NVIDIA-Nemotron-Parse-v1.1 / hf_nemotron_parse_processor.py
katerynaCh's picture
Upload folder using huggingface_hub
a025381 verified
raw
history blame
14.3 kB
import numpy as np
from PIL import Image
from typing import List, Optional, Union, Dict, Any
import torch
from torchvision import transforms as T
import albumentations as A
import cv2
import json
from transformers import ProcessorMixin, BaseImageProcessor, ImageProcessingMixin
from transformers.tokenization_utils_base import BatchEncoding
from transformers.image_utils import ChannelDimension, ImageInput, PILImageResampling, infer_channel_dimension_format
from transformers.utils import TensorType
class NemotronParseImageProcessor(BaseImageProcessor, ImageProcessingMixin):
"""
Image processor for NemotronParse model.
This processor inherits from BaseImageProcessor to be compatible with transformers AutoImageProcessor.
"""
model_input_names = ["pixel_values"]
def __init__(
self,
final_size: tuple = (2048, 1648),
**kwargs,
):
clean_kwargs = {}
for k, v in kwargs.items():
if not k.startswith('_') and k not in ['transform', 'torch_transform']:
clean_kwargs[k] = v
if 'size' in clean_kwargs:
size_config = clean_kwargs.pop('size')
if isinstance(size_config, dict):
if 'longest_edge' in size_config:
longest_edge = size_config['longest_edge']
if isinstance(longest_edge, (list, tuple)):
final_size = tuple(int(x) for x in longest_edge)
else:
final_size = (int(longest_edge), int(longest_edge))
elif 'height' in size_config and 'width' in size_config:
final_size = (int(size_config['height']), int(size_config['width']))
super().__init__(**clean_kwargs)
if isinstance(final_size, (list, tuple)) and len(final_size) >= 2:
self.final_size = (int(final_size[0]), int(final_size[1]))
elif isinstance(final_size, (int, float)):
self.final_size = (int(final_size), int(final_size))
else:
self.final_size = (2048, 1648) # Default fallback
self._create_transforms()
def _create_transforms(self):
"""Create transform objects (not serialized to JSON)."""
if isinstance(self.final_size, (list, tuple)):
self.target_height, self.target_width = int(self.final_size[0]), int(self.final_size[1])
else:
self.target_height = self.target_width = int(self.final_size)
self.transform = A.Compose([
A.PadIfNeeded(
min_height=self.target_height,
min_width=self.target_width,
border_mode=cv2.BORDER_CONSTANT,
value=[255, 255, 255],
p=1.0
),
])
self.torch_transform = T.Compose([
T.ToTensor(),
# Note: Normalization is done within RADIO model
])
def to_dict(self):
"""Override to exclude non-serializable transforms."""
output = super().to_dict()
output.pop('transform', None)
output.pop('torch_transform', None)
return output
@classmethod
def from_dict(cls, config_dict: dict, **kwargs):
"""Override to recreate transforms after loading."""
config_dict = config_dict.copy()
config_dict.pop('transform', None)
config_dict.pop('torch_transform', None)
# Clean any problematic entries
for key in list(config_dict.keys()):
if key.startswith('_') or config_dict[key] is None:
config_dict.pop(key, None)
# Ensure numeric types are correct
if 'final_size' in config_dict:
final_size = config_dict['final_size']
if isinstance(final_size, (list, tuple)):
config_dict['final_size'] = tuple(int(x) for x in final_size)
try:
return cls(**config_dict, **kwargs)
except Exception as e:
print(f"Warning: Error in from_dict: {e}")
print("Using default parameters...")
return cls(**kwargs)
def save_pretrained(self, save_directory, **kwargs):
"""Save image processor configuration."""
import os
import json
os.makedirs(save_directory, exist_ok=True)
# Save preprocessor config in standard HuggingFace format
config = {
"feature_extractor_type": "NemotronParseImageProcessor",
"image_processor_type": "NemotronParseImageProcessor",
"processor_class": "NemotronParseImageProcessor",
"size": {
"height": self.final_size[0],
"width": self.final_size[1],
"longest_edge": self.final_size
},
"final_size": self.final_size,
}
config_path = os.path.join(save_directory, "preprocessor_config.json")
with open(config_path, 'w') as f:
json.dump(config, f, indent=2)
def _resize_with_aspect_ratio(self, image: np.ndarray) -> np.ndarray:
"""Resize image maintaining aspect ratio (exact replica of original LongestMaxSizeHW)."""
height, width = image.shape[:2]
max_size_height = self.target_height
max_size_width = self.target_width
# Original LongestMaxSizeHW algorithm from custom_augmentations.py
aspect_ratio = width / height
new_height = height
new_width = width
if height > max_size_height:
new_height = max_size_height
new_width = int(new_height * aspect_ratio)
if new_width > max_size_width:
new_width = max_size_width
new_height = int(new_width / aspect_ratio)
return cv2.resize(image, (new_width, new_height), interpolation=cv2.INTER_LINEAR)
def _pad_to_size(self, image: np.ndarray) -> np.ndarray:
"""Pad image to target size with white padding (matches A.PadIfNeeded behavior)."""
h, w = image.shape[:2]
min_height, min_width = self.target_height, self.target_width
pad_h = max(0, min_height - h)
pad_w = max(0, min_width - w)
if pad_h == 0 and pad_w == 0:
return image
if len(image.shape) == 3:
padded = np.pad(
image,
((0, pad_h), (0, pad_w), (0, 0)),
mode='constant',
constant_values=255
)
else:
padded = np.pad(
image,
((0, pad_h), (0, pad_w)),
mode='constant',
constant_values=255
)
return padded
def preprocess(
self,
images: ImageInput,
return_tensors: Optional[Union[str, TensorType]] = None,
**kwargs,
) -> Dict[str, torch.Tensor]:
"""
Preprocess an image or batch of images for the NemotronParse model.
