File size: 28,176 Bytes
a025381
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97f0e00
a025381
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c63eb4
a025381
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
import math
import torch
import torch.nn as nn
from torch.nn import CrossEntropyLoss
from transformers import PreTrainedModel, GenerationMixin
from transformers.models.vision_encoder_decoder.modeling_vision_encoder_decoder import VisionEncoderDecoderModel
from transformers.models.vision_encoder_decoder.configuration_vision_encoder_decoder import VisionEncoderDecoderConfig
from transformers.modeling_outputs import Seq2SeqLMOutput
from transformers.models.mbart.modeling_mbart import MBartPreTrainedModel, MBartConfig, MBartScaledWordEmbedding, MBartDecoderLayer, BaseModelOutputWithPastAndCrossAttentions
from transformers.models.donut.modeling_donut_swin import DonutSwinModelOutput
from einops import rearrange
from typing import Optional, List, Union, Tuple
import warnings
from transformers.modeling_outputs import BaseModelOutput
from transformers.models.encoder_decoder.modeling_encoder_decoder import shift_tokens_right
from .hf_nemotron_parse_config import NemotronParseConfig
from transformers import AutoModel
import time
from transformers.modeling_attn_mask_utils import (
    _prepare_4d_attention_mask,
    _prepare_4d_attention_mask_for_sdpa,
    _prepare_4d_causal_attention_mask,
    _prepare_4d_causal_attention_mask_for_sdpa,
)


class NemotronParseDecoder(MBartPreTrainedModel):
    """
    Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`MBartDecoderLayer`]

    Args:
        config: MBartConfig
        embed_tokens (nn.Embedding): output embedding
    """

    def __init__(self, config: MBartConfig, embed_tokens: Optional[nn.Embedding] = None):
        super().__init__(config)
        self.dropout = config.dropout
        self.layerdrop = config.decoder_layerdrop
        self.padding_idx = config.pad_token_id
        embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0

        self.embed_tokens = MBartScaledWordEmbedding(
            config.vocab_size, config.d_model, self.padding_idx, embed_scale=embed_scale
        )

        if embed_tokens is not None:
            self.embed_tokens.weight = embed_tokens.weight

        self.layers = nn.ModuleList([MBartDecoderLayer(config) for _ in range(config.decoder_layers)])
        self.config = config

        self.layernorm_embedding = nn.LayerNorm(config.d_model)
        self.layer_norm = nn.LayerNorm(config.d_model)

        self.gradient_checkpointing = False
        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.embed_tokens

    def set_input_embeddings(self, value):
        self.embed_tokens = value

    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        encoder_attention_mask: Optional[torch.LongTensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        cross_attn_head_mask: Optional[torch.Tensor] = None,
        past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
        r"""
        Args:
            input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
                Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
                provide it.

                Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
                [`PreTrainedTokenizer.__call__`] for details.

                [What are input IDs?](../glossary#input-ids)
            attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
                Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:

                - 1 for tokens that are **not masked**,
                - 0 for tokens that are **masked**.

                [What are attention masks?](../glossary#attention-mask)
            encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
                Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
                of the decoder.
            encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*):
                Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values
                selected in `[0, 1]`:

                - 1 for tokens that are **not masked**,
                - 0 for tokens that are **masked**.

                [What are attention masks?](../glossary#attention-mask)
            head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
                Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:

                - 1 indicates the head is **not masked**,
                - 0 indicates the head is **masked**.

            cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
                Mask to nullify selected heads of the cross-attention modules in the decoder to avoid performing
                cross-attention on hidden heads. Mask values selected in `[0, 1]`:

                - 1 indicates the head is **not masked**,
                - 0 indicates the head is **masked**.

            past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
                Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
                shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
                shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.

                Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
                cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.

