Add files using upload-large-folder tool
Browse files- tests/tuners/__init__.py +0 -0
- tests/tuners/test_extra_state_dict.py +63 -0
- tests/tuners/test_merged_linear.py +44 -0
- tests/tuners/test_neft.py +109 -0
- tests/tuners/test_peft.py +160 -0
- tests/tuners/test_scetuning.py +131 -0
- tests/tuners/test_swift_base.py +553 -0
- tests/tuners/test_swift_device_map.py +45 -0
- tests/tuners/test_swift_restuning.py +136 -0
- tests/utils/__init__.py +0 -0
- tests/utils/test_file_utils.py +32 -0
- tests/utils/test_io_utils.py +42 -0
- tests/utils/test_split_str_parts_by.py +13 -0
- tests/utils/test_torch_utils.py +16 -0
tests/tuners/__init__.py
ADDED
|
File without changes
|
tests/tuners/test_extra_state_dict.py
ADDED
|
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os.path
|
| 2 |
+
import shutil
|
| 3 |
+
import tempfile
|
| 4 |
+
import unittest
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
from modelscope import Model
|
| 8 |
+
|
| 9 |
+
from swift import LoRAConfig, Swift
|
| 10 |
+
from swift.tuners.utils import ModulesToSaveWrapper
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
class TestExtraStateDict(unittest.TestCase):
|
| 14 |
+
|
| 15 |
+
def setUp(self):
|
| 16 |
+
print(('Testing %s.%s' % (type(self).__name__, self._testMethodName)))
|
| 17 |
+
self.tmp_dir = tempfile.TemporaryDirectory().name
|
| 18 |
+
if not os.path.exists(self.tmp_dir):
|
| 19 |
+
os.makedirs(self.tmp_dir)
|
| 20 |
+
|
| 21 |
+
def tearDown(self):
|
| 22 |
+
shutil.rmtree(self.tmp_dir)
|
| 23 |
+
super().tearDown()
|
| 24 |
+
|
| 25 |
+
def test_swift_extra_state_dict(self):
|
| 26 |
+
model = Model.from_pretrained('damo/nlp_structbert_sentence-similarity_chinese-base')
|
| 27 |
+
lora_config = LoRAConfig(target_modules=['query', 'key', 'value'])
|
| 28 |
+
model = Swift.prepare_model(model, lora_config, extra_state_keys=['classifier.*'])
|
| 29 |
+
model.save_pretrained(self.tmp_dir)
|
| 30 |
+
self.assertTrue(os.path.isfile(os.path.join(self.tmp_dir, 'extra_states', 'adapter_model.bin')))
|
| 31 |
+
state_dict = torch.load(os.path.join(self.tmp_dir, 'extra_states', 'adapter_model.bin'))
|
| 32 |
+
self.assertTrue(any('classifier' in key for key in state_dict))
|
| 33 |
+
state_dict['classifier.weight'] = torch.ones_like(state_dict['classifier.weight']) * 2.0
|
| 34 |
+
with open(os.path.join(self.tmp_dir, 'extra_states', 'adapter_model.bin'), 'wb') as f:
|
| 35 |
+
torch.save(state_dict, f)
|
| 36 |
+
model = Model.from_pretrained('damo/nlp_structbert_sentence-similarity_chinese-base')
|
| 37 |
+
model = Swift.from_pretrained(model, self.tmp_dir, inference_mode=False)
|
| 38 |
+
names = [name for name, value in model.named_parameters() if value.requires_grad]
|
| 39 |
+
self.assertTrue(any('classifier' in name for name in names))
|
| 40 |
+
self.assertTrue(torch.allclose(state_dict['classifier.weight'], model.base_model.classifier.weight))
|
| 41 |
+
|
| 42 |
+
def test_swift_modules_to_save(self):
|
| 43 |
+
model = Model.from_pretrained('damo/nlp_structbert_sentence-similarity_chinese-base')
|
| 44 |
+
lora_config = LoRAConfig(target_modules=['query', 'key', 'value'], modules_to_save=['classifier'])
|
| 45 |
+
lora_config2 = LoRAConfig(target_modules=['query', 'key', 'value'], modules_to_save=['classifier'])
|
| 46 |
+
model = Swift.prepare_model(model, {'lora1': lora_config, 'lora2': lora_config2})
|
| 47 |
+
model.set_active_adapters('lora1')
|
| 48 |
+
model.set_active_adapters('lora2')
|
| 49 |
+
self.assertTrue(isinstance(model.classifier, ModulesToSaveWrapper))
|
| 50 |
+
self.assertTrue(model.classifier.active_adapter == 'lora2')
|
| 51 |
+
model.save_pretrained(self.tmp_dir)
|
| 52 |
+
state_dict = torch.load(os.path.join(self.tmp_dir, 'lora2', 'adapter_model.bin'))
|
| 53 |
+
self.assertTrue(any('classifier' in key for key in state_dict))
|
| 54 |
+
state_dict['classifier.weight'] = torch.ones_like(state_dict['classifier.weight']) * 2.0
|
| 55 |
+
with open(os.path.join(self.tmp_dir, 'lora2', 'adapter_model.bin'), 'wb') as f:
|
| 56 |
+
torch.save(state_dict, f)
|
| 57 |
+
model = Model.from_pretrained('damo/nlp_structbert_sentence-similarity_chinese-base')
|
| 58 |
+
model = Swift.from_pretrained(model, self.tmp_dir, adapter_name='lora2')
|
| 59 |
+
names = [name for name, value in model.named_parameters() if value.requires_grad]
|
| 60 |
+
self.assertTrue(any('classifier' in name for name in names))
|
| 61 |
+
self.assertTrue(
|
| 62 |
+
torch.allclose(state_dict['classifier.weight'],
|
| 63 |
+
model.base_model.classifier.modules_to_save['lora2'].weight))
|
tests/tuners/test_merged_linear.py
ADDED
|
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
import unittest
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
from modelscope import Model, Preprocessor
|
| 6 |
+
from torch import nn
|
| 7 |
+
|
| 8 |
+
from swift import LoRAConfig, Swift
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
class TestMergedLinear(unittest.TestCase):
|
| 12 |
+
|
| 13 |
+
def test_swift_lora_forward(self):
|
| 14 |
+
|
| 15 |
+
from swift.tuners.lora import MergedLinear
|
| 16 |
+
|
| 17 |
+
def reset_parameters(self):
|
| 18 |
+
nn.Linear.reset_parameters(self)
|
| 19 |
+
if hasattr(self, 'lora_A'):
|
| 20 |
+
# initialize A the same way as the default for nn.Linear and B to zero
|
| 21 |
+
nn.init.kaiming_uniform_(self.lora_A, a=math.sqrt(5))
|
| 22 |
+
nn.init.ones_(self.lora_B)
|
| 23 |
+
|
| 24 |
+
MergedLinear.reset_parameters = reset_parameters
|
| 25 |
+
|
| 26 |
+
model = Model.from_pretrained('damo/nlp_structbert_sentence-similarity_chinese-base')
|
| 27 |
+
preprocessor = Preprocessor.from_pretrained('damo/nlp_structbert_sentence-similarity_chinese-base')
|
| 28 |
+
inputs = preprocessor('how are you')
|
| 29 |
+
lora_config = LoRAConfig(
|
| 30 |
+
target_modules=['query', 'key', 'value'], use_merged_linear=True, enable_lora=[True, True, True])
|
| 31 |
+
outputs = model(**inputs)
|
| 32 |
+
model = Swift.prepare_model(model, config=lora_config)
|
| 33 |
+
model.eval()
|
| 34 |
+
outputs_lora = model(**inputs)
|
| 35 |
+
model.deactivate_adapter('default')
|
| 36 |
+
outputs_deactivate = model(**inputs)
|
| 37 |
+
model.activate_adapter('default')
|
| 38 |
+
outputs_reactivate = model(**inputs)
|
| 39 |
+
Swift.merge_and_unload(model)
|
| 40 |
+
outputs_merged = model(**inputs)
|
| 41 |
+
self.assertTrue(torch.allclose(outputs.logits, outputs_deactivate.logits))
|
| 42 |
+
self.assertTrue(not torch.allclose(outputs.logits, outputs_lora.logits))
|
| 43 |
+
self.assertTrue(torch.allclose(outputs_lora.logits, outputs_reactivate.logits))
|
| 44 |
+
self.assertTrue(torch.allclose(outputs_lora.logits, outputs_merged.logits, atol=1e-4))
|
tests/tuners/test_neft.py
ADDED
|
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import shutil
|
| 3 |
+
import tempfile
|
| 4 |
+
import unittest
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
from modelscope import AutoModel, Preprocessor
|
| 8 |
+
from peft.utils import WEIGHTS_NAME
|
| 9 |
+
from transformers import PreTrainedModel
|
| 10 |
+
|
| 11 |
+
from swift import LoRAConfig, Swift
|
| 12 |
+
from swift.tuners import NEFTuneConfig
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
class TestNEFT(unittest.TestCase):
|
| 16 |
+
|
| 17 |
+
def setUp(self):
|
| 18 |
+
print(('Testing %s.%s' % (type(self).__name__, self._testMethodName)))
|
| 19 |
+
self.tmp_dir = tempfile.TemporaryDirectory().name
|
| 20 |
+
if not os.path.exists(self.tmp_dir):
|
| 21 |
+
os.makedirs(self.tmp_dir)
|
| 22 |
+
|
| 23 |
+
def tearDown(self):
|
| 24 |
+
shutil.rmtree(self.tmp_dir)
|
| 25 |
+
super().tearDown()
|
| 26 |
+
|
| 27 |
+
def test_neft(self):
|
| 28 |
+
model = AutoModel.from_pretrained('AI-ModelScope/bert-base-uncased')
|
| 29 |
+
preprocessor = Preprocessor.from_pretrained('damo/nlp_structbert_sentence-similarity_chinese-base')
