn.LayerNorm(config.d_model)
self.layer_norm = nn.LayerNorm(config.d_model)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
of the decoder.
encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*):
Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values
selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules in the decoder to avoid performing
cross-attention on hidden heads. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
elif input_ids is not None:
input = input_ids
input_shape = input.size()
input_ids = input_ids.view(-1, input_shape[-1])
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
input = inputs_embeds[:, :, -1]
else:
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
# past_key_values_length
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if self.config._attn_implementation == "flash_attention_2":
# 2d mask is passed through the layers
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
elif self.config._attn_implementation == "sdpa" and not output_attentions and cross_attn_head_mask is None:
# output_attentions=True & cross_attn_head_mask can not be supported when using SDPA, and we fall back on
# the manual implementation that requires a 4D causal mask in all cases.
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
attention_mask,
input_shape,
inputs_embeds,
past_key_values_length,
)
else:
# 4d mask is passed through the layers
attention_mask = _prepare_4d_causal_attention_mask(
attention_mask, input_shape, inputs_embeds, past_key_values_length
)
# expand encoder attention mask
if encoder_hidden_states is not None and encoder_attention_mask is not None:
if self.config._attn_implementation == "flash_attention_2":
encoder_attention_mask = encoder_attention_mask if 0 in encoder_attention_mask else None
elif self.config._attn_implementation == "sdpa" and cross_attn_head_mask is None and not output_attentions:
# output_attentions=True & cross_attn_head_mask can not be supported when using SDPA, and we fall back on
# the manual implementation that requires a 4D causal mask in all cases.
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
encoder_attention_mask = _prepare_4d_attention_mask_for_sdpa(
encoder_attention_mask,
inputs_embeds.dtype,
tgt_len=input_shape[-1],
)
else:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
encoder_attention_mask = _prepare_4d_attention_mask(
encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
)
hidden_states = inputs_embeds
hidden_states = self.layernorm_embedding(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing`. Setting `use_cache=False`..."
)
use_cache = False
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
next_decoder_cache = () if use_cache else None
# check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired
for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]):
if attn_mask is not None:
if attn_mask.size()[0] != len(self.layers):
raise ValueError(
f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for"
f" {attn_mask.size()[0]}."
)
for idx, decoder_layer in enumerate(self.layers):
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.training:
dropout_probability = torch.rand([])
if dropout_probability < self.layerdrop:
continue
past_key_value = past_key_values[idx] if past_key_values is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
attention_mask,
encoder_hidden_states,
encoder_attention_mask,
head_mask[idx] if head_mask is not None else None,
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None,
None,
output_attentions,
use_cache,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
cross_attn_layer_head_mask=(
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None
),
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[3 if output_attentions else 1],)
if output_attentions:
all_self_attns += (layer_outputs[1],)
if encoder_hidden_states is not None:
all_cross_attentions += (layer_outputs[2],)
hidden_states = self.layer_norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if not return_dict:
return tuple(
v
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
cross_attentions=all_cross_attentions,
)
class RadioWithNeck(nn.Module):
"""Vision encoder using RADIO model with custom neck."""
def __init__(self, config):
super().__init__()
self.config = config
self.model_encoder = AutoModel.from_config(config, trust_remote_code=True)
# Neck components
last_hidden_state = 1024
self.conv1 = nn.Conv1d(1280, last_hidden_state, 1)
self.layer_norm1 = nn.LayerNorm(last_hidden_state, eps=1e-06, elementwise_affine=True)
self.conv2 = nn.Conv2d(last_hidden_state, last_hidden_state, kernel_size=(1,4), stride=(1,4), padding=0, bias=False)
self.layer_norm2 = nn.LayerNorm(last_hidden_state, eps=1e-06, elementwise_affine=True)
self.sum_proj = nn.Linear(3840, last_hidden_state)
self.layer_norm3 = nn.LayerNorm(last_hidden_state, eps=1e-06, elementwise_affine=True)
def forward(self, pixel_values, output_attentions=False, output_hidden_states=False, return_dict=False, **kwargs):
radio_output = self.model_encoder(pixel_values)
summary, feature = radio_output
output = self.conv1(feature.permute(0,2,1)).permute(0,2,1)
output = self.layer_norm1(output)
patch_size = self.config.patch_size
output = rearrange(output, 'b (h w) d -> b d h w',
h=pixel_values.shape[-2] // patch_size,
w=pixel_values.shape[-1] // patch_size)
output = self.conv2(output)
output = rearrange(output, 'b d h w -> b (h w) d')
output = self.layer_norm2(output)
summary = self.layer_norm3(self.sum_proj(summary))
output = torch.cat((output, summary.unsqueeze(1)), dim=1)
return DonutSwinModelOutput(last_hidden_state=output)
class NemotronParsePreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models.
