|
|
import math |
|
|
import torch |
|
|
import torch.nn as nn |
|
|
from torch.nn import CrossEntropyLoss |
|
|
from transformers import PreTrainedModel, GenerationMixin |
|
|
from transformers.models.vision_encoder_decoder.modeling_vision_encoder_decoder import VisionEncoderDecoderModel |
|
|
from transformers.models.vision_encoder_decoder.configuration_vision_encoder_decoder import VisionEncoderDecoderConfig |
|
|
from transformers.modeling_outputs import Seq2SeqLMOutput |
|
|
from transformers.models.mbart.modeling_mbart import MBartPreTrainedModel, MBartConfig, MBartScaledWordEmbedding, MBartDecoderLayer, BaseModelOutputWithPastAndCrossAttentions |
|
|
from transformers.models.donut.modeling_donut_swin import DonutSwinModelOutput |
|
|
from einops import rearrange |
|
|
from typing import Optional, List, Union, Tuple |
|
|
import warnings |
|
|
from transformers.modeling_outputs import BaseModelOutput |
|
|
from transformers.models.encoder_decoder.modeling_encoder_decoder import shift_tokens_right |
|
|
from .hf_nemotron_parse_config import NemotronParseConfig |
|
|
from transformers import AutoModel |
|
|
import time |
|
|
from transformers.modeling_attn_mask_utils import ( |
|
|
_prepare_4d_attention_mask, |
|
|
_prepare_4d_attention_mask_for_sdpa, |
|
|
_prepare_4d_causal_attention_mask, |
|
|
_prepare_4d_causal_attention_mask_for_sdpa, |
|
|
) |
|
|
|
|
|
|
|
|
class NemotronParseDecoder(MBartPreTrainedModel): |
|
|
""" |
|
|
Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`MBartDecoderLayer`] |
|
|
|
|
|
Args: |
|
|
config: MBartConfig |
|
|
embed_tokens (nn.Embedding): output embedding |
|
|
""" |
|
|
|
|
|
def __init__(self, config: MBartConfig, embed_tokens: Optional[nn.Embedding] = None): |
|
|
super().__init__(config) |
|
|
self.dropout = config.dropout |
|
|
self.layerdrop = config.decoder_layerdrop |
|
|
self.padding_idx = config.pad_token_id |
|
|
embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0 |
|
|
|
|
|
self.embed_tokens = MBartScaledWordEmbedding( |
|
|
config.vocab_size, config.d_model, self.padding_idx, embed_scale=embed_scale |
|
|
) |
|
|
|
|
|
if embed_tokens is not None: |
|
|
self.embed_tokens.weight = embed_tokens.weight |
|
|
|
|
|
self.layers = nn.ModuleList([MBartDecoderLayer(config) for _ in range(config.decoder_layers)]) |
|
|
self.config = config |
|
|
|
|
|
self.layernorm_embedding = nn.LayerNorm(config.d_model) |
|
|
self.layer_norm = nn.LayerNorm(config.d_model) |
|
|
|
|
|
self.gradient_checkpointing = False |
|
|
|
|
|
self.post_init() |
|
|
|
|
|
def get_input_embeddings(self): |
|
|
return self.embed_tokens |
|
|
|
|
|
def set_input_embeddings(self, value): |
|
|
self.embed_tokens = value |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
input_ids: Optional[torch.LongTensor] = None, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
|
encoder_attention_mask: Optional[torch.LongTensor] = None, |
|
|
head_mask: Optional[torch.Tensor] = None, |
|
|
cross_attn_head_mask: Optional[torch.Tensor] = None, |
|
|
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, |
|
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
|
use_cache: Optional[bool] = None, |
|
|
output_attentions: Optional[bool] = None, |
|
|
output_hidden_states: Optional[bool] = None, |
|
|
return_dict: Optional[bool] = None, |
|
|
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]: |
|
|
r""" |
|
|
Args: |
|
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): |
|
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you |
|
|
provide it. |
|
|
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
|
|
[What are input IDs?](../glossary#input-ids) |
|
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
|
|
|
|
- 1 for tokens that are **not masked**, |