                If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
                that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
                all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
            inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
                Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
                This is useful if you want more control over how to convert `input_ids` indices into associated vectors
                than the model's internal embedding lookup matrix.
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more detail.
            output_hidden_states (`bool`, *optional*):
                Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
                for more detail.
            return_dict (`bool`, *optional*):
                Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
        """
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # retrieve input_ids and inputs_embeds
        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
        elif input_ids is not None:
            input = input_ids
            input_shape = input.size()
            input_ids = input_ids.view(-1, input_shape[-1])
        elif inputs_embeds is not None:
            input_shape = inputs_embeds.size()[:-1]
            input = inputs_embeds[:, :, -1]
        else:
            raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")

        # past_key_values_length
        past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0

        if inputs_embeds is None:
            inputs_embeds = self.embed_tokens(input_ids)

        if self.config._attn_implementation == "flash_attention_2":
            # 2d mask is passed through the layers
            attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
        elif self.config._attn_implementation == "sdpa" and not output_attentions and cross_attn_head_mask is None:
            # output_attentions=True & cross_attn_head_mask can not be supported when using SDPA, and we fall back on
            # the manual implementation that requires a 4D causal mask in all cases.
            attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
                attention_mask,
                input_shape,
                inputs_embeds,
                past_key_values_length,
            )
        else:
            # 4d mask is passed through the layers
            attention_mask = _prepare_4d_causal_attention_mask(
                attention_mask, input_shape, inputs_embeds, past_key_values_length
            )

        # expand encoder attention mask
        if encoder_hidden_states is not None and encoder_attention_mask is not None:
            if self.config._attn_implementation == "flash_attention_2":
                encoder_attention_mask = encoder_attention_mask if 0 in encoder_attention_mask else None
            elif self.config._attn_implementation == "sdpa" and cross_attn_head_mask is None and not output_attentions:
                # output_attentions=True & cross_attn_head_mask can not be supported when using SDPA, and we fall back on
                # the manual implementation that requires a 4D causal mask in all cases.
                # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
                encoder_attention_mask = _prepare_4d_attention_mask_for_sdpa(
                    encoder_attention_mask,
                    inputs_embeds.dtype,
                    tgt_len=input_shape[-1],
                )
            else:
                # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
                encoder_attention_mask = _prepare_4d_attention_mask(
                    encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
                )
        hidden_states = inputs_embeds
        hidden_states = self.layernorm_embedding(hidden_states)

        hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)

        if self.gradient_checkpointing and self.training:
            if use_cache:
                logger.warning_once(
                    "`use_cache=True` is incompatible with gradient checkpointing`. Setting `use_cache=False`..."
                )
                use_cache = False

        # decoder layers
        all_hidden_states = () if output_hidden_states else None
        all_self_attns = () if output_attentions else None
        all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
        next_decoder_cache = () if use_cache else None

        # check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired
        for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]):
            if attn_mask is not None:
                if attn_mask.size()[0] != len(self.layers):
                    raise ValueError(
                        f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for"
                        f" {attn_mask.size()[0]}."
                    )
        for idx, decoder_layer in enumerate(self.layers):
            # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
            if output_hidden_states:
                all_hidden_states += (hidden_states,)
            if self.training:
                dropout_probability = torch.rand([])
                if dropout_probability < self.layerdrop:
                    continue

            past_key_value = past_key_values[idx] if past_key_values is not None else None

            if self.gradient_checkpointing and self.training:
                layer_outputs = self._gradient_checkpointing_func(
                    decoder_layer.__call__,
                    hidden_states,
                    attention_mask,
                    encoder_hidden_states,
                    encoder_attention_mask,
                    head_mask[idx] if head_mask is not None else None,
                    cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None,
                    None,
                    output_attentions,
                    use_cache,
                )
            else:
                layer_outputs = decoder_layer(
                    hidden_states,
                    attention_mask=attention_mask,
                    encoder_hidden_states=encoder_hidden_states,
                    encoder_attention_mask=encoder_attention_mask,
                    layer_head_mask=(head_mask[idx] if head_mask is not None else None),
                    cross_attn_layer_head_mask=(
                        cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None
                    ),
                    past_key_value=past_key_value,
                    output_attentions=output_attentions,
                    use_cache=use_cache,
                )
            hidden_states = layer_outputs[0]

            if use_cache:
                next_decoder_cache += (layer_outputs[3 if output_attentions else 1],)

            if output_attentions:
                all_self_attns += (layer_outputs[1],)

                if encoder_hidden_states is not None:
                    all_cross_attentions += (layer_outputs[2],)

        hidden_states = self.layer_norm(hidden_states)