|
| 30 |
+
inputs = preprocessor('how are you')
|
| 31 |
+
config = NEFTuneConfig()
|
| 32 |
+
|
| 33 |
+
t1 = model.embeddings.word_embeddings(inputs['input_ids'])
|
| 34 |
+
model = Swift.prepare_model(model, config)
|
| 35 |
+
model.train()
|
| 36 |
+
t2 = model.embeddings.word_embeddings(inputs['input_ids'])
|
| 37 |
+
model.deactivate_adapter('default')
|
| 38 |
+
t3 = model.embeddings.word_embeddings(inputs['input_ids'])
|
| 39 |
+
self.assertTrue(torch.allclose(t1, t3))
|
| 40 |
+
self.assertFalse(torch.allclose(t1, t2))
|
| 41 |
+
model.save_pretrained(self.tmp_dir)
|
| 42 |
+
bin_file = os.path.join(self.tmp_dir, 'pytorch_model.bin')
|
| 43 |
+
self.assertTrue(os.path.isfile(bin_file))
|
| 44 |
+
model2 = AutoModel.from_pretrained(self.tmp_dir)
|
| 45 |
+
|
| 46 |
+
state_dict = model.state_dict()
|
| 47 |
+
state_dict2 = model2.state_dict()
|
| 48 |
+
self.assertTrue(len(state_dict) > 0)
|
| 49 |
+
for key in state_dict:
|
| 50 |
+
self.assertTrue(key in state_dict2)
|
| 51 |
+
self.assertTrue(all(torch.isclose(state_dict[key], state_dict2[key]).flatten().detach().cpu()))
|
| 52 |
+
|
| 53 |
+
shutil.rmtree(self.tmp_dir)
|
| 54 |
+
PreTrainedModel.origin_save_pretrained = PreTrainedModel.save_pretrained
|
| 55 |
+
delattr(PreTrainedModel, 'save_pretrained')
|
| 56 |
+
model.save_pretrained(self.tmp_dir)
|
| 57 |
+
bin_file = os.path.join(self.tmp_dir, WEIGHTS_NAME)
|
| 58 |
+
self.assertTrue(os.path.isfile(bin_file))
|
| 59 |
+
model_new = AutoModel.from_pretrained('AI-ModelScope/bert-base-uncased')
|
| 60 |
+
model_new_2 = Swift.from_pretrained(model_new, self.tmp_dir)
|
| 61 |
+
|
| 62 |
+
state_dict = model.state_dict()
|
| 63 |
+
state_dict2 = model_new_2.state_dict()
|
| 64 |
+
self.assertTrue(len(state_dict) > 0)
|
| 65 |
+
for key in state_dict:
|
| 66 |
+
self.assertTrue(key in state_dict2)
|
| 67 |
+
self.assertTrue(all(torch.isclose(state_dict[key], state_dict2[key]).flatten().detach().cpu()))
|
| 68 |
+
PreTrainedModel.save_pretrained = PreTrainedModel.origin_save_pretrained
|
| 69 |
+
|
| 70 |
+
def test_neft_lora(self):
|
| 71 |
+
model = AutoModel.from_pretrained('AI-ModelScope/bert-base-uncased')
|
| 72 |
+
preprocessor = Preprocessor.from_pretrained('damo/nlp_structbert_sentence-similarity_chinese-base')
|
| 73 |
+
inputs = preprocessor('how are you')
|
| 74 |
+
config = NEFTuneConfig()
|
| 75 |
+
config2 = LoRAConfig(target_modules=['query', 'key', 'value'])
|
| 76 |
+
|
| 77 |
+
t1 = model.embeddings.word_embeddings(inputs['input_ids'])
|
| 78 |
+
model = Swift.prepare_model(model, {'c1': config, 'c2': config2})
|
| 79 |
+
model.train()
|
| 80 |
+
t2 = model.embeddings.word_embeddings(inputs['input_ids'])
|
| 81 |
+
model.deactivate_adapter('c1')
|
| 82 |
+
t3 = model.embeddings.word_embeddings(inputs['input_ids'])
|
| 83 |
+
self.assertTrue(torch.allclose(t1, t3))
|
| 84 |
+
self.assertFalse(torch.allclose(t1, t2))
|
| 85 |
+
model.save_pretrained(self.tmp_dir)
|
| 86 |
+
bin_file = os.path.join(self.tmp_dir, 'c2', WEIGHTS_NAME)
|
| 87 |
+
self.assertTrue(os.path.isfile(bin_file))
|
| 88 |
+
bin_file = os.path.join(self.tmp_dir, 'c1', WEIGHTS_NAME)
|
| 89 |
+
self.assertTrue(not os.path.isfile(bin_file))
|
| 90 |
+
model_new = AutoModel.from_pretrained('AI-ModelScope/bert-base-uncased')
|
| 91 |
+
t1 = model_new.embeddings.word_embeddings(inputs['input_ids'])
|
| 92 |
+
model_new = Swift.from_pretrained(model_new, self.tmp_dir)
|
| 93 |
+
model_new.train()
|
| 94 |
+
t2 = model_new.embeddings.word_embeddings(inputs['input_ids'])
|
| 95 |
+
model_new.eval()
|
| 96 |
+
t4 = model_new.embeddings.word_embeddings(inputs['input_ids'])
|
| 97 |
+
model_new.train()
|
| 98 |
+
model_new.deactivate_adapter('c1')
|
| 99 |
+
t3 = model_new.embeddings.word_embeddings(inputs['input_ids'])
|
| 100 |
+
self.assertTrue(torch.allclose(t1, t3))
|
| 101 |
+
self.assertTrue(torch.allclose(t1, t4))
|
| 102 |
+
self.assertFalse(torch.allclose(t1, t2))
|
| 103 |
+
|
| 104 |
+
state_dict = model.state_dict()
|
| 105 |
+
state_dict2 = model_new.state_dict()
|
| 106 |
+
self.assertTrue(len(state_dict) > 0 and all(['lora' in key for key in state_dict.keys()]))
|
| 107 |
+
for key in state_dict:
|
| 108 |
+
self.assertTrue(key in state_dict2)
|
| 109 |
+
self.assertTrue(all(torch.isclose(state_dict[key], state_dict2[key]).flatten().detach().cpu()))
|
tests/tuners/test_peft.py
ADDED
|
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import copy
|
| 2 |
+
import os
|
| 3 |
+
import shutil
|
| 4 |
+
import tempfile
|
| 5 |
+
import unittest
|
| 6 |
+
|
| 7 |
+
import peft
|
| 8 |
+
import torch
|
| 9 |
+
from modelscope import Preprocessor
|
| 10 |
+
from modelscope.models.nlp.structbert import SbertConfig, SbertForSequenceClassification
|
| 11 |
+
from peft import PeftModel, inject_adapter_in_model
|
| 12 |
+
from peft.config import PeftConfigMixin
|
| 13 |
+
from peft.tuners.lora import Linear
|
| 14 |
+
from peft.utils import WEIGHTS_NAME
|
| 15 |
+
from torch import nn
|
| 16 |
+
|
| 17 |
+
from swift import AdaLoraConfig, LoraConfig, LoRAConfig, Swift, get_peft_model
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
class TestPeft(unittest.TestCase):
|
| 21 |
+
|
| 22 |
+
def setUp(self):
|
| 23 |
+
print(('Testing %s.%s' % (type(self).__name__, self._testMethodName)))
|
| 24 |
+
self.tmp_dir = tempfile.TemporaryDirectory().name
|
| 25 |
+
if not os.path.exists(self.tmp_dir):
|
| 26 |
+
os.makedirs(self.tmp_dir)
|
| 27 |
+
|
| 28 |
+
def tearDown(self):
|
| 29 |
+
shutil.rmtree(self.tmp_dir)
|
| 30 |
+
super().tearDown()
|
| 31 |
+
|
| 32 |
+
def test_peft_lora_injection(self):
|
| 33 |
+
model = SbertForSequenceClassification(SbertConfig())
|
| 34 |
+
model2 = copy.deepcopy(model)
|
| 35 |
+
lora_config = LoraConfig(target_modules=['query', 'key', 'value'])
|
| 36 |
+
model = Swift.prepare_model(model, lora_config)
|
| 37 |
+
model.save_pretrained(self.tmp_dir, safe_serialization=False)
|
| 38 |
+
with open(os.path.join(self.tmp_dir, 'configuration.json'), 'w') as f:
|
| 39 |
+
f.write('{}')
|
| 40 |
+
self.assertTrue(os.path.exists(os.path.join(self.tmp_dir, WEIGHTS_NAME)))
|
| 41 |
+
model2 = Swift.from_pretrained(model2, self.tmp_dir)
|
| 42 |
+
state_dict = model.state_dict()
|
| 43 |
+
state_dict2 = model2.state_dict()
|
| 44 |
+
for key in state_dict:
|
| 45 |
+
self.assertTrue(key in state_dict2)
|
| 46 |
+
self.assertTrue(all(torch.isclose(state_dict[key], state_dict2[key]).flatten().detach().cpu()))
|
| 47 |
+
|
| 48 |
+
@unittest.skip
|
| 49 |
+
def test_lora_merge(self):
|
| 50 |
+
|
| 51 |
+
def reset_lora_parameters(self, adapter_name, init_lora_weights):
|
| 52 |
+
if init_lora_weights is False:
|
| 53 |
+
return
|
| 54 |
+
|
| 55 |
+
if adapter_name == 'default':
|
| 56 |
+
ratio = 1.0
|
| 57 |
+
elif adapter_name == 'second':
|
| 58 |
+
ratio = 2.0
|
| 59 |
+
else:
|
| 60 |
+
ratio = 3.0
|
| 61 |
+
|
| 62 |
+
if adapter_name in self.lora_A.keys():
|
| 63 |
+
nn.init.ones_(self.lora_A[adapter_name].weight)
|
| 64 |
+
self.lora_A[adapter_name].weight.data = self.lora_A[adapter_name].weight.data * ratio
|
| 65 |
+
nn.init.ones_(self.lora_B[adapter_name].weight)
|
| 66 |
+
|
| 67 |
+
Linear.reset_lora_parameters = reset_lora_parameters
|
| 68 |
+
|
| 69 |
+
model = SbertForSequenceClassification(SbertConfig())
|
| 70 |
+
lora_config = LoRAConfig(target_modules=['query', 'key', 'value'])
|
| 71 |
+
model = Swift.prepare_model(model, lora_config)
|
| 72 |
+
lora_config2 = LoRAConfig(target_modules=['query', 'key', 'value'])
|
| 73 |
+
model = Swift.prepare_model(model, {'second': lora_config2})
|
| 74 |
+
model.add_weighted_adapter(['default', 'second'],
|
| 75 |
+
weights=[0.7, 0.3],
|
| 76 |
+
adapter_name='test',
|
| 77 |
+
combination_type='cat')
|
| 78 |
+
self.assertTrue(model.base_model.bert.encoder.layer[0].attention.self.key.active_adapter == ['test'])
|