|
|
- 0 for tokens that are **masked**. |
|
|
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
|
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): |
|
|
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention |
|
|
of the decoder. |
|
|
encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*): |
|
|
Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values |
|
|
selected in `[0, 1]`: |
|
|
|
|
|
- 1 for tokens that are **not masked**, |
|
|
- 0 for tokens that are **masked**. |
|
|
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
|
head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): |
|
|
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: |
|
|
|
|
|
- 1 indicates the head is **not masked**, |
|
|
- 0 indicates the head is **masked**. |
|
|
|
|
|
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): |
|
|
Mask to nullify selected heads of the cross-attention modules in the decoder to avoid performing |
|
|
cross-attention on hidden heads. Mask values selected in `[0, 1]`: |
|
|
|
|
|
- 1 indicates the head is **not masked**, |
|
|
- 0 indicates the head is **masked**. |
|
|
|
|
|
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): |
|
|
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of |
|
|
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of |
|
|
shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. |
|
|
|
|
|
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the |
|
|
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. |
|
|
|
|
|
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those |
|
|
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of |
|
|
all `decoder_input_ids` of shape `(batch_size, sequence_length)`. |
|
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): |
|
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. |
|
|
This is useful if you want more control over how to convert `input_ids` indices into associated vectors |
|
|
than the model's internal embedding lookup matrix. |
|
|
output_attentions (`bool`, *optional*): |
|
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under |
|
|
returned tensors for more detail. |
|
|
output_hidden_states (`bool`, *optional*): |
|
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors |
|
|
for more detail. |
|
|
return_dict (`bool`, *optional*): |
|
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
|
""" |
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
|
output_hidden_states = ( |
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
|
) |
|
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
|
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") |
|
|
elif input_ids is not None: |
|
|
input = input_ids |
|
|
input_shape = input.size() |
|
|
input_ids = input_ids.view(-1, input_shape[-1]) |
|
|
elif inputs_embeds is not None: |
|
|
input_shape = inputs_embeds.size()[:-1] |
|
|
input = inputs_embeds[:, :, -1] |
|
|
else: |
|
|
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") |
|
|
|
|
|
|
|
|
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 |
|
|
|
|
|
if inputs_embeds is None: |
|
|
inputs_embeds = self.embed_tokens(input_ids) |
|
|
|
|
|
if self.config._attn_implementation == "flash_attention_2": |
|
|
|
|
|
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None |
|
|
elif self.config._attn_implementation == "sdpa" and not output_attentions and cross_attn_head_mask is None: |
|
|
|
|
|
|
|
|
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa( |
|
|
attention_mask, |
|
|
input_shape, |
|
|
inputs_embeds, |
|
|
past_key_values_length, |
|
|
) |
|
|
else: |
|
|
|
|
|
attention_mask = _prepare_4d_causal_attention_mask( |
|
|
attention_mask, input_shape, inputs_embeds, past_key_values_length |
|
|
) |
|
|
|
|