"""
config_class = NemotronParseConfig
base_model_prefix = "vision_encoder_decoder" # Use VisionEncoderDecoder prefix
main_input_name = "pixel_values"
supports_gradient_checkpointing = True
_no_split_modules = ["RadioWithNeck", "MBartDecoder"]
_skip_keys_device_placement = "past_key_values"
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=self.config.decoder.init_std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.decoder.init_std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
# Based on transformers.models.encoder_decoder.modeling_encoder_decoder
class NemotronParseForConditionalGeneration(NemotronParsePreTrainedModel, GenerationMixin):
"""
NemotronParse model for conditional generation tasks.
This model combines a RADIO-based vision encoder with an mBART-based text decoder.
"""
def __init__(self, config: NemotronParseConfig):
super().__init__(config)
self.encoder = RadioWithNeck(config.encoder)
self.encoder.main_input_name = 'pixel_values'
self.encoder = self.encoder.to(config.encoder.torch_dtype)
self.decoder = NemotronParseDecoder(config.decoder)
self.decoder = self.decoder.to(config.decoder.torch_dtype)
self.lm_head = nn.Linear(config.decoder.d_model, config.decoder.vocab_size, bias=False, dtype=config.decoder.torch_dtype)
# Extra heads
num_extra_heads = getattr(config, 'num_extra_heads', 0)
self.decoder.extra_heads = nn.ModuleList([
nn.Linear(config.decoder.d_model, config.decoder.d_model)
for _ in range(num_extra_heads)
])
self.decoder.extra_proj = nn.ModuleList([
nn.Linear(config.decoder.d_model, config.decoder.d_model)
for _ in range(num_extra_heads)
])
# Class token index for loss weighting
self.class_token_indx_start = getattr(config, 'class_token_start_idx', 50000)
self.post_init()
def get_encoder(self):
return self.encoder
def get_decoder(self):
return self.decoder
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def get_input_embeddings(self):
return self.decoder.get_input_embeddings()
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.BoolTensor] = None,
encoder_outputs: Optional[Tuple[torch.FloatTensor]] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
__subflavors__: Optional[str] = None,
__keys__: Optional[List[str]] = None,
return_sample_losses: Optional[torch.FloatTensor] = None,
**kwargs,
) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]:
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
kwargs_encoder = {argument: value for argument, value in kwargs.items() if not argument.startswith("decoder_")}
kwargs_decoder = {
argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_")
}
if encoder_outputs is None:
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
encoder_outputs = self.encoder(
pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
**kwargs_encoder,
)
elif isinstance(encoder_outputs, tuple):
encoder_outputs = BaseModelOutput(*encoder_outputs)
encoder_hidden_states = encoder_outputs[0]
encoder_attention_mask = None
if (labels is not None) and (decoder_input_ids is None and decoder_inputs_embeds is None):
decoder_input_ids = shift_tokens_right(
labels, self.config.pad_token_id, self.config.decoder_start_token_id
)
output_hidden_states = True
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
inputs_embeds=decoder_inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
use_cache=use_cache,
past_key_values=past_key_values,
return_dict=return_dict,
**kwargs_decoder,
)
loss = None
if labels is not None:
main_logits = self.lm_head(decoder_outputs.last_hidden_state)
logits = [main_logits]
decoder_inputs_embeds = decoder_outputs.inputs_embeds