| 79 |
+
|
| 80 |
+
model2 = SbertForSequenceClassification(SbertConfig())
|
| 81 |
+
lora_config = LoraConfig(target_modules=['query', 'key', 'value'])
|
| 82 |
+
model2 = get_peft_model(model2, lora_config)
|
| 83 |
+
lora_config2 = LoraConfig(target_modules=['query', 'key', 'value'])
|
| 84 |
+
inject_adapter_in_model(lora_config2, model2, adapter_name='second')
|
| 85 |
+
model2.add_weighted_adapter(['default', 'second'],
|
| 86 |
+
weights=[0.7, 0.3],
|
| 87 |
+
adapter_name='test',
|
| 88 |
+
combination_type='cat')
|
| 89 |
+
state_dict = model.state_dict()
|
| 90 |
+
state_dict2 = model2.state_dict()
|
| 91 |
+
state_dict2 = {key[len('base_model.model.'):]: value for key, value in state_dict2.items() if 'lora' in key}
|
| 92 |
+
for key in state_dict:
|
| 93 |
+
self.assertTrue(key in state_dict2)
|
| 94 |
+
self.assertTrue(all(torch.isclose(state_dict[key], state_dict2[key]).flatten().detach().cpu()))
|
| 95 |
+
|
| 96 |
+
preprocessor = Preprocessor.from_pretrained('damo/nlp_structbert_sentence-similarity_chinese-base')
|
| 97 |
+
inputs = preprocessor('how are you')
|
| 98 |
+
print(model(**inputs))
|
| 99 |
+
model.save_pretrained(self.tmp_dir)
|
| 100 |
+
model3 = SbertForSequenceClassification(SbertConfig())
|
| 101 |
+
model3 = Swift.from_pretrained(model3, self.tmp_dir)
|
| 102 |
+
state_dict3 = model3.state_dict()
|
| 103 |
+
for key in state_dict:
|
| 104 |
+
self.assertTrue(key in state_dict3)
|
| 105 |
+
self.assertTrue(all(torch.isclose(state_dict[key], state_dict3[key]).flatten().detach().cpu()))
|
| 106 |
+
|
| 107 |
+
def test_lora_reload_by_peft(self):
|
| 108 |
+
lora_config = LoRAConfig(target_modules=['query', 'key', 'value'])
|
| 109 |
+
model = SbertForSequenceClassification(SbertConfig())
|
| 110 |
+
model2 = copy.deepcopy(model)
|
| 111 |
+
model = Swift.prepare_model(model, lora_config)
|
| 112 |
+
model.save_pretrained(self.tmp_dir, peft_format=True)
|
| 113 |
+
model2 = PeftModel.from_pretrained(model2, self.tmp_dir)
|
| 114 |
+
state_dict = model.state_dict()
|
| 115 |
+
state_dict2 = model2.state_dict()
|
| 116 |
+
state_dict2 = {key[len('base_model.model.'):]: value for key, value in state_dict2.items() if 'lora' in key}
|
| 117 |
+
for key in state_dict:
|
| 118 |
+
self.assertTrue(key in state_dict2)
|
| 119 |
+
self.assertTrue(all(torch.isclose(state_dict[key], state_dict2[key]).flatten().detach().cpu()))
|
| 120 |
+
|
| 121 |
+
def test_peft_adalora_injection(self):
|
| 122 |
+
model = SbertForSequenceClassification(SbertConfig())
|
| 123 |
+
model2 = copy.deepcopy(model)
|
| 124 |
+
adalora_config = AdaLoraConfig(target_modules=['query', 'key', 'value'], total_step=1)
|
| 125 |
+
model = Swift.prepare_model(model, adalora_config)
|
| 126 |
+
model.save_pretrained(self.tmp_dir, safe_serialization=False)
|
| 127 |
+
with open(os.path.join(self.tmp_dir, 'configuration.json'), 'w') as f:
|
| 128 |
+
f.write('{}')
|
| 129 |
+
self.assertTrue(os.path.exists(os.path.join(self.tmp_dir, WEIGHTS_NAME)))
|
| 130 |
+
model2 = Swift.from_pretrained(model2, self.tmp_dir)
|
| 131 |
+
state_dict = model.state_dict()
|
| 132 |
+
state_dict2 = model2.state_dict()
|
| 133 |
+
for key in state_dict:
|
| 134 |
+
self.assertTrue(key in state_dict2)
|
| 135 |
+
self.assertTrue(all(torch.isclose(state_dict[key], state_dict2[key]).flatten().detach().cpu()))
|
| 136 |
+
|
| 137 |
+
@unittest.skip
|
| 138 |
+
def test_peft_lora_dtype(self):
|
| 139 |
+
model = SbertForSequenceClassification(SbertConfig())
|
| 140 |
+
model2 = copy.deepcopy(model)
|
| 141 |
+
model3 = copy.deepcopy(model)
|
| 142 |
+
lora_config = LoraConfig(target_modules=['query', 'key', 'value'], lora_dtype='float16')
|
| 143 |
+
model = Swift.prepare_model(model, lora_config)
|
| 144 |
+
model.save_pretrained(self.tmp_dir, safe_serialization=False)
|
| 145 |
+
self.assertTrue(os.path.exists(os.path.join(self.tmp_dir, 'additional_config.json')))
|
| 146 |
+
model2 = Swift.from_pretrained(model2, self.tmp_dir)
|
| 147 |
+
self.assertTrue(model2.base_model.model.bert.encoder.layer[0].attention.self.key.lora_A.default.weight.dtype ==
|
| 148 |
+
torch.float16)
|
| 149 |
+
self.assertTrue(model2.peft_config['default'].lora_dtype == 'float16')
|
| 150 |
+
state_dict = model.state_dict()
|
| 151 |
+
state_dict2 = model2.state_dict()
|
| 152 |
+
for key in state_dict:
|
| 153 |
+
self.assertTrue(key in state_dict2)
|
| 154 |
+
self.assertTrue(all(torch.isclose(state_dict[key], state_dict2[key]).flatten().detach().cpu()))
|
| 155 |
+
|
| 156 |
+
PeftConfigMixin.from_pretrained = PeftConfigMixin.from_pretrained_origin
|
| 157 |
+
model3 = Swift.from_pretrained(model3, self.tmp_dir)
|
| 158 |
+
self.assertTrue(model3.base_model.model.bert.encoder.layer[0].attention.self.key.lora_A.default.weight.dtype ==
|
| 159 |
+
torch.float32)
|
| 160 |
+
self.assertTrue(isinstance(model3.peft_config['default'], peft.LoraConfig))
|
tests/tuners/test_scetuning.py
ADDED
|
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import copy
|
| 2 |
+
import os
|
| 3 |
+
import shutil
|
| 4 |
+
import tempfile
|
| 5 |
+
import unittest
|
| 6 |
+
|
| 7 |
+
import torch
|
| 8 |
+
from modelscope import snapshot_download
|
| 9 |
+
|
| 10 |
+
from swift import SCETuningConfig, Swift
|
| 11 |
+
from swift.tuners.part import PartConfig
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
class TestSCETuning(unittest.TestCase):
|
| 15 |
+
|
| 16 |
+
def setUp(self):
|
| 17 |
+
print(('Testing %s.%s' % (type(self).__name__, self._testMethodName)))
|
| 18 |
+
self.tmp_dir = tempfile.TemporaryDirectory().name
|
| 19 |
+
if not os.path.exists(self.tmp_dir):
|
| 20 |
+
os.makedirs(self.tmp_dir)
|
| 21 |
+
|
| 22 |
+
def tearDown(self):
|
| 23 |
+
shutil.rmtree(self.tmp_dir)
|
| 24 |
+
super().tearDown()
|
| 25 |
+
|
| 26 |
+
def model_comparison(self, model, model2):
|
| 27 |
+
model_key = list(model.state_dict().keys())
|
| 28 |
+
model2_key = list(model2.state_dict().keys())
|
| 29 |
+
self.assertTrue(model_key == model2_key)
|
| 30 |
+
model_val = torch.sum(torch.stack([torch.sum(val) for val in model.state_dict().values()]))
|
| 31 |
+
model2_val = torch.sum(torch.stack([torch.sum(val) for val in model2.state_dict().values()]))
|
| 32 |
+
self.assertTrue(torch.isclose(model_val, model2_val))
|
| 33 |
+
|
| 34 |
+
def test_scetuning_on_diffusers_v1(self):
|
| 35 |
+
model_dir = snapshot_download('AI-ModelScope/stable-diffusion-v1-5')
|
| 36 |
+
from diffusers import UNet2DConditionModel
|
| 37 |
+
model = UNet2DConditionModel.from_pretrained(model_dir, subfolder='unet')
|
| 38 |
+
model.requires_grad_(False)
|
| 39 |
+
model_check = copy.deepcopy(model)
|
| 40 |
+
# module_keys = [key for key, _ in model.named_modules()]
|
| 41 |
+
scetuning_config = SCETuningConfig(
|
| 42 |
+
dims=[320, 320, 320, 320, 640, 640, 640, 1280, 1280, 1280, 1280, 1280],
|
| 43 |
+
tuner_mode='encoder',
|
| 44 |
+
target_modules=[
|
| 45 |
+
'conv_in', 'down_blocks.0.attentions.0', 'down_blocks.0.attentions.1', 'down_blocks.0.downsamplers',
|
| 46 |
+
'down_blocks.1.attentions.0', 'down_blocks.1.attentions.1', 'down_blocks.1.downsamplers',
|
| 47 |
+
'down_blocks.2.attentions.0', 'down_blocks.2.attentions.1', 'down_blocks.2.downsamplers',
|
| 48 |
+
'down_blocks.3.resnets.0', 'down_blocks.3.resnets.1'
|
| 49 |
+
])
|
| 50 |
+
model = Swift.prepare_model(model, config=scetuning_config)
|
| 51 |
+
print(model.get_trainable_parameters())
|
| 52 |
+
input_data = {
|
| 53 |
+
'sample': torch.ones((1, 4, 64, 64)),
|
| 54 |
+
'timestep': 10,
|
| 55 |
+
'encoder_hidden_states': torch.ones((1, 77, 768))
|
| 56 |
+
}
|
| 57 |
+
result = model(**input_data).sample
|
| 58 |
+
print(result.shape)
|
| 59 |
+
model.save_pretrained(self.tmp_dir)
|
| 60 |
+
self.assertTrue(os.path.exists(os.path.join(self.tmp_dir, 'default')))
|
| 61 |
+
model_check = Swift.from_pretrained(model_check, self.tmp_dir)