|
|
|
|
if encoder_hidden_states is not None and encoder_attention_mask is not None: |
|
|
if self.config._attn_implementation == "flash_attention_2": |
|
|
encoder_attention_mask = encoder_attention_mask if 0 in encoder_attention_mask else None |
|
|
elif self.config._attn_implementation == "sdpa" and cross_attn_head_mask is None and not output_attentions: |
|
|
|
|
|
|
|
|
|
|
|
encoder_attention_mask = _prepare_4d_attention_mask_for_sdpa( |
|
|
encoder_attention_mask, |
|
|
inputs_embeds.dtype, |
|
|
tgt_len=input_shape[-1], |
|
|
) |
|
|
else: |
|
|
|
|
|
encoder_attention_mask = _prepare_4d_attention_mask( |
|
|
encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1] |
|
|
) |
|
|
hidden_states = inputs_embeds |
|
|
hidden_states = self.layernorm_embedding(hidden_states) |
|
|
|
|
|
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) |
|
|
|
|
|
if self.gradient_checkpointing and self.training: |
|
|
if use_cache: |
|
|
logger.warning_once( |
|
|
"`use_cache=True` is incompatible with gradient checkpointing`. Setting `use_cache=False`..." |
|
|
) |
|
|
use_cache = False |
|
|
|
|
|
|
|
|
all_hidden_states = () if output_hidden_states else None |
|
|
all_self_attns = () if output_attentions else None |
|
|
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None |
|
|
next_decoder_cache = () if use_cache else None |
|
|
|
|
|
|
|
|
for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]): |
|
|
if attn_mask is not None: |
|
|
if attn_mask.size()[0] != len(self.layers): |
|
|
raise ValueError( |
|
|
f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for" |
|
|
f" {attn_mask.size()[0]}." |
|
|
) |
|
|
for idx, decoder_layer in enumerate(self.layers): |
|
|
|
|
|
if output_hidden_states: |
|
|
all_hidden_states += (hidden_states,) |
|
|
if self.training: |
|
|
dropout_probability = torch.rand([]) |
|
|
if dropout_probability < self.layerdrop: |
|
|
continue |
|
|
|
|
|
past_key_value = past_key_values[idx] if past_key_values is not None else None |
|
|
|
|
|
if self.gradient_checkpointing and self.training: |
|
|
layer_outputs = self._gradient_checkpointing_func( |
|
|
decoder_layer.__call__, |
|
|
hidden_states, |
|
|
attention_mask, |
|
|
encoder_hidden_states, |
|
|
encoder_attention_mask, |
|
|
head_mask[idx] if head_mask is not None else None, |
|
|
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None, |
|
|
None, |
|
|
output_attentions, |
|
|
use_cache, |
|
|
) |
|
|
else: |
|
|
layer_outputs = decoder_layer( |
|
|
hidden_states, |
|
|
attention_mask=attention_mask, |
|
|
encoder_hidden_states=encoder_hidden_states, |
|
|
encoder_attention_mask=encoder_attention_mask, |
|
|
layer_head_mask=(head_mask[idx] if head_mask is not None else None), |
|
|
cross_attn_layer_head_mask=( |
|
|
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None |
|
|
), |
|
|
past_key_value=past_key_value, |
|
|
output_attentions=output_attentions, |
|
|
use_cache=use_cache, |
|
|
) |
|
|
hidden_states = layer_outputs[0] |
|
|
|
|
|
if use_cache: |
|
|
next_decoder_cache += (layer_outputs[3 if output_attentions else 1],) |
|
|
|
|
|
if output_attentions: |
|
|
all_self_attns += (layer_outputs[1],) |
|
|
|
|
|
if encoder_hidden_states is not None: |
|
|
all_cross_attentions += (layer_outputs[2],) |
|
|
|
|
|
hidden_states = self.layer_norm(hidden_states) |
|
|
|
|
|
|
|
|
if output_hidden_states: |
|
|
all_hidden_states += (hidden_states,) |
|
|
|
|
|
next_cache = next_decoder_cache if use_cache else None |
|
|
if not return_dict: |
|
|
return tuple( |
|
|
v |
|
|
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions] |
|
|
if v is not None |
|
|
) |
|
|
return BaseModelOutputWithPastAndCrossAttentions( |
|
|
last_hidden_state=hidden_states, |
|
|
past_key_values=next_cache, |