        # add hidden states from the last decoder layer
        if output_hidden_states:
            all_hidden_states += (hidden_states,)

        next_cache = next_decoder_cache if use_cache else None
        if not return_dict:
            return tuple(
                v
                for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions]
                if v is not None
            )
        return BaseModelOutputWithPastAndCrossAttentions(
            last_hidden_state=hidden_states,
            past_key_values=next_cache,
            hidden_states=all_hidden_states,
            attentions=all_self_attns,
            cross_attentions=all_cross_attentions,
        )


class RadioWithNeck(nn.Module):
    """Vision encoder using RADIO model with custom neck."""
    
    def __init__(self, config):
        super().__init__()
        self.config = config
        
        self.model_encoder = AutoModel.from_config(config, trust_remote_code=True)
        
        # Neck components
        last_hidden_state = 1024
        self.conv1 = nn.Conv1d(1280, last_hidden_state, 1)
        self.layer_norm1 = nn.LayerNorm(last_hidden_state, eps=1e-06, elementwise_affine=True)
        self.conv2 = nn.Conv2d(last_hidden_state, last_hidden_state, kernel_size=(1,4), stride=(1,4), padding=0, bias=False)
        self.layer_norm2 = nn.LayerNorm(last_hidden_state, eps=1e-06, elementwise_affine=True)
        self.sum_proj = nn.Linear(3840, last_hidden_state)
        self.layer_norm3 = nn.LayerNorm(last_hidden_state, eps=1e-06, elementwise_affine=True)
        
    def forward(self, pixel_values, output_attentions=False, output_hidden_states=False, return_dict=False, **kwargs):
        radio_output = self.model_encoder(pixel_values)
        summary, feature = radio_output
        
        
        output = self.conv1(feature.permute(0,2,1)).permute(0,2,1)
        output = self.layer_norm1(output)
        
        patch_size = self.config.patch_size
        output = rearrange(output, 'b (h w) d -> b d h w',
                    h=pixel_values.shape[-2] // patch_size,
                    w=pixel_values.shape[-1] // patch_size)
        
        output = self.conv2(output)
        output = rearrange(output, 'b d h w -> b (h w) d')
        output = self.layer_norm2(output)
        summary = self.layer_norm3(self.sum_proj(summary))
        output = torch.cat((output, summary.unsqueeze(1)), dim=1)
        
        return DonutSwinModelOutput(last_hidden_state=output)


class NemotronParsePreTrainedModel(PreTrainedModel):
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models.
    """
    config_class = NemotronParseConfig
    base_model_prefix = "vision_encoder_decoder"  # Use VisionEncoderDecoder prefix
    main_input_name = "pixel_values"
    supports_gradient_checkpointing = True
    _no_split_modules = ["RadioWithNeck", "MBartDecoder"]
    _skip_keys_device_placement = "past_key_values"

    def _init_weights(self, module):
        """Initialize the weights"""
        if isinstance(module, nn.Linear):
            module.weight.data.normal_(mean=0.0, std=self.config.decoder.init_std)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=self.config.decoder.init_std)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()

# Based on transformers.models.encoder_decoder.modeling_encoder_decoder
class NemotronParseForConditionalGeneration(NemotronParsePreTrainedModel, GenerationMixin):
    """
    NemotronParse model for conditional generation tasks.
    