|
| 62 |
+
self.model_comparison(model, model_check)
|
| 63 |
+
|
| 64 |
+
def test_scetuning_part_mixin(self):
|
| 65 |
+
model_dir = snapshot_download('AI-ModelScope/stable-diffusion-v1-5')
|
| 66 |
+
from diffusers import UNet2DConditionModel
|
| 67 |
+
model = UNet2DConditionModel.from_pretrained(model_dir, subfolder='unet')
|
| 68 |
+
model.requires_grad_(False)
|
| 69 |
+
model_check = copy.deepcopy(model)
|
| 70 |
+
# module_keys = [key for key, _ in model.named_modules()]
|
| 71 |
+
scetuning_config = SCETuningConfig(
|
| 72 |
+
dims=[320, 320, 320, 320, 640, 640, 640, 1280, 1280, 1280, 1280, 1280],
|
| 73 |
+
tuner_mode='encoder',
|
| 74 |
+
target_modules=[
|
| 75 |
+
'conv_in', 'down_blocks.0.attentions.0', 'down_blocks.0.attentions.1', 'down_blocks.0.downsamplers',
|
| 76 |
+
'down_blocks.1.attentions.0', 'down_blocks.1.attentions.1', 'down_blocks.1.downsamplers',
|
| 77 |
+
'down_blocks.2.attentions.0', 'down_blocks.2.attentions.1', 'down_blocks.2.downsamplers',
|
| 78 |
+
'down_blocks.3.resnets.0', 'down_blocks.3.resnets.1'
|
| 79 |
+
])
|
| 80 |
+
targets = r'.*(to_k|to_v).*'
|
| 81 |
+
part_config = PartConfig(target_modules=targets)
|
| 82 |
+
model = Swift.prepare_model(model, config=scetuning_config)
|
| 83 |
+
model = Swift.prepare_model(model, config={'part': part_config})
|
| 84 |
+
print(model.get_trainable_parameters())
|
| 85 |
+
input_data = {
|
| 86 |
+
'sample': torch.ones((1, 4, 64, 64)),
|
| 87 |
+
'timestep': 10,
|
| 88 |
+
'encoder_hidden_states': torch.ones((1, 77, 768))
|
| 89 |
+
}
|
| 90 |
+
model.set_active_adapters('default')
|
| 91 |
+
model.set_active_adapters('part')
|
| 92 |
+
model.set_active_adapters('default')
|
| 93 |
+
result = model(**input_data).sample
|
| 94 |
+
print(result.shape)
|
| 95 |
+
model.save_pretrained(self.tmp_dir)
|
| 96 |
+
self.assertTrue(os.path.exists(os.path.join(self.tmp_dir, 'default')))
|
| 97 |
+
model_check = Swift.from_pretrained(model_check, self.tmp_dir)
|
| 98 |
+
self.model_comparison(model, model_check)
|
| 99 |
+
|
| 100 |
+
def test_scetuning_on_diffusers_v2(self):
|
| 101 |
+
model_dir = snapshot_download('AI-ModelScope/stable-diffusion-v1-5')
|
| 102 |
+
from diffusers import UNet2DConditionModel
|
| 103 |
+
model = UNet2DConditionModel.from_pretrained(model_dir, subfolder='unet')
|
| 104 |
+
model.requires_grad_(False)
|
| 105 |
+
model_check = copy.deepcopy(model)
|
| 106 |
+
# module_keys = [key for key, _ in model.named_modules()]
|
| 107 |
+
scetuning_config = SCETuningConfig(
|
| 108 |
+
dims=[1280, 1280, 1280, 1280, 1280, 640, 640, 640, 320, 320, 320, 320],
|
| 109 |
+
tuner_mode='decoder',
|
| 110 |
+
target_modules=[
|
| 111 |
+
'up_blocks.0.resnets.0', 'up_blocks.0.resnets.1', 'up_blocks.0.resnets.2', 'up_blocks.1.resnets.0',
|
| 112 |
+
'up_blocks.1.resnets.1', 'up_blocks.1.resnets.2', 'up_blocks.2.resnets.0', 'up_blocks.2.resnets.1',
|
| 113 |
+
'up_blocks.2.resnets.2', 'up_blocks.3.resnets.0', 'up_blocks.3.resnets.1', 'up_blocks.3.resnets.2'
|
| 114 |
+
])
|
| 115 |
+
model = Swift.prepare_model(model, config=scetuning_config)
|
| 116 |
+
print(model.get_trainable_parameters())
|
| 117 |
+
input_data = {
|
| 118 |
+
'sample': torch.ones((1, 4, 64, 64)),
|
| 119 |
+
'timestep': 10,
|
| 120 |
+
'encoder_hidden_states': torch.ones((1, 77, 768))
|
| 121 |
+
}
|
| 122 |
+
result = model(**input_data).sample
|
| 123 |
+
print(result.shape)
|
| 124 |
+
model.save_pretrained(self.tmp_dir)
|
| 125 |
+
self.assertTrue(os.path.exists(os.path.join(self.tmp_dir, 'default')))
|
| 126 |
+
model_check = Swift.from_pretrained(model_check, self.tmp_dir)
|
| 127 |
+
self.model_comparison(model, model_check)
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
if __name__ == '__main__':
|
| 131 |
+
unittest.main()
|
tests/tuners/test_swift_base.py
ADDED
|
@@ -0,0 +1,553 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import copy
|
| 2 |
+
import math
|
| 3 |
+
import os
|
| 4 |
+
import re
|
| 5 |
+
import shutil
|
| 6 |
+
import tempfile
|
| 7 |
+
import unittest
|
| 8 |
+
from concurrent.futures import ThreadPoolExecutor
|
| 9 |
+
|
| 10 |
+
import peft
|
| 11 |
+
import torch
|
| 12 |
+
from modelscope import Model, Preprocessor
|
| 13 |
+
from modelscope.models.nlp.structbert import SbertConfig, SbertForSequenceClassification
|
| 14 |
+
from peft import PeftModel
|
| 15 |
+
from peft.utils import WEIGHTS_NAME
|
| 16 |
+
from torch import nn
|
| 17 |
+
|
| 18 |
+
from swift import AdapterConfig, LoRAConfig, PromptConfig, ResTuningConfig, SideConfig, Swift, SwiftModel
|
| 19 |
+
from swift.tuners.part import Part, PartConfig
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
class TestSwift(unittest.TestCase):
|
| 23 |
+
|
| 24 |
+
def setUp(self):
|
| 25 |
+
print(('Testing %s.%s' % (type(self).__name__, self._testMethodName)))
|
| 26 |
+
self.tmp_dir = tempfile.TemporaryDirectory().name
|
| 27 |
+
if not os.path.exists(self.tmp_dir):
|
| 28 |
+
os.makedirs(self.tmp_dir)
|
| 29 |
+
|
| 30 |
+
def tearDown(self):
|
| 31 |
+
shutil.rmtree(self.tmp_dir)
|
| 32 |
+
super().tearDown()
|
| 33 |
+
|
| 34 |
+
def test_swift_lora_forward(self):
|
| 35 |
+
|
| 36 |
+
from swift.tuners.lora import Linear
|
| 37 |
+
|
| 38 |
+
def reset_lora_parameters(self, adapter_name, init_lora_weights):
|
| 39 |
+
if init_lora_weights is False:
|
| 40 |
+
return
|
| 41 |
+
|
| 42 |
+
if adapter_name in self.lora_A.keys():
|
| 43 |
+
if init_lora_weights is True:
|
| 44 |
+
# initialize A the same way as the default for nn.Linear and B to zero
|
| 45 |
+
# https://github.com/microsoft/LoRA/blob/a0a92e0f26c067cf94747bdbf1ce73793fa44d19/loralib/layers.py#L124
|
| 46 |
+
nn.init.kaiming_uniform_(self.lora_A[adapter_name].weight, a=math.sqrt(5))
|
| 47 |
+
elif init_lora_weights.lower() == 'gaussian':
|
| 48 |
+
nn.init.normal_(self.lora_A[adapter_name].weight, std=1 / self.r[adapter_name])
|
| 49 |
+
else:
|
| 50 |
+
raise ValueError(f'Unknown initialization {init_lora_weights=}')
|
| 51 |
+
nn.init.ones_(self.lora_B[adapter_name].weight)
|
| 52 |
+
if adapter_name in self.lora_embedding_A.keys():
|
| 53 |
+
# initialize a the same way as the default for nn.linear and b to zero
|
| 54 |
+
nn.init.ones_(self.lora_embedding_A[adapter_name])
|
| 55 |
+
nn.init.normal_(self.lora_embedding_B[adapter_name])
|
| 56 |
+
|
| 57 |
+
Linear.reset_lora_parameters = reset_lora_parameters
|
| 58 |
+
|
| 59 |
+
model = Model.from_pretrained('damo/nlp_structbert_sentence-similarity_chinese-base')
|
| 60 |
+
preprocessor = Preprocessor.from_pretrained('damo/nlp_structbert_sentence-similarity_chinese-base')
|
| 61 |
+
inputs = preprocessor('how are you')
|
| 62 |
+
lora_config = LoRAConfig(target_modules=['query', 'key', 'value'])
|
| 63 |
+
outputs = model(**inputs)
|
| 64 |
+
model = Swift.prepare_model(model, config=lora_config)
|
| 65 |
+
model.eval()
|
| 66 |
+
outputs_lora = model(**inputs)
|
| 67 |
+
model.deactivate_adapter('default')
|
| 68 |
+
outputs_deactivate = model(**inputs)
|
| 69 |
+
model.activate_adapter('default')
|
| 70 |
+
outputs_reactivate = model(**inputs)
|
| 71 |
+
self.assertTrue(torch.allclose(outputs.logits, outputs_deactivate.logits))
|
| 72 |
+
self.assertTrue(not torch.allclose(outputs.logits, outputs_lora.logits))
|
| 73 |
+
self.assertTrue(torch.allclose(outputs_lora.logits, outputs_reactivate.logits))
|
| 74 |
+
|
| 75 |
+
def test_swift_adapter_forward(self):
|
| 76 |
+
model = Model.from_pretrained('damo/nlp_structbert_sentence-similarity_chinese-base')
|
| 77 |
+
preprocessor = Preprocessor.from_pretrained('damo/nlp_structbert_sentence-similarity_chinese-base')
|
| 78 |
+
inputs = preprocessor('how are you')
|
| 79 |
+
adapter_config = AdapterConfig(
|
| 80 |
+
dim=model.config.hidden_size,
|
| 81 |
+
target_modules=r'.*layer\.\d+$',
|
| 82 |
+
method_name='feed_forward_chunk',
|
| 83 |
+