|
|
hidden_states=all_hidden_states, |
|
|
attentions=all_self_attns, |
|
|
cross_attentions=all_cross_attentions, |
|
|
) |
|
|
|
|
|
|
|
|
class RadioWithNeck(nn.Module): |
|
|
"""Vision encoder using RADIO model with custom neck.""" |
|
|
|
|
|
def __init__(self, config): |
|
|
super().__init__() |
|
|
self.config = config |
|
|
|
|
|
self.model_encoder = AutoModel.from_config(config, trust_remote_code=True) |
|
|
|
|
|
|
|
|
last_hidden_state = 1024 |
|
|
self.conv1 = nn.Conv1d(1280, last_hidden_state, 1) |
|
|
self.layer_norm1 = nn.LayerNorm(last_hidden_state, eps=1e-06, elementwise_affine=True) |
|
|
self.conv2 = nn.Conv2d(last_hidden_state, last_hidden_state, kernel_size=(1,4), stride=(1,4), padding=0, bias=False) |
|
|
self.layer_norm2 = nn.LayerNorm(last_hidden_state, eps=1e-06, elementwise_affine=True) |
|
|
self.sum_proj = nn.Linear(3840, last_hidden_state) |
|
|
self.layer_norm3 = nn.LayerNorm(last_hidden_state, eps=1e-06, elementwise_affine=True) |
|
|
|
|
|
def forward(self, pixel_values, output_attentions=False, output_hidden_states=False, return_dict=False, **kwargs): |
|
|
radio_output = self.model_encoder(pixel_values) |
|
|
summary, feature = radio_output |
|
|
|
|
|
|
|
|
output = self.conv1(feature.permute(0,2,1)).permute(0,2,1) |
|
|
output = self.layer_norm1(output) |
|
|
|
|
|
patch_size = self.config.patch_size |
|
|
output = rearrange(output, 'b (h w) d -> b d h w', |
|
|
h=pixel_values.shape[-2] // patch_size, |
|
|
w=pixel_values.shape[-1] // patch_size) |
|
|
|
|
|
output = self.conv2(output) |
|
|
output = rearrange(output, 'b d h w -> b (h w) d') |
|
|
output = self.layer_norm2(output) |
|
|
summary = self.layer_norm3(self.sum_proj(summary)) |
|
|
output = torch.cat((output, summary.unsqueeze(1)), dim=1) |
|
|
|
|
|
return DonutSwinModelOutput(last_hidden_state=output) |
|
|
|
|
|
|
|
|
class NemotronParsePreTrainedModel(PreTrainedModel): |
|
|
""" |
|
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. |
|
|
""" |
|
|
config_class = NemotronParseConfig |
|
|
base_model_prefix = "vision_encoder_decoder" |
|
|
main_input_name = "pixel_values" |
|
|
supports_gradient_checkpointing = True |
|
|
_no_split_modules = ["RadioWithNeck", "MBartDecoder"] |
|
|
_skip_keys_device_placement = "past_key_values" |
|
|
|
|
|
def _init_weights(self, module): |
|
|
"""Initialize the weights""" |
|
|
if isinstance(module, nn.Linear): |
|
|
module.weight.data.normal_(mean=0.0, std=self.config.decoder.init_std) |
|
|
if module.bias is not None: |
|
|
module.bias.data.zero_() |
|
|
elif isinstance(module, nn.Embedding): |
|
|
module.weight.data.normal_(mean=0.0, std=self.config.decoder.init_std) |
|
|
if module.padding_idx is not None: |
|
|
module.weight.data[module.padding_idx].zero_() |
|
|
|
|
|
|
|
|
class NemotronParseForConditionalGeneration(NemotronParsePreTrainedModel, GenerationMixin): |
|
|
""" |
|
|
NemotronParse model for conditional generation tasks. |
|
|
|
|
|
This model combines a RADIO-based vision encoder with an mBART-based text decoder. |
|
|
""" |
|
|
|
|
|
def __init__(self, config: NemotronParseConfig): |
|
|
super().__init__(config) |
|
|
|
|
|
self.encoder = RadioWithNeck(config.encoder) |
|
|
self.encoder.main_input_name = 'pixel_values' |
|
|
self.encoder = self.encoder.to(config.encoder.torch_dtype) |
|
|
|
|
|
self.decoder = NemotronParseDecoder(config.decoder) |
|
|
self.decoder = self.decoder.to(config.decoder.torch_dtype) |
|
|
|
|
|
self.lm_head = nn.Linear(config.decoder.d_model, config.decoder.vocab_size, bias=False, dtype=config.decoder.torch_dtype) |
|
|
|
|
|
|
|
|
num_extra_heads = getattr(config, 'num_extra_heads', 0) |
|
|
self.decoder.extra_heads = nn.ModuleList([ |
|
|
nn.Linear(config.decoder.d_model, config.decoder.d_model) |