for iii, head in enumerate(self.decoder.extra_heads):
decoder_input_embeds_shift = self.decoder.extra_proj[iii](torch.cat((decoder_inputs_embeds[:,1:,:], torch.zeros_like(decoder_inputs_embeds[:,0,:].unsqueeze(1))), axis=1))
hidden = head(decoder_outputs['hidden_states'][-1] + decoder_input_embeds_shift)
logits.append(self.lm_head(hidden)) # Use main lm_head, NOT decoder.lm_head
logits = torch.stack(logits, dim=-2)
loss_fct = CrossEntropyLoss(reduction="none")
losses_per_head = []
tokens_per_head = []
for head_num in range(len(self.decoder.extra_heads)+1):
logits_head = logits[:,:,head_num,:]
labels_head = torch.cat(
(labels[:, head_num:], torch.full_like(labels[:, :head_num], -100)),
1
)
loss_full = loss_fct(logits_head.permute(0, 2, 1), labels_head)
loss_full[labels_head >= self.class_token_indx_start] *= 10
losses_per_head.append(loss_full.sum(1))
tokens_per_head.append((labels_head != -100).sum(1))
losses_per_sample = torch.stack(losses_per_head, dim=1).sum(1)
tokens_per_sample = torch.stack(tokens_per_head, dim=1).sum(1)
loss = losses_per_sample.sum() / (tokens_per_sample.sum() + 1e-6)
if return_sample_losses is not None:
return_sample_losses.copy_(losses_per_sample.detach() / (tokens_per_sample + 1e-6))
if not return_dict:
if loss is not None:
return (loss,) + decoder_outputs + encoder_outputs
else:
return decoder_outputs + encoder_outputs
output_logits = self.lm_head(decoder_outputs.last_hidden_state)
return Seq2SeqLMOutput(
loss=loss,
logits=output_logits,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor):
return shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id)
def resize_token_embeddings(self, new_num_tokens: Optional[int] = None, pad_to_multiple_of: Optional[int] = None):
"""Resize token embeddings and update lm_head accordingly."""
# Resize decoder embeddings
new_embeddings = self.decoder.resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
# Update lm_head to match new vocab size
if new_embeddings is not None:
old_vocab_size, hidden_size = self.lm_head.weight.shape
new_vocab_size = new_embeddings.num_embeddings
if old_vocab_size != new_vocab_size:
print(f"Resizing lm_head from {old_vocab_size} to {new_vocab_size} tokens")
new_lm_head = nn.Linear(hidden_size, new_vocab_size, bias=False, device=self.lm_head.weight.device, dtype=self.lm_head.weight.dtype)
# Copy old weights to new lm_head
num_tokens_to_copy = min(old_vocab_size, new_vocab_size)
new_lm_head.weight.data[:num_tokens_to_copy] = self.lm_head.weight.data[:num_tokens_to_copy]
# Update reference
self.lm_head = new_lm_head
# DO NOT update decoder.lm_head - keep them separate
return new_embeddings
def _reorder_cache(self, past_key_values, beam_idx):
# apply decoder cache reordering here
return self.decoder._reorder_cache(past_key_values, beam_idx)
# Copied from transformers.models.encoder_decoder.modeling_encoder_decoder.shift_tokens_right
def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int):
"""
Shift input ids one token to the right.
"""
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
shifted_input_ids[:, 1:] = input_ids[:, :-1].clone()
if decoder_start_token_id is None:
raise ValueError("Make sure to set the decoder_start_token_id attribute of the model's configuration.")
shifted_input_ids[:, 0] = decoder_start_token_id
if pad_token_id is None:
raise ValueError("Make sure to set the pad_token_id attribute of the model's configuration.")
# replace possible -100 values in labels by `pad_token_id`
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
return shifted_input_ids