hidden_pos=0)
|
| 84 |
+
outputs = model(**inputs)
|
| 85 |
+
model = Swift.prepare_model(model, config=adapter_config)
|
| 86 |
+
outputs_lora = model(**inputs)
|
| 87 |
+
model.deactivate_adapter('default')
|
| 88 |
+
outputs_deactivate = model(**inputs)
|
| 89 |
+
model.activate_adapter('default')
|
| 90 |
+
outputs_reactivate = model(**inputs)
|
| 91 |
+
self.assertTrue(torch.allclose(outputs.logits, outputs_deactivate.logits))
|
| 92 |
+
self.assertTrue(not torch.allclose(outputs.logits, outputs_lora.logits))
|
| 93 |
+
self.assertTrue(torch.allclose(outputs_lora.logits, outputs_reactivate.logits))
|
| 94 |
+
|
| 95 |
+
def test_swift_prompt_forward(self):
|
| 96 |
+
model = Model.from_pretrained('damo/nlp_structbert_sentence-similarity_chinese-base')
|
| 97 |
+
preprocessor = Preprocessor.from_pretrained('damo/nlp_structbert_sentence-similarity_chinese-base')
|
| 98 |
+
inputs = preprocessor('how are you')
|
| 99 |
+
prompt_config = PromptConfig(
|
| 100 |
+
dim=model.config.hidden_size, target_modules=r'.*layer\.\d+$', embedding_pos=0, attention_mask_pos=1)
|
| 101 |
+
outputs = model(**inputs)
|
| 102 |
+
model = Swift.prepare_model(model, config=prompt_config)
|
| 103 |
+
outputs_lora = model(**inputs)
|
| 104 |
+
model.deactivate_adapter('default')
|
| 105 |
+
outputs_deactivate = model(**inputs)
|
| 106 |
+
model.activate_adapter('default')
|
| 107 |
+
outputs_reactivate = model(**inputs)
|
| 108 |
+
self.assertTrue(torch.allclose(outputs.logits, outputs_deactivate.logits))
|
| 109 |
+
self.assertTrue(not torch.allclose(outputs.logits, outputs_lora.logits))
|
| 110 |
+
self.assertTrue(torch.allclose(outputs_lora.logits, outputs_reactivate.logits))
|
| 111 |
+
|
| 112 |
+
def test_swift_restuner_forward(self):
|
| 113 |
+
model = Model.from_pretrained('damo/nlp_structbert_sentence-similarity_chinese-base')
|
| 114 |
+
preprocessor = Preprocessor.from_pretrained('damo/nlp_structbert_sentence-similarity_chinese-base')
|
| 115 |
+
inputs = preprocessor('how are you')
|
| 116 |
+
restuner_config = ResTuningConfig(
|
| 117 |
+
dims=model.config.hidden_size,
|
| 118 |
+
root_modules=r'.*layer.0$',
|
| 119 |
+
stem_modules=r'.*layer\.\d+$',
|
| 120 |
+
target_modules=r'.*pooler',
|
| 121 |
+
target_modules_hook='input',
|
| 122 |
+
tuner_cfg='res_adapter',
|
| 123 |
+
)
|
| 124 |
+
outputs = model(**inputs)
|
| 125 |
+
model = Swift.prepare_model(model, config=restuner_config)
|
| 126 |
+
outputs_lora = model(**inputs)
|
| 127 |
+
model.deactivate_adapter('default')
|
| 128 |
+
outputs_deactivate = model(**inputs)
|
| 129 |
+
model.activate_adapter('default')
|
| 130 |
+
outputs_reactivate = model(**inputs)
|
| 131 |
+
self.assertTrue(torch.allclose(outputs.logits, outputs_deactivate.logits))
|
| 132 |
+
self.assertTrue(not torch.allclose(outputs.logits, outputs_lora.logits))
|
| 133 |
+
self.assertTrue(torch.allclose(outputs_lora.logits, outputs_reactivate.logits))
|
| 134 |
+
|
| 135 |
+
def lora_injection_with_dtype(self, dtype=torch.float32):
|
| 136 |
+
from swift.tuners.lora import Linear
|
| 137 |
+
|
| 138 |
+
def reset_lora_parameters(self, adapter_name, init_lora_weights):
|
| 139 |
+
if init_lora_weights is False:
|
| 140 |
+
return
|
| 141 |
+
|
| 142 |
+
if adapter_name in self.lora_A.keys():
|
| 143 |
+
if init_lora_weights is True:
|
| 144 |
+
nn.init.kaiming_uniform_(self.lora_A[adapter_name].weight, a=math.sqrt(5))
|
| 145 |
+
elif init_lora_weights.lower() == 'gaussian':
|
| 146 |
+
nn.init.normal_(self.lora_A[adapter_name].weight, std=1 / self.r[adapter_name])
|
| 147 |
+
else:
|
| 148 |
+
raise ValueError(f'Unknown initialization {init_lora_weights=}')
|
| 149 |
+
nn.init.ones_(self.lora_B[adapter_name].weight)
|
| 150 |
+
if adapter_name in self.lora_embedding_A.keys():
|
| 151 |
+
# initialize a the same way as the default for nn.linear and b to zero
|
| 152 |
+
nn.init.ones_(self.lora_embedding_A[adapter_name])
|
| 153 |
+
nn.init.normal_(self.lora_embedding_B[adapter_name])
|
| 154 |
+
|
| 155 |
+
Linear.reset_lora_parameters = reset_lora_parameters
|
| 156 |
+
|
| 157 |
+
model = Model.from_pretrained('damo/nlp_structbert_sentence-similarity_chinese-base')
|
| 158 |
+
preprocessor = Preprocessor.from_pretrained('damo/nlp_structbert_sentence-similarity_chinese-base')
|
| 159 |
+
input = preprocessor('this is a test')
|
| 160 |
+
model = model.to(dtype)
|
| 161 |
+
model2 = Model.from_pretrained('damo/nlp_structbert_sentence-similarity_chinese-base')
|
| 162 |
+
model2 = model2.to(dtype)
|
| 163 |
+
lora_config = LoRAConfig(target_modules=['query', 'key', 'value'])
|
| 164 |
+
model = Swift.prepare_model(model, config=lora_config)
|
| 165 |
+
self.assertTrue(isinstance(model, SwiftModel))
|
| 166 |
+
output1 = model(**input)
|
| 167 |
+
model.save_pretrained(self.tmp_dir)
|
| 168 |
+
self.assertTrue(os.path.exists(os.path.join(self.tmp_dir, 'default')))
|
| 169 |
+
self.assertTrue(os.path.exists(os.path.join(self.tmp_dir, 'default', WEIGHTS_NAME)))
|
| 170 |
+
|
| 171 |
+
model2 = Swift.from_pretrained(model2, self.tmp_dir, adapter_name={'default': 'test'})
|
| 172 |
+
self.assertTrue('test' in model2.adapters)
|
| 173 |
+
output2 = model2(**input)
|
| 174 |
+
self.assertTrue(torch.allclose(output1.logits, output2.logits))
|
| 175 |
+
model2 = Swift.from_pretrained(model2, self.tmp_dir)
|
| 176 |
+
state_dict = model.state_dict()
|
| 177 |
+
state_dict2 = model2.state_dict()
|
| 178 |
+
for key in state_dict:
|
| 179 |
+
self.assertTrue(key in state_dict2)
|
| 180 |
+
self.assertTrue(all(torch.isclose(state_dict[key], state_dict2[key]).flatten().detach().cpu()))
|
| 181 |
+
|
| 182 |
+
if dtype == torch.float32 and os.environ.get('USE_UNIQUE_THREAD') == '1':
|
| 183 |
+
Swift.merge_and_unload(model2)
|
| 184 |
+
output3 = model2(**input)
|
| 185 |
+
self.assertTrue(torch.allclose(output1.logits, output3.logits))
|
| 186 |
+
|
| 187 |
+
def test_swift_lora_injection(self):
|
| 188 |
+
self.lora_injection_with_dtype()
|
| 189 |
+
|
| 190 |
+
def test_swift_lora_injection_bf16(self):
|
| 191 |
+
self.lora_injection_with_dtype(torch.bfloat16)
|
| 192 |
+
|
| 193 |
+
def test_save_to_peft_mix(self):
|
| 194 |
+
model = SbertForSequenceClassification(SbertConfig())
|
| 195 |
+
lora_config = LoRAConfig(target_modules=['query', 'key', 'value'])
|
| 196 |
+
adapter_config = AdapterConfig(
|
| 197 |
+
dim=model.config.hidden_size,
|
| 198 |
+
target_modules=r'.*layer\.\d+$',
|
| 199 |
+
method_name='feed_forward_chunk',
|
| 200 |
+
hidden_pos=0)
|
| 201 |
+
model = Swift.prepare_model(model, config={'lora': lora_config, 'adapter': adapter_config})
|
| 202 |
+
model.save_pretrained(os.path.join(self.tmp_dir, 'original'))
|
| 203 |
+
try:
|
| 204 |
+
Swift.save_to_peft_format(os.path.join(self.tmp_dir, 'original'), os.path.join(self.tmp_dir, 'converted'))
|
| 205 |
+
self.assertTrue(False)
|
| 206 |
+
except AssertionError as e:
|
| 207 |
+
print(e)
|
| 208 |
+
pass
|
| 209 |
+
|
| 210 |
+
def test_save_to_peft_param(self):
|
| 211 |
+
model = SbertForSequenceClassification(SbertConfig())
|
| 212 |
+
lora_config = LoRAConfig(target_modules=['query', 'key', 'value'], lora_dtype='float16')
|
| 213 |
+
model = Swift.prepare_model(model, config={'lora': lora_config})
|
| 214 |
+
model.save_pretrained(os.path.join(self.tmp_dir, 'original'))
|
| 215 |
+
try:
|
| 216 |
+
Swift.save_to_peft_format(os.path.join(self.tmp_dir, 'original'), os.path.join(self.tmp_dir, 'converted'))
|
| 217 |
+
self.assertTrue(False)
|
| 218 |
+
except AssertionError as e:
|
| 219 |
+
print(e)
|
| 220 |
+
pass
|
| 221 |
+
|
| 222 |
+
def test_save_to_peft_ok(self):
|
| 223 |
+
model = SbertForSequenceClassification(SbertConfig())
|
| 224 |
+
lora_config = LoRAConfig(target_modules=['query', 'key', 'value'], use_dora=True)
|
| 225 |
+
lora2_config = LoRAConfig(target_modules=['query', 'key', 'value'], use_dora=True)