Args:
images: Input image(s)
return_tensors: Type of tensors to return
"""
# Ensure images is a list
if not isinstance(images, list):
images = [images]
# Convert PIL images to numpy arrays if needed
processed_images = []
for image in images:
if isinstance(image, Image.Image):
image = np.asarray(image)
processed_images.append(image)
# Apply NemotronParse-specific transforms
pixel_values = []
for image in processed_images:
processed_image = self._resize_with_aspect_ratio(image)
if self.transform is not None:
transformed = self.transform(image=processed_image)
processed_image = transformed["image"]
else:
# Fallback: just pad to target size
processed_image = self._pad_to_size(processed_image)
pixel_values_tensor = self.torch_transform(processed_image)
if pixel_values_tensor.shape[0] == 1:
pixel_values_tensor = pixel_values_tensor.expand(3, -1, -1)
pixel_values.append(pixel_values_tensor)
pixel_values = torch.stack(pixel_values)
data = {"pixel_values": pixel_values}
if return_tensors is not None:
data = self._convert_output_format(data, return_tensors)
return data
def _convert_output_format(self, data: Dict[str, torch.Tensor], return_tensors: Union[str, TensorType]) -> Dict:
"""Convert output format based on return_tensors parameter."""
if return_tensors == "pt" or return_tensors == TensorType.PYTORCH:
return data
elif return_tensors == "np" or return_tensors == TensorType.NUMPY:
return {k: v.numpy() for k, v in data.items()}
else:
return data
def __call__(self, images: Union[Image.Image, List[Image.Image]], **kwargs) -> Dict[str, torch.Tensor]:
"""Process images for the model (backward compatibility)."""
return self.preprocess(images, **kwargs)
class NemotronParseProcessor(ProcessorMixin):
attributes = ["image_processor", "tokenizer"]
image_processor_class = "NemotronParseImageProcessor"
tokenizer_class = ("PreTrainedTokenizer", "PreTrainedTokenizerFast")
def __init__(self, image_processor=None, tokenizer=None, **kwargs):
if image_processor is None:
image_processor = NemotronParseImageProcessor(**kwargs)
super().__init__(image_processor, tokenizer)
def __call__(
self,
images: Union[Image.Image, List[Image.Image]] = None,
text: Union[str, List[str]] = None,
add_special_tokens: bool = True,
padding: Union[bool, str] = False,
truncation: Union[bool, str] = False,
max_length: Optional[int] = None,
stride: int = 0,
pad_to_multiple_of: Optional[int] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_token_type_ids: bool = False,
return_length: bool = False,
verbose: bool = True,
return_tensors: Optional[Union[str, "TensorType"]] = None,
**kwargs
) -> BatchEncoding:
"""
Main method to prepare for the model one or several text(s) and image(s).
"""
# Process images
if images is not None:
image_inputs = self.image_processor(images, **kwargs)
else:
image_inputs = {}
# Process text
if text is not None:
text_inputs = self.tokenizer(
text,
add_special_tokens=add_special_tokens,
padding=padding,
truncation=truncation,
max_length=max_length,
stride=stride,
pad_to_multiple_of=pad_to_multiple_of,
return_attention_mask=return_attention_mask,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_offsets_mapping=return_offsets_mapping,
return_token_type_ids=return_token_type_ids,
return_length=return_length,
verbose=verbose,
return_tensors=return_tensors,
**kwargs,
)
else:
text_inputs = {}
# Combine inputs
return BatchEncoding({**image_inputs, **text_inputs})
def decode(self, *args, **kwargs):
"""Decode token ids to strings."""
return self.tokenizer.decode(*args, **kwargs)
def batch_decode(self, *args, **kwargs):
"""Batch decode token ids to strings."""
return self.tokenizer.batch_decode(*args, **kwargs)
def post_process_generation(self, sequences, fix_markdown=False):
"""Post-process generated sequences."""
if hasattr(self.tokenizer, 'post_process_generation'):
return self.tokenizer.post_process_generation(sequences, fix_markdown=fix_markdown)
else:
# Fallback processing
if isinstance(sequences, str):
sequences = [sequences]
processed = []
for seq in sequences:
# Basic cleaning
seq = seq.replace('<s>', '').replace('</s>', '').strip()
processed.append(seq)
return processed[0] if len(processed) == 1 else processed
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
"""
Load processor from pretrained model.
This method is compatible with AutoProcessor.from_pretrained().
"""
# Use the parent class's from_pretrained method which handles auto-loading
return super().from_pretrained(pretrained_model_name_or_path, **kwargs)
def save_pretrained(self, save_directory, **kwargs):
"""
Save processor to directory.
This method is compatible with AutoProcessor/AutoImageProcessor loading.
"""
import os
os.makedirs(save_directory, exist_ok=True)
# Save tokenizer with proper configuration for AutoTokenizer
print("Saving tokenizer for AutoTokenizer compatibility...")
self.tokenizer.save_pretrained(save_directory, **kwargs)
# Save image processor
print("Saving image processor...")
self.image_processor.save_pretrained(save_directory, **kwargs)
# Use the parent class's save_pretrained method for processor config
super().save_pretrained(save_directory, **kwargs)
print(f"NemotronParseProcessor saved to {save_directory}")
print(f"AutoTokenizer.from_pretrained('{save_directory}') should now work!")