    This model combines a RADIO-based vision encoder with an mBART-based text decoder.
    """
    
    def __init__(self, config: NemotronParseConfig):
        super().__init__(config)
        
        self.encoder = RadioWithNeck(config.encoder)
        self.encoder.main_input_name = 'pixel_values'
        self.encoder = self.encoder.to(config.encoder.torch_dtype)
        
        self.decoder = NemotronParseDecoder(config.decoder)
        self.decoder = self.decoder.to(config.decoder.torch_dtype)

        self.lm_head = nn.Linear(config.decoder.d_model, config.decoder.vocab_size, bias=False, dtype=config.decoder.torch_dtype)
 
        # Extra heads
        num_extra_heads = getattr(config, 'num_extra_heads', 0)
        self.decoder.extra_heads = nn.ModuleList([
            nn.Linear(config.decoder.d_model, config.decoder.d_model) 
            for _ in range(num_extra_heads)
        ])
        self.decoder.extra_proj = nn.ModuleList([
            nn.Linear(config.decoder.d_model, config.decoder.d_model)
            for _ in range(num_extra_heads)
        ])
        
        # Class token index for loss weighting
        self.class_token_indx_start = getattr(config, 'class_token_start_idx', 50000)
        
        self.post_init()

    def get_encoder(self):
        return self.encoder

    def get_decoder(self):
        return self.decoder

    def get_output_embeddings(self):
        return self.lm_head

    def set_output_embeddings(self, new_embeddings):
        self.lm_head = new_embeddings
    
    def get_input_embeddings(self):
        return self.decoder.get_input_embeddings()

    def forward(
        self,
        pixel_values: Optional[torch.FloatTensor] = None,
        decoder_input_ids: Optional[torch.LongTensor] = None,
        decoder_attention_mask: Optional[torch.BoolTensor] = None,
        encoder_outputs: Optional[Tuple[torch.FloatTensor]] = None,
        past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
        decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        __subflavors__: Optional[str] = None,
        __keys__: Optional[List[str]] = None,
        return_sample_losses: Optional[torch.FloatTensor] = None,
        **kwargs,
    ) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]:
        
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        kwargs_encoder = {argument: value for argument, value in kwargs.items() if not argument.startswith("decoder_")}

        kwargs_decoder = {
            argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_")
        }

        if encoder_outputs is None:
            if pixel_values is None:
                raise ValueError("You have to specify pixel_values")

            encoder_outputs = self.encoder(
                pixel_values,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict=return_dict,
                **kwargs_encoder,
            )

        elif isinstance(encoder_outputs, tuple):
            encoder_outputs = BaseModelOutput(*encoder_outputs)

        encoder_hidden_states = encoder_outputs[0]

        encoder_attention_mask = None

        if (labels is not None) and (decoder_input_ids is None and decoder_inputs_embeds is None):
            decoder_input_ids = shift_tokens_right(
                labels, self.config.pad_token_id, self.config.decoder_start_token_id
            )

        output_hidden_states = True

        decoder_outputs = self.decoder(
            input_ids=decoder_input_ids,
            attention_mask=decoder_attention_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            inputs_embeds=decoder_inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            use_cache=use_cache,
            past_key_values=past_key_values,
            return_dict=return_dict,
            **kwargs_decoder,
        )
        loss = None

        if labels is not None:
            main_logits = self.lm_head(decoder_outputs.last_hidden_state)
            logits = [main_logits]
            decoder_inputs_embeds = decoder_outputs.inputs_embeds
            for iii, head in enumerate(self.decoder.extra_heads):

                decoder_input_embeds_shift = self.decoder.extra_proj[iii](torch.cat((decoder_inputs_embeds[:,1:,:], torch.zeros_like(decoder_inputs_embeds[:,0,:].unsqueeze(1))), axis=1))
                hidden = head(decoder_outputs['hidden_states'][-1] + decoder_input_embeds_shift)
                logits.append(self.lm_head(hidden))  # Use main lm_head, NOT decoder.lm_head

