File size: 10,498 Bytes
35af664 5934e48 c1b6e1f 503fde5 c1b6e1f 5934e48 c1b6e1f 5934e48 4471b1c c1b6e1f 9e91b23 c1b6e1f 23c4b6c 35af664 c1b6e1f 277fbec c1b6e1f 277fbec c1b6e1f 35af664 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
---
license: other
license_name: nvidia-community-model-license
license_link: >-
https://www.nvidia.com/en-us/agreements/enterprise-software/nvidia-community-models-license/
pipeline_tag: image-text-to-text
library_name: transformers
tags:
- nvidia
- VLM
- OCR
---
# NVIDIA Nemotron Parse v1.1 Overview
NVIDIA Nemotron Parse v1.1 is designed to understand document semantics and extract text and tables elements with spatial grounding. Given an image, NVIDIA Nemotron Parse v1.1 produces structured annotations, including formatted text, bounding-boxes and the corresponding semantic classes, ordered according to the document's reading flow. It overcomes the shortcomings of traditional OCR technologies that struggle with complex document layouts with structural variability, and helps transform unstructured documents into actionable and machine-usable representations. This has several downstream benefits such as increasing the availability of training-data for Large Language Models (LLMs), improving the accuracy of extractor, curator, retriever and AI agentic applications, and enhancing document understanding pipelines.
This model is ready for commercial use.
## License
GOVERNING TERMS: The NIM container is governed by the [NVIDIA Software License Agreement](https://www.nvidia.com/en-us/agreements/enterprise-software/nvidia-software-license-agreement/) and [Product-Specific Terms for NVIDIA AI Products](https://www.nvidia.com/en-us/agreements/enterprise-software/product-specific-terms-for-ai-products/). Use of this model is governed by the [NVIDIA Community Model License](https://www.nvidia.com/en-us/agreements/enterprise-software/nvidia-community-models-license/). Use of the tokenizer included in this model is governed by the [CC-BY-4.0 license](https://creativecommons.org/licenses/by/4.0/).
## Deployment Geography:
Global
## Use Case:
NVIDIA Nemotron Parse v1.1 will be capable of comprehensive text understanding and document structure understanding. It will be used in retriever and curator solutions. Its text extraction datasets and capabilities will help with LLM and VLM training, as well as improve run-time inference accuracy of VLMs.
The NVIDIA Nemotron Parse v1.1 model will perform text extraction from PDF and PPT documents. The NVIDIA Nemotron Parse v1.1 can classify the objects (title, section, caption, index, footnote, lists, tables, bibliography, image) in a given document, and provide bounding boxes with coordinates.
## Release Date:
November 17, 2025
## References
* https://huggingface.co/docs/transformers/en/model_doc/mbart
## Model Architecture
### Architecture Type :
Transformer-based vision-encoder-decoder model
### Network Architecture
* Vision Encoder: ViT-H model (https://huggingface.co/nvidia/C-RADIO)<br>
* Adapter Layer: 1D convolutions & norms to compress dimensionality and sequence length of the latent space (13184 tokens to 3201 tokens)<br>
* Decoder: mBart [1] 10 blocks<br>
* Tokenizer: Use of the tokenizer included in this model is governed by the [CC-BY-4.0 license](https://creativecommons.org/licenses/by/4.0/)<br>
* Number of Parameters: < 1B<br>
## Computational Load (For NVIDIA Models Only)
**Cumulative Compute:** 2.2e+22 <br>
**Estimated Energy and Emissions for Model Training:**
Energy Consumption: 7,827.46 kWh <br>
Carbon Emissions: 3.21 tCO2e <br>
### Input
* Input Type: Image, Text<br>
* Input Type(s): Red, Green, Blue (RGB) + Prompt (String)
* Input Parameters: 2D, 1D
- Other Properties Related to Input:
- Max Input Resolution (Width, Height): 1648, 2048
- Min Input Resolution (Width, Height): 1024, 1280
- Channel Count: 3
### Output
* Output Type: Text<br>
* Output Format: String
* Output Parameters: 1D
- Other Properties Related to Output:
- NVIDIA Nemotron Parse v1.1 output format is a string which encodes text content (formatted or not) as well as bounding boxes and class attributes.<br>
In the default prompt setting, text content is represented as markdown, and math expressions as LaTeX, enclosed in \[..\] or \(..\). If a mathematical expression does not require LaTeX formatting to be represented (e.g., consisting only of characters and subscripts/superscripts), it is represented as markdown. Tables are represented as LaTeX.