|
| 226 |
+
model = Swift.prepare_model(model, config={'default': lora_config, 'lora': lora2_config})
|
| 227 |
+
model.save_pretrained(os.path.join(self.tmp_dir, 'original'))
|
| 228 |
+
Swift.save_to_peft_format(os.path.join(self.tmp_dir, 'original'), os.path.join(self.tmp_dir, 'converted'))
|
| 229 |
+
# A duplicate conversion
|
| 230 |
+
Swift.save_to_peft_format(os.path.join(self.tmp_dir, 'original'), os.path.join(self.tmp_dir, 'converted'))
|
| 231 |
+
|
| 232 |
+
# -------------------base case--------------------
|
| 233 |
+
model2 = SbertForSequenceClassification(SbertConfig())
|
| 234 |
+
model2 = PeftModel.from_pretrained(model2, os.path.join(self.tmp_dir, 'converted'))
|
| 235 |
+
model2.load_adapter(os.path.join(os.path.join(self.tmp_dir, 'converted'), 'lora'), 'lora')
|
| 236 |
+
state_dict = model.state_dict()
|
| 237 |
+
state_dict2 = {
|
| 238 |
+
key[len('base_model.model.'):]: value
|
| 239 |
+
for key, value in model2.state_dict().items() if 'lora' in key
|
| 240 |
+
}
|
| 241 |
+
for key in state_dict:
|
| 242 |
+
self.assertTrue(key in state_dict2)
|
| 243 |
+
self.assertTrue(all(torch.isclose(state_dict[key], state_dict2[key]).flatten().detach().cpu()))
|
| 244 |
+
|
| 245 |
+
# -------------------override case--------------------
|
| 246 |
+
Swift.save_to_peft_format(os.path.join(self.tmp_dir, 'converted'), os.path.join(self.tmp_dir, 'converted'))
|
| 247 |
+
model2 = SbertForSequenceClassification(SbertConfig())
|
| 248 |
+
model2 = PeftModel.from_pretrained(model2, os.path.join(self.tmp_dir, 'converted'))
|
| 249 |
+
model2.load_adapter(os.path.join(os.path.join(self.tmp_dir, 'converted'), 'lora'), 'lora')
|
| 250 |
+
state_dict = model.state_dict()
|
| 251 |
+
state_dict2 = {
|
| 252 |
+
key[len('base_model.model.'):]: value
|
| 253 |
+
for key, value in model2.state_dict().items() if 'lora' in key
|
| 254 |
+
}
|
| 255 |
+
for key in state_dict:
|
| 256 |
+
self.assertTrue(key in state_dict2)
|
| 257 |
+
self.assertTrue(all(torch.isclose(state_dict[key], state_dict2[key]).flatten().detach().cpu()))
|
| 258 |
+
|
| 259 |
+
def test_swift_multiple_adapters(self):
|
| 260 |
+
model = SbertForSequenceClassification(SbertConfig())
|
| 261 |
+
model2 = copy.deepcopy(model)
|
| 262 |
+
lora_config = LoRAConfig(target_modules=['query', 'key', 'value'])
|
| 263 |
+
adapter_config = AdapterConfig(
|
| 264 |
+
dim=model.config.hidden_size,
|
| 265 |
+
target_modules=r'.*layer\.\d+$',
|
| 266 |
+
method_name='feed_forward_chunk',
|
| 267 |
+
hidden_pos=0)
|
| 268 |
+
model = Swift.prepare_model(model, config={'lora': lora_config, 'adapter': adapter_config})
|
| 269 |
+
self.assertTrue(isinstance(model, SwiftModel))
|
| 270 |
+
model.save_pretrained(self.tmp_dir, adapter_name=['lora', 'adapter'])
|
| 271 |
+
with open(os.path.join(self.tmp_dir, 'configuration.json'), 'w') as f:
|
| 272 |
+
f.write('{}')
|
| 273 |
+
self.assertTrue(os.path.exists(os.path.join(self.tmp_dir, 'lora')))
|
| 274 |
+
self.assertTrue(os.path.exists(os.path.join(self.tmp_dir, 'lora', WEIGHTS_NAME)))
|
| 275 |
+
self.assertTrue(os.path.exists(os.path.join(self.tmp_dir, 'adapter')))
|
| 276 |
+
self.assertTrue(os.path.exists(os.path.join(self.tmp_dir, 'adapter', WEIGHTS_NAME)))
|
| 277 |
+
model2 = Swift.from_pretrained(model2, self.tmp_dir, adapter_name=['lora', 'adapter'])
|
| 278 |
+
state_dict = model.state_dict()
|
| 279 |
+
state_dict2 = model2.state_dict()
|
| 280 |
+
for key in state_dict:
|
| 281 |
+
self.assertTrue(key in state_dict2)
|
| 282 |
+
self.assertTrue(all(torch.isclose(state_dict[key], state_dict2[key]).flatten().detach().cpu()))
|
| 283 |
+
|
| 284 |
+
def test_part(self):
|
| 285 |
+
preprocessor = Preprocessor.from_pretrained('damo/nlp_structbert_sentence-similarity_chinese-base')
|
| 286 |
+
inputs = preprocessor('how are you')
|
| 287 |
+
model = SbertForSequenceClassification.from_pretrained('damo/nlp_structbert_sentence-similarity_chinese-base')
|
| 288 |
+
model_origin = copy.deepcopy(model)
|
| 289 |
+
model2 = copy.deepcopy(model)
|
| 290 |
+
targets = r'.*(query|key|value).*'
|
| 291 |
+
part_config = PartConfig(target_modules=targets)
|
| 292 |
+
model = Swift.prepare_model(model, config={'part': part_config})
|
| 293 |
+
self.assertTrue(isinstance(model, SwiftModel))
|
| 294 |
+
|
| 295 |
+
model.base_model.encoder.encoder.layer[0].attention.self.query._part_part.weight.data = torch.ones_like(
|
| 296 |
+
model.base_model.encoder.encoder.layer[0].attention.self.query._part_part.weight.data)
|
| 297 |
+
|
| 298 |
+
for name, module in model.named_modules():
|
| 299 |
+
if re.fullmatch(targets, name) and '_part_' not in name:
|
| 300 |
+
self.assertTrue(not module.weight.requires_grad)
|
| 301 |
+
self.assertTrue(model.get_submodule(name + '._part_part').weight.requires_grad)
|
| 302 |
+
|
| 303 |
+
model.save_pretrained(self.tmp_dir, adapter_name=['part'])
|
| 304 |
+
with open(os.path.join(self.tmp_dir, 'configuration.json'), 'w') as f:
|
| 305 |
+
f.write('{}')
|
| 306 |
+
self.assertTrue(os.path.exists(os.path.join(self.tmp_dir, 'part')))
|
| 307 |
+
self.assertTrue(os.path.exists(os.path.join(self.tmp_dir, 'part', WEIGHTS_NAME)))
|
| 308 |
+
model2 = Swift.from_pretrained(model2, self.tmp_dir, adapter_name=['part'])
|
| 309 |
+
self.assertTrue(
|
| 310 |
+
all(
|
| 311 |
+
torch.isclose(model.base_model.encoder.encoder.layer[0].attention.self.query._part_part.weight.data,
|
| 312 |
+
model2.base_model.encoder.encoder.layer[0].attention.self.query._part_part.weight.data).
|
| 313 |
+
flatten().detach().cpu()))
|
| 314 |
+
|
| 315 |
+
state_dict = model.model.state_dict()
|
| 316 |
+
state_dict2 = model2.model.state_dict()
|
| 317 |
+
self.assertTrue(str(state_dict) == str(state_dict2))
|
| 318 |
+
|
| 319 |
+
output = model(**inputs)
|
| 320 |
+
output2 = model2(**inputs)
|
| 321 |
+
output_origin = model_origin(**inputs)
|
| 322 |
+
self.assertTrue(all(torch.isclose(output.logits, output2.logits).flatten().detach().cpu()))
|
| 323 |
+
self.assertTrue(not all(torch.isclose(output_origin.logits, output2.logits).flatten().detach().cpu()))
|
| 324 |
+
|
| 325 |
+
model2.deactivate_adapter('part')
|
| 326 |
+
output = model(**inputs)
|
| 327 |
+
output2 = model2(**inputs)
|
| 328 |
+
output_origin = model_origin(**inputs)
|
| 329 |
+
self.assertTrue(not all(torch.isclose(output.logits, output2.logits).flatten().detach().cpu()))
|
| 330 |
+
self.assertTrue(all(torch.isclose(output_origin.logits, output2.logits).flatten().detach().cpu()))
|
| 331 |
+
|
| 332 |
+
model2.activate_adapter('part')
|
| 333 |
+
output = model(**inputs)
|
| 334 |
+
output2 = model2(**inputs)
|
| 335 |
+
output_origin = model_origin(**inputs)
|
| 336 |
+
self.assertTrue(all(torch.isclose(output.logits, output2.logits).flatten().detach().cpu()))
|
| 337 |
+
self.assertTrue(not all(torch.isclose(output_origin.logits, output2.logits).flatten().detach().cpu()))
|
| 338 |
+
|
| 339 |
+
targets = r'.*(query|key|value).*'
|
| 340 |
+
part_config = PartConfig(target_modules=targets)
|
| 341 |
+
lora_config = LoRAConfig(target_modules=targets)
|
| 342 |
+
model2 = Swift.prepare_model(model2, config={'part2': part_config})
|
| 343 |
+
model2 = Swift.prepare_model(model2, config={'lora': lora_config})
|
| 344 |
+
model2 = Swift.prepare_model(model2, config={'part3': part_config})
|
| 345 |
+
model2.set_active_adapters('part2', offload='meta')
|
| 346 |
+
model2.set_active_adapters('part3', offload='meta')
|
| 347 |
+
model2.set_active_adapters('lora', offload='meta')
|
| 348 |
+
model2.set_active_adapters('part2', offload='meta')
|
| 349 |
+
self.assertTrue(
|
| 350 |
+
not model2.base_model.encoder.encoder.layer[0].attention.self.query.base_layer._part_part.activated)
|
| 351 |
+
self.assertTrue(
|
| 352 |
+
model2.base_model.encoder.encoder.layer[0].attention.self.query.base_layer._part_part2.activated)