|
|
for _ in range(num_extra_heads) |
|
|
]) |
|
|
self.decoder.extra_proj = nn.ModuleList([ |
|
|
nn.Linear(config.decoder.d_model, config.decoder.d_model) |
|
|
for _ in range(num_extra_heads) |
|
|
]) |
|
|
|
|
|
|
|
|
self.class_token_indx_start = getattr(config, 'class_token_start_idx', 50000) |
|
|
|
|
|
self.post_init() |
|
|
|
|
|
def get_encoder(self): |
|
|
return self.encoder |
|
|
|
|
|
def get_decoder(self): |
|
|
return self.decoder |
|
|
|
|
|
def get_output_embeddings(self): |
|
|
return self.lm_head |
|
|
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
|
self.lm_head = new_embeddings |
|
|
|
|
|
def get_input_embeddings(self): |
|
|
return self.decoder.get_input_embeddings() |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
pixel_values: Optional[torch.FloatTensor] = None, |
|
|
decoder_input_ids: Optional[torch.LongTensor] = None, |
|
|
decoder_attention_mask: Optional[torch.BoolTensor] = None, |
|
|
encoder_outputs: Optional[Tuple[torch.FloatTensor]] = None, |
|
|
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, |
|
|
decoder_inputs_embeds: Optional[torch.FloatTensor] = None, |
|
|
labels: Optional[torch.LongTensor] = None, |
|
|
use_cache: Optional[bool] = None, |
|
|
output_attentions: Optional[bool] = None, |
|
|
output_hidden_states: Optional[bool] = None, |
|
|
return_dict: Optional[bool] = None, |
|
|
__subflavors__: Optional[str] = None, |
|
|
__keys__: Optional[List[str]] = None, |
|
|
return_sample_losses: Optional[torch.FloatTensor] = None, |
|
|
**kwargs, |
|
|
) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]: |
|
|
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
kwargs_encoder = {argument: value for argument, value in kwargs.items() if not argument.startswith("decoder_")} |
|
|
|
|
|
kwargs_decoder = { |
|
|
argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_") |
|
|
} |
|
|
|
|
|
if encoder_outputs is None: |
|
|
if pixel_values is None: |
|
|
raise ValueError("You have to specify pixel_values") |
|
|
|
|
|
encoder_outputs = self.encoder( |
|
|
pixel_values, |
|
|
output_attentions=output_attentions, |
|
|
output_hidden_states=output_hidden_states, |
|
|
return_dict=return_dict, |
|
|
**kwargs_encoder, |
|
|
) |
|
|
|
|
|
elif isinstance(encoder_outputs, tuple): |
|
|
encoder_outputs = BaseModelOutput(*encoder_outputs) |
|
|
|
|
|
encoder_hidden_states = encoder_outputs[0] |
|
|
|
|
|
encoder_attention_mask = None |
|
|
|
|
|
if (labels is not None) and (decoder_input_ids is None and decoder_inputs_embeds is None): |
|
|
decoder_input_ids = shift_tokens_right( |
|
|
labels, self.config.pad_token_id, self.config.decoder_start_token_id |
|
|
) |
|
|
|
|
|
output_hidden_states = True |
|
|
|
|
|
decoder_outputs = self.decoder( |
|
|
input_ids=decoder_input_ids, |
|
|
attention_mask=decoder_attention_mask, |
|
|
encoder_hidden_states=encoder_hidden_states, |
|
|
encoder_attention_mask=encoder_attention_mask, |
|
|
inputs_embeds=decoder_inputs_embeds, |
|
|
output_attentions=output_attentions, |
|
|
output_hidden_states=output_hidden_states, |
|
|
use_cache=use_cache, |
|
|
past_key_values=past_key_values, |
|
|
return_dict=return_dict, |
|
|
**kwargs_decoder, |
|
|
) |
|
|
loss = None |
|
|
|
|
|
if labels is not None: |
|
|
main_logits = self.lm_head(decoder_outputs.last_hidden_state) |
|
|
logits = [main_logits] |
|
|
decoder_inputs_embeds = decoder_outputs.inputs_embeds |
|
|
for iii, head in enumerate(self.decoder.extra_heads): |
|
|
|
|
|
decoder_input_embeds_shift = self.decoder.extra_proj[iii](torch.cat((decoder_inputs_embeds[:,1:,:], torch.zeros_like(decoder_inputs_embeds[:,0,:].unsqueeze(1))), axis=1)) |
|
|
hidden = head(decoder_outputs['hidden_states'][-1] + decoder_input_embeds_shift) |
|
|