Our AI models are designed and/or optimized to run on NVIDIA GPU-accelerated systems. By leveraging NVIDIA’s hardware (e.g. GPU cores) and software frameworks (e.g., CUDA libraries), the model achieves faster training and inference times compared to CPU-only solutions.<br>
## Software Integration:
Runtime Engine(s): TensorRT-LLM
Supported Hardware Microarchitecture Compatibility: <br>
NVIDIA Hopper/NVIDIA Ampere/NVIDIA Turing<br>
Supported Operating System(s): Linux<br>
The integration of foundation and fine-tuned models into AI systems requires additional testing using use-case-specific data to ensure safe and effective deployment. Following the V-model methodology, iterative testing and validation at both unit and system levels are essential to mitigate risks, meet technical and functional requirements, and ensure compliance with safety and ethical standards before deployment.<br>
## Model Version:
V1.1
## Quick Start
### Install dependencies
```bash
pip install -r requirements.txt
```
### Usage example
```python
import torch
from PIL import Image, ImageDraw
from transformers import AutoModel, AutoProcessor, AutoTokenizer, AutoConfig, AutoImageProcessor, GenerationConfig
from postprocessing import extract_classes_bboxes, transform_bbox_to_original, postprocess_text
# Load model and processor
model_path = "nvidia/NVIDIA-Nemotron-Parse-v1.1" # Or use a local path
device = "cuda:0"
model = AutoModel.from_pretrained(
model_path,
trust_remote_code=True,
torch_dtype=torch.bfloat16
).to(device).eval()
tokenizer = AutoTokenizer.from_pretrained(model_path)
processor = AutoProcessor.from_pretrained(model_path, trust_remote_code=True)
# Load image
image = Image.open("path/to/your/image.jpg")
task_prompt = "</s><s><predict_bbox><predict_classes><output_markdown>"
# Process image
inputs = processor(images=[image], text=task_prompt, return_tensors="pt").to(device)
prompt_ids = processor.tokenizer.encode(task_prompt, return_tensors="pt", add_special_tokens=False).cuda()
generation_config = GenerationConfig.from_pretrained(model_path, trust_remote_code=True)
# Generate text
outputs = model.generate(**inputs, generation_config=generation_config)
# Decode the generated text
generated_text = processor.batch_decode(outputs, skip_special_tokens=True)[0]
```
### Postprocessing
```python
from PIL import Image, ImageDraw
from postprocessing import extract_classes_bboxes, transform_bbox_to_original, postprocess_text
classes, bboxes, texts = extract_classes_bboxes(generated_text)
bboxes = [transform_bbox_to_original(bbox, image.width, image.height) for bbox in bboxes]
# Specify output formats for postprocessing
table_format = 'latex' # latex | HTML | markdown
text_format = 'markdown' # markdown | plain
blank_text_in_figures = False # remove text inside 'Picture' class
texts = [postprocess_text(text, cls = cls, table_format=table_format, text_format=text_format, blank_text_in_figures=blank_text_in_figures) for text, cls in zip(texts, classes)]
for cl, bb, txt in zip(classes, bboxes, texts):
print(cl, ': ', txt)
draw = ImageDraw.Draw(image)
for bbox in bboxes:
draw.rectangle((bbox[0], bbox[1], bbox[2], bbox[3]), outline="red")
```
## Inference with VLLM
### Install dependencies
```bash
uv venv --python 3.12 --seed
source .venv/bin/activate
uv pip install "git+https://github.com/amalad/vllm.git@nemotron_parse"
uv pip install timm albumentations
```
### Inference example
```python
from vllm import LLM, SamplingParams
from PIL import Image
sampling_params = SamplingParams(
temperature=0,
top_k=1,
repetition_penalty=1.1,
max_tokens=9000,
skip_special_tokens=False,
)
llm = LLM(
model="nvidia/NVIDIA-Nemotron-Parse-v1.1",
max_num_seqs=64,
limit_mm_per_prompt={"image": 1},
dtype="bfloat16",
trust_remote_code=True,
)
image = Image.open("<YOUR-IMAGE-PATH>")
prompts = [
{ # Implicit prompt
"prompt": "</s><s><predict_bbox><predict_classes><output_markdown>",
"multi_modal_data": {
"image": image
},
},
{ # Explicit encoder/decoder prompt
"encoder_prompt": {
"prompt": "",
"multi_modal_data": {
"image": image
},
},
"decoder_prompt": "</s><s><predict_bbox><predict_classes><output_markdown>",
},
]
outputs = llm.generate(prompts, sampling_params)
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Decoder prompt: {prompt!r}, Generated text: {generated_text!r}")
```
Nemotron-Parse-v1.1 is also available as an [optimized NIM container](https://build.nvidia.com/nvidia/nemotron-parse).
## Training, Testing, and Evaluation Datasets:
### Training Dataset
NVIDIA Nemotron Parse 1.1 is first pre-trained on our internal datasets: human, synthetic and automated.
Data Modality:
*Text
*Image<br>
Data Collection Method by Dataset: Hybrid: Human, Synthetic, Automated
Labeling Method by Dataset: Hybrid: Human, Synthetic, Automated
### Testing and Evaluation Dataset:
NVIDIA Nemotron Parse 1.1 is evaluated on multiple datasets for robustness, including public and internal dataset.
Data Collection Method by Dataset: Hybrid: Human, Synthetic, Automated
Labeling Method by Dataset: Hybrid: Human, Synthetic, Automated
## Inference
Runtime Engine(s): TensorRT-LLM
Test Hardware: NVIDIA H100# Synchronization
## Ethical Considerations
NVIDIA believes Trustworthy AI is a shared responsibility and we have established policies and practices to enable development for a wide array of AI applications. When downloaded or used in accordance with our terms of service, developers should work with their supporting model team to ensure this model meets requirements for the relevant industry and use case and addresses unforeseen product misuse.
Please report security vulnerabilities or NVIDIA AI Concerns here.
**You are responsible for ensuring that your use of NVIDIA AI Models complies with all applicable laws.**
## Enterprise Support
Get access to knowledge base articles and support cases or [submit a ticket](https://www.nvidia.com/en-us/data-center/products/ai-enterprise-suite/support/). |