|
| 353 |
+
model2.set_active_adapters('part', offload='meta')
|
| 354 |
+
self.assertTrue(
|
| 355 |
+
not model2.base_model.encoder.encoder.layer[0].attention.self.query.base_layer._part_part2.activated)
|
| 356 |
+
self.assertTrue(model2.base_model.encoder.encoder.layer[0].attention.self.query.base_layer._part_part.activated)
|
| 357 |
+
output = model(**inputs)
|
| 358 |
+
output2 = model2(**inputs)
|
| 359 |
+
output_origin = model_origin(**inputs)
|
| 360 |
+
self.assertTrue(all(torch.isclose(output.logits, output2.logits).flatten().detach().cpu()))
|
| 361 |
+
self.assertTrue(not all(torch.isclose(output_origin.logits, output2.logits).flatten().detach().cpu()))
|
| 362 |
+
|
| 363 |
+
model2.set_active_adapters('part2', offload='meta')
|
| 364 |
+
model2.deactivate_adapter('part2', offload='meta')
|
| 365 |
+
model2.deactivate_adapter('lora', offload='cpu')
|
| 366 |
+
self.assertTrue(
|
| 367 |
+
not model2.base_model.encoder.encoder.layer[0].attention.self.query.base_layer._part_part2.activated)
|
| 368 |
+
self.assertTrue(
|
| 369 |
+
not model2.base_model.encoder.encoder.layer[0].attention.self.query.base_layer._part_part.activated)
|
| 370 |
+
output = model(**inputs)
|
| 371 |
+
output2 = model2(**inputs)
|
| 372 |
+
output_origin = model_origin(**inputs)
|
| 373 |
+
self.assertTrue(not all(torch.isclose(output.logits, output2.logits).flatten().detach().cpu()))
|
| 374 |
+
self.assertTrue(all(torch.isclose(output_origin.logits, output2.logits).flatten().detach().cpu()))
|
| 375 |
+
model2.activate_adapter('lora')
|
| 376 |
+
self.assertTrue(
|
| 377 |
+
not model2.base_model.encoder.encoder.layer[0].attention.self.query.base_layer._part_part2.activated)
|
| 378 |
+
self.assertTrue(
|
| 379 |
+
not model2.base_model.encoder.encoder.layer[0].attention.self.query.base_layer._part_part.activated)
|
| 380 |
+
self.assertTrue(
|
| 381 |
+
not model2.base_model.encoder.encoder.layer[0].attention.self.query.base_layer._part_part3.activated)
|
| 382 |
+
self.assertTrue(model2.base_model.encoder.encoder.layer[0].attention.self.query.active_adapters == ['lora'])
|
| 383 |
+
|
| 384 |
+
def test_swift_multiple_adapters_switching(self):
|
| 385 |
+
from swift.tuners.lora import Linear
|
| 386 |
+
from swift.tuners.adapter import AdapterModule
|
| 387 |
+
|
| 388 |
+
def reset_lora_parameters(self, adapter_name, init_lora_weights):
|
| 389 |
+
if init_lora_weights is False:
|
| 390 |
+
return
|
| 391 |
+
|
| 392 |
+
if adapter_name in self.lora_A.keys():
|
| 393 |
+
if init_lora_weights is True:
|
| 394 |
+
# initialize A the same way as the default for nn.Linear and B to zero
|
| 395 |
+
# https://github.com/microsoft/LoRA/blob/a0a92e0f26c067cf94747bdbf1ce73793fa44d19/loralib/layers.py#L124
|
| 396 |
+
nn.init.ones_(self.lora_A[adapter_name].weight)
|
| 397 |
+
elif init_lora_weights.lower() == 'gaussian':
|
| 398 |
+
nn.init.normal_(self.lora_A[adapter_name].weight, std=1 / self.r[adapter_name])
|
| 399 |
+
else:
|
| 400 |
+
raise ValueError(f'Unknown initialization {init_lora_weights=}')
|
| 401 |
+
nn.init.ones_(self.lora_B[adapter_name].weight)
|
| 402 |
+
if adapter_name in self.lora_embedding_A.keys():
|
| 403 |
+
# initialize a the same way as the default for nn.linear and b to zero
|
| 404 |
+
nn.init.ones_(self.lora_embedding_A[adapter_name])
|
| 405 |
+
nn.init.normal_(self.lora_embedding_B[adapter_name])
|
| 406 |
+
|
| 407 |
+
Linear.reset_lora_parameters = reset_lora_parameters
|
| 408 |
+
|
| 409 |
+
def init_weights(self):
|
| 410 |
+
|
| 411 |
+
def _init_weights(m):
|
| 412 |
+
if isinstance(m, nn.Linear):
|
| 413 |
+
nn.init.ones_(m.weight)
|
| 414 |
+
nn.init.ones_(m.bias)
|
| 415 |
+
|
| 416 |
+
self.apply(_init_weights)
|
| 417 |
+
|
| 418 |
+
AdapterModule.init_weights = init_weights
|
| 419 |
+
|
| 420 |
+
model = Model.from_pretrained('damo/nlp_structbert_sentence-similarity_chinese-base')
|
| 421 |
+
preprocessor = Preprocessor.from_pretrained('damo/nlp_structbert_sentence-similarity_chinese-base')
|
| 422 |
+
inputs = preprocessor('how are you')
|
| 423 |
+
model1 = copy.deepcopy(model)
|
| 424 |
+
model2 = copy.deepcopy(model)
|
| 425 |
+
model1 = Swift.prepare_model(
|
| 426 |
+
model1,
|
| 427 |
+
config={
|
| 428 |
+
'lora1':
|
| 429 |
+
LoRAConfig(target_modules=['query', 'key', 'value']),
|
| 430 |
+
'adapter1':
|
| 431 |
+
AdapterConfig(
|
| 432 |
+
dim=model.config.hidden_size,
|
| 433 |
+
target_modules=r'.*layer\.\d+$',
|
| 434 |
+
method_name='feed_forward_chunk',
|
| 435 |
+
hidden_pos=0)
|
| 436 |
+
})
|
| 437 |
+
model2 = Swift.prepare_model(
|
| 438 |
+
model2,
|
| 439 |
+
config={
|
| 440 |
+
'lora2':
|
| 441 |
+
LoRAConfig(target_modules=['query', 'key', 'value']),
|
| 442 |
+
'adapter2':
|
| 443 |
+
AdapterConfig(
|
| 444 |
+
dim=model.config.hidden_size,
|
| 445 |
+
target_modules=r'.*layer\.\d+$',
|
| 446 |
+
method_name='feed_forward_chunk',
|
| 447 |
+
hidden_pos=0)
|
| 448 |
+
})
|
| 449 |
+
model = Swift.prepare_model(
|
| 450 |
+
model,
|
| 451 |
+
config={
|
| 452 |
+
'lora1': LoRAConfig(target_modules=['query', 'key', 'value']),
|
| 453 |
+
'lora2': LoRAConfig(target_modules=['query', 'key', 'value']),
|
| 454 |
+
})
|
| 455 |
+
|
| 456 |
+
model = Swift.prepare_model(
|
| 457 |
+
model,
|
| 458 |
+
config={
|
| 459 |
+
'adapter1':
|
| 460 |
+
AdapterConfig(
|
| 461 |
+
dim=model.config.hidden_size,
|
| 462 |
+
target_modules=r'.*layer\.\d+$',
|
| 463 |
+
method_name='feed_forward_chunk',
|
| 464 |
+
hidden_pos=0),
|
| 465 |
+
'adapter2':
|
| 466 |
+
AdapterConfig(
|
| 467 |
+
dim=model.config.hidden_size,
|
| 468 |
+
target_modules=r'.*layer\.\d+$',
|
| 469 |
+
method_name='feed_forward_chunk',
|
| 470 |
+
hidden_pos=0),
|
| 471 |
+
})
|
| 472 |
+
|
| 473 |
+
model.deactivate_adapter('adapter2', offload='meta')
|
| 474 |
+
model.deactivate_adapter('lora2', offload='meta')
|
| 475 |
+
outputs1 = model(**inputs)
|
| 476 |
+
outputs2 = model1(**inputs)
|
| 477 |
+
self.assertTrue(torch.allclose(outputs1.logits, outputs2.logits))
|
| 478 |
+
model.activate_adapter('adapter2')
|
| 479 |
+
model.activate_adapter('lora2')
|
| 480 |
+
model.deactivate_adapter('adapter1', offload='meta')
|
| 481 |
+
model.deactivate_adapter('lora1', offload='meta')
|
| 482 |
+
outputs1 = model(**inputs)
|
| 483 |
+
outputs2 = model2(**inputs)
|
| 484 |
+
self.assertTrue(torch.allclose(outputs1.logits, outputs2.logits))
|
| 485 |
+
|
| 486 |
+
if os.environ.get('USE_UNIQUE_THREAD') == '0':
|
| 487 |
+
|
| 488 |
+
def thread_func1():
|
| 489 |
+
model1.set_active_adapters(['lora1', 'adapter1'], offload=None)
|
| 490 |
+
model.set_active_adapters(['lora1', 'adapter1'], offload=None)
|
| 491 |
+
outputs_single = model1(**inputs)
|
| 492 |
+
outputs_t1 = model(**inputs)
|
| 493 |
+
self.assertTrue(torch.allclose(outputs_single.logits, outputs_t1.logits))
|
| 494 |
+
|
| 495 |
+
def thread_func2():
|
| 496 |
+
model2.set_active_adapters(['lora2', 'adapter2'], offload=None)
|
| 497 |
+
model.set_active_adapters(['lora2', 'adapter2'], offload=None)
|
| 498 |
+
outputs_single = model2(**inputs)
|
| 499 |
+
outputs_t2 = model(**inputs)
|
| 500 |
+
self.assertTrue(torch.allclose(outputs_single.logits, outputs_t2.logits))
|
| 501 |
+
|
| 502 |
+
with ThreadPoolExecutor(2) as executor:
|
| 503 |
+
f1 = executor.submit(thread_func1)
|
| 504 |
+
f2 = executor.submit(thread_func2)
|
| 505 |
+
e1 = f1.exception()
|
| 506 |
+
e2 = f2.exception()
|
| 507 |
+
if e1 is not None:
|
| 508 |
+
raise e1
|
| 509 |
+
if e2 is not None:
|
| 510 |
+
raise e2
|
| 511 |
+
|
| 512 |
+
def test_swift_side_bert(self):
|
| 513 |
+
model = Model.from_pretrained('damo/nlp_structbert_sentence-similarity_chinese-base')
|
| 514 |
+
preprocessor = Preprocessor.from_pretrained('damo/nlp_structbert_sentence-similarity_chinese-base')
|
| 515 |
+
inputs = preprocessor('how are you')
|
| 516 |
+