logits.append(self.lm_head(hidden)) |
|
|
|
|
|
logits = torch.stack(logits, dim=-2) |
|
|
loss_fct = CrossEntropyLoss(reduction="none") |
|
|
|
|
|
losses_per_head = [] |
|
|
tokens_per_head = [] |
|
|
for head_num in range(len(self.decoder.extra_heads)+1): |
|
|
logits_head = logits[:,:,head_num,:] |
|
|
labels_head = torch.cat( |
|
|
(labels[:, head_num:], torch.full_like(labels[:, :head_num], -100)), |
|
|
1 |
|
|
) |
|
|
loss_full = loss_fct(logits_head.permute(0, 2, 1), labels_head) |
|
|
loss_full[labels_head >= self.class_token_indx_start] *= 10 |
|
|
losses_per_head.append(loss_full.sum(1)) |
|
|
tokens_per_head.append((labels_head != -100).sum(1)) |
|
|
|
|
|
losses_per_sample = torch.stack(losses_per_head, dim=1).sum(1) |
|
|
tokens_per_sample = torch.stack(tokens_per_head, dim=1).sum(1) |
|
|
loss = losses_per_sample.sum() / (tokens_per_sample.sum() + 1e-6) |
|
|
if return_sample_losses is not None: |
|
|
return_sample_losses.copy_(losses_per_sample.detach() / (tokens_per_sample + 1e-6)) |
|
|
|
|
|
if not return_dict: |
|
|
if loss is not None: |
|
|
return (loss,) + decoder_outputs + encoder_outputs |
|
|
else: |
|
|
return decoder_outputs + encoder_outputs |
|
|
output_logits = self.lm_head(decoder_outputs.last_hidden_state) |
|
|
return Seq2SeqLMOutput( |
|
|
loss=loss, |
|
|
logits=output_logits, |
|
|
past_key_values=decoder_outputs.past_key_values, |
|
|
decoder_hidden_states=decoder_outputs.hidden_states, |
|
|
decoder_attentions=decoder_outputs.attentions, |
|
|
cross_attentions=decoder_outputs.cross_attentions, |
|
|
encoder_last_hidden_state=encoder_outputs.last_hidden_state, |
|
|
encoder_hidden_states=encoder_outputs.hidden_states, |
|
|
encoder_attentions=encoder_outputs.attentions, |
|
|
) |
|
|
|
|
|
def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor): |
|
|
return shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id) |
|
|
|
|
|
|
|
|
def resize_token_embeddings(self, new_num_tokens: Optional[int] = None, pad_to_multiple_of: Optional[int] = None): |
|
|
"""Resize token embeddings and update lm_head accordingly.""" |
|
|
|
|
|
new_embeddings = self.decoder.resize_token_embeddings(new_num_tokens, pad_to_multiple_of) |
|
|
|
|
|
|
|
|
if new_embeddings is not None: |
|
|
old_vocab_size, hidden_size = self.lm_head.weight.shape |
|
|
new_vocab_size = new_embeddings.num_embeddings |
|
|
|
|
|
if old_vocab_size != new_vocab_size: |
|
|
print(f"Resizing lm_head from {old_vocab_size} to {new_vocab_size} tokens") |
|
|
new_lm_head = nn.Linear(hidden_size, new_vocab_size, bias=False, device=self.lm_head.weight.device, dtype=self.lm_head.weight.dtype) |
|
|
|
|
|
|
|
|
num_tokens_to_copy = min(old_vocab_size, new_vocab_size) |
|
|
new_lm_head.weight.data[:num_tokens_to_copy] = self.lm_head.weight.data[:num_tokens_to_copy] |
|
|
|
|
|
|
|
|
self.lm_head = new_lm_head |
|
|
|
|
|
|
|
|
return new_embeddings |
|
|
|
|
|
def _reorder_cache(self, past_key_values, beam_idx): |
|
|
|
|
|
return self.decoder._reorder_cache(past_key_values, beam_idx) |
|
|
|
|
|
|
|
|
|
|
|
def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int): |
|
|
""" |
|
|
Shift input ids one token to the right. |
|
|
""" |
|
|
shifted_input_ids = input_ids.new_zeros(input_ids.shape) |
|
|
shifted_input_ids[:, 1:] = input_ids[:, :-1].clone() |
|
|
if decoder_start_token_id is None: |
|
|
raise ValueError("Make sure to set the decoder_start_token_id attribute of the model's configuration.") |
|
|
shifted_input_ids[:, 0] = decoder_start_token_id |
|
|
|
|
|
if pad_token_id is None: |
|
|
raise ValueError("Make sure to set the pad_token_id attribute of the model's configuration.") |
|
|
|
|
|
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id) |
|
|
|
|
|
return shifted_input_ids |
|
|
|