            logits = torch.stack(logits, dim=-2)
            loss_fct = CrossEntropyLoss(reduction="none")

            losses_per_head = []
            tokens_per_head = []
            for head_num in range(len(self.decoder.extra_heads)+1):
                logits_head = logits[:,:,head_num,:]
                labels_head = torch.cat(
                    (labels[:, head_num:], torch.full_like(labels[:, :head_num], -100)),
                    1
                )
                loss_full = loss_fct(logits_head.permute(0, 2, 1), labels_head)
                loss_full[labels_head >= self.class_token_indx_start] *= 10
                losses_per_head.append(loss_full.sum(1))
                tokens_per_head.append((labels_head != -100).sum(1))

            losses_per_sample = torch.stack(losses_per_head, dim=1).sum(1)
            tokens_per_sample = torch.stack(tokens_per_head, dim=1).sum(1)
            loss = losses_per_sample.sum() / (tokens_per_sample.sum() + 1e-6)
            if return_sample_losses is not None:
                return_sample_losses.copy_(losses_per_sample.detach() / (tokens_per_sample + 1e-6))

        if not return_dict:
            if loss is not None:
                return (loss,) + decoder_outputs + encoder_outputs
            else:
                return decoder_outputs + encoder_outputs
        output_logits = self.lm_head(decoder_outputs.last_hidden_state)
        return Seq2SeqLMOutput(
            loss=loss,
            logits=output_logits, 
            past_key_values=decoder_outputs.past_key_values,
            decoder_hidden_states=decoder_outputs.hidden_states,
            decoder_attentions=decoder_outputs.attentions,
            cross_attentions=decoder_outputs.cross_attentions,
            encoder_last_hidden_state=encoder_outputs.last_hidden_state,
            encoder_hidden_states=encoder_outputs.hidden_states,
            encoder_attentions=encoder_outputs.attentions,
        )

    def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor):
        return shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id)


    def resize_token_embeddings(self, new_num_tokens: Optional[int] = None, pad_to_multiple_of: Optional[int] = None):
        """Resize token embeddings and update lm_head accordingly."""
        # Resize decoder embeddings
        new_embeddings = self.decoder.resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
        
        # Update lm_head to match new vocab size
        if new_embeddings is not None:
            old_vocab_size, hidden_size = self.lm_head.weight.shape
            new_vocab_size = new_embeddings.num_embeddings
            
            if old_vocab_size != new_vocab_size:
                print(f"Resizing lm_head from {old_vocab_size} to {new_vocab_size} tokens")
                new_lm_head = nn.Linear(hidden_size, new_vocab_size, bias=False, device=self.lm_head.weight.device, dtype=self.lm_head.weight.dtype)
                
                # Copy old weights to new lm_head
                num_tokens_to_copy = min(old_vocab_size, new_vocab_size)
                new_lm_head.weight.data[:num_tokens_to_copy] = self.lm_head.weight.data[:num_tokens_to_copy]
                
                # Update reference
                self.lm_head = new_lm_head
                # DO NOT update decoder.lm_head - keep them separate
        
        return new_embeddings

    def _reorder_cache(self, past_key_values, beam_idx):
        # apply decoder cache reordering here
        return self.decoder._reorder_cache(past_key_values, beam_idx)


# Copied from transformers.models.encoder_decoder.modeling_encoder_decoder.shift_tokens_right
def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int):
    """
    Shift input ids one token to the right.
    """
    shifted_input_ids = input_ids.new_zeros(input_ids.shape)
    shifted_input_ids[:, 1:] = input_ids[:, :-1].clone()
    if decoder_start_token_id is None:
        raise ValueError("Make sure to set the decoder_start_token_id attribute of the model's configuration.")
    shifted_input_ids[:, 0] = decoder_start_token_id

    if pad_token_id is None:
        raise ValueError("Make sure to set the pad_token_id attribute of the model's configuration.")
    # replace possible -100 values in labels by `pad_token_id`
    shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)

    return shifted_input_ids