model2 = copy.deepcopy(model)
|
| 517 |
+
result_origin = model(**inputs).logits
|
| 518 |
+
print(f'test_swift_side_bert result_origin shape: {result_origin.shape}, '
|
| 519 |
+
f'result_origin sum: {torch.sum(result_origin)}')
|
| 520 |
+
|
| 521 |
+
side_config = SideConfig(
|
| 522 |
+
dim=model.config.hidden_size,
|
| 523 |
+
target_modules=r'.*encoder.encoder',
|
| 524 |
+
side_module_name='mlp',
|
| 525 |
+
target_hidden_pos='last_hidden_state')
|
| 526 |
+
|
| 527 |
+
model = Swift.prepare_model(model, config=side_config)
|
| 528 |
+
result_activate = model(**inputs).logits
|
| 529 |
+
model.deactivate_adapter('default')
|
| 530 |
+
result_deactivate = model(**inputs).logits
|
| 531 |
+
model.activate_adapter('default')
|
| 532 |
+
result_reactivate = model(**inputs).logits
|
| 533 |
+
self.assertTrue(torch.allclose(result_origin, result_deactivate))
|
| 534 |
+
self.assertTrue(not torch.allclose(result_origin, result_activate))
|
| 535 |
+
self.assertTrue(torch.allclose(result_activate, result_reactivate))
|
| 536 |
+
print(f'test_swift_side_bert result shape: {result_origin.shape}, result sum: {torch.sum(result_origin)}')
|
| 537 |
+
|
| 538 |
+
self.assertTrue(isinstance(model, SwiftModel))
|
| 539 |
+
model.save_pretrained(self.tmp_dir)
|
| 540 |
+
self.assertTrue(os.path.exists(os.path.join(self.tmp_dir, 'default')))
|
| 541 |
+
self.assertTrue(os.path.exists(os.path.join(self.tmp_dir, 'default', WEIGHTS_NAME)))
|
| 542 |
+
|
| 543 |
+
model2 = Swift.from_pretrained(model2, self.tmp_dir)
|
| 544 |
+
|
| 545 |
+
state_dict = model.state_dict()
|
| 546 |
+
state_dict2 = model2.state_dict()
|
| 547 |
+
for key in state_dict:
|
| 548 |
+
self.assertTrue(key in state_dict2)
|
| 549 |
+
self.assertTrue(all(torch.isclose(state_dict[key], state_dict2[key]).flatten().detach().cpu()))
|
| 550 |
+
|
| 551 |
+
|
| 552 |
+
if __name__ == '__main__':
|
| 553 |
+
unittest.main()
|
tests/tuners/test_swift_device_map.py
ADDED
|
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import shutil
|
| 3 |
+
import tempfile
|
| 4 |
+
import unittest
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
from modelscope import Model
|
| 8 |
+
from peft.utils import WEIGHTS_NAME
|
| 9 |
+
|
| 10 |
+
from swift import LoRAConfig, SwiftModel
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
@unittest.skip
|
| 14 |
+
class TestSwift(unittest.TestCase):
|
| 15 |
+
|
| 16 |
+
def setUp(self):
|
| 17 |
+
print(('Testing %s.%s' % (type(self).__name__, self._testMethodName)))
|
| 18 |
+
self.tmp_dir = tempfile.TemporaryDirectory().name
|
| 19 |
+
if not os.path.exists(self.tmp_dir):
|
| 20 |
+
os.makedirs(self.tmp_dir)
|
| 21 |
+
|
| 22 |
+
def tearDown(self):
|
| 23 |
+
shutil.rmtree(self.tmp_dir)
|
| 24 |
+
super().tearDown()
|
| 25 |
+
|
| 26 |
+
def test_swift_multiple_adapters(self):
|
| 27 |
+
model = Model.from_pretrained('modelscope/Llama-2-7b-ms', device_map='auto')
|
| 28 |
+
lora_config = LoRAConfig(target_modules=['q_proj', 'k_proj', 'v_proj'])
|
| 29 |
+
model: SwiftModel = SwiftModel(model, config={'lora': lora_config})
|
| 30 |
+
self.assertTrue(isinstance(model, SwiftModel))
|
| 31 |
+
model.save_pretrained(self.tmp_dir, adapter_name=['lora'])
|
| 32 |
+
state_dict = model.state_dict()
|
| 33 |
+
with open(os.path.join(self.tmp_dir, 'configuration.json'), 'w') as f:
|
| 34 |
+
f.write('{}')
|
| 35 |
+
self.assertTrue(os.path.exists(os.path.join(self.tmp_dir, 'lora')))
|
| 36 |
+
self.assertTrue(os.path.exists(os.path.join(self.tmp_dir, 'lora', WEIGHTS_NAME)))
|
| 37 |
+
model = Model.from_pretrained('modelscope/Llama-2-7b-ms', device_map='auto')
|
| 38 |
+
model = SwiftModel.from_pretrained(model, self.tmp_dir, adapter_name=['lora'], device_map='auto')
|
| 39 |
+
|
| 40 |
+
state_dict2 = model.state_dict()
|
| 41 |
+
for key in state_dict:
|
| 42 |
+
self.assertTrue(key in state_dict2)
|
| 43 |
+
self.assertTrue(all(torch.isclose(state_dict[key], state_dict2[key]).flatten().detach().cpu()))
|
| 44 |
+
|
| 45 |
+
self.assertTrue(len(set(model.hf_device_map.values())) == torch.cuda.device_count())
|
tests/tuners/test_swift_restuning.py
ADDED
|
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import copy
|
| 2 |
+
import os
|
| 3 |
+
import shutil
|
| 4 |
+
import tempfile
|
| 5 |
+
import unittest
|
| 6 |
+
|
| 7 |
+
import torch
|
| 8 |
+
from modelscope import snapshot_download
|
| 9 |
+
|
| 10 |
+
from swift import ResTuningConfig, Swift, SwiftModel
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
class TestSwiftResTuning(unittest.TestCase):
|
| 14 |
+
|
| 15 |
+
def setUp(self):
|
| 16 |
+
print(('Testing %s.%s' % (type(self).__name__, self._testMethodName)))
|
| 17 |
+
self.tmp_dir = tempfile.TemporaryDirectory().name
|
| 18 |
+
if not os.path.exists(self.tmp_dir):
|
| 19 |
+
os.makedirs(self.tmp_dir)
|
| 20 |
+
|
| 21 |
+
def tearDown(self):
|
| 22 |
+
shutil.rmtree(self.tmp_dir)
|
| 23 |
+
super().tearDown()
|
| 24 |
+
|
| 25 |
+
def set_random_seed(self, seed=123):
|
| 26 |
+
"""Set random seed manually to get deterministic results"""
|
| 27 |
+
import random
|
| 28 |
+
import numpy as np
|
| 29 |
+
import torch
|
| 30 |
+
random.seed(seed)
|
| 31 |
+
np.random.seed(seed)
|
| 32 |
+
torch.manual_seed(seed)
|
| 33 |
+
torch.cuda.manual_seed(seed)
|
| 34 |
+
torch.cuda.manual_seed_all(seed)
|
| 35 |
+
|
| 36 |
+
def model_comparison(self, model, model2):
|
| 37 |
+
model_key = list(model.state_dict().keys())
|
| 38 |
+
model2_key = list(model2.state_dict().keys())
|
| 39 |
+
self.assertTrue(model_key == model2_key)
|
| 40 |
+
model_val = torch.sum(torch.stack([torch.sum(val) for val in model.state_dict().values()]))
|
| 41 |
+
model2_val = torch.sum(torch.stack([torch.sum(val) for val in model2.state_dict().values()]))
|
| 42 |
+
self.assertTrue(torch.isclose(model_val, model2_val))
|
| 43 |
+
|
| 44 |
+
def test_swift_restuning_vit(self):
|
| 45 |
+
model_dir = snapshot_download('AI-ModelScope/vit-base-patch16-224')
|
| 46 |
+
from transformers import AutoModelForImageClassification
|
| 47 |
+
model = AutoModelForImageClassification.from_pretrained(model_dir)
|
| 48 |
+
model_swift_1 = copy.deepcopy(model)
|
| 49 |
+
model_swift_2 = copy.deepcopy(model)
|
| 50 |
+
result_origin = model(torch.ones((1, 3, 224, 224))).logits
|
| 51 |
+
print(f'test_swift_restuning_vit result_origin shape: {result_origin.shape}, '
|
| 52 |
+
f'result_origin sum: {torch.sum(result_origin)}')
|
| 53 |
+
|
| 54 |
+
# load type - 1
|
| 55 |
+
self.set_random_seed()
|
| 56 |
+
restuning_config_1 = ResTuningConfig(
|
| 57 |
+
dims=768,
|
| 58 |
+
root_modules=r'.*vit.encoder.layer.0$',
|
| 59 |
+
stem_modules=r'.*vit.encoder.layer\.\d+$',
|
| 60 |
+
target_modules=r'.*vit.layernorm',
|
| 61 |
+
target_modules_hook='input',
|
| 62 |
+
tuner_cfg='res_adapter',
|
| 63 |
+
)
|
| 64 |
+
model_swift_1 = Swift.prepare_model(model_swift_1, config=restuning_config_1)
|
| 65 |
+
self.assertTrue(isinstance(model_swift_1, SwiftModel))
|
| 66 |
+
print(model_swift_1.get_trainable_parameters())
|
| 67 |
+
result_swift_1 = model_swift_1(torch.ones((1, 3, 224, 224))).logits
|
| 68 |
+
print(f'test_swift_restuning_vit result_swift_1 shape: {result_swift_1.shape}, '
|
| 69 |
+
f'result_swift_1 sum: {torch.sum(result_swift_1)}')
|
| 70 |
+
|
| 71 |
+
# load type - 2
|
| 72 |
+
self.set_random_seed()
|
| 73 |
+
restuning_config_2 = ResTuningConfig(
|
| 74 |
+
dims=768,
|
| 75 |
+
root_modules=r'.*vit.encoder.layer.0$',
|
| 76 |
+
stem_modules=r'.*vit.encoder.layer\.\d+$',
|
| 77 |
+
target_modules=r'.*vit.encoder',
|
| 78 |
+
target_modules_hook='output',
|
| 79 |
+
target_hidden_pos='last_hidden_state',
|
| 80 |
+
tuner_cfg='res_adapter',
|
| 81 |
+
)
|
| 82 |
+
model_swift_2 = Swift.prepare_model(model_swift_2, config=restuning_config_2)
|
| 83 |
+
self.assertTrue(isinstance(model_swift_2, SwiftModel))
|
| 84 |
+
print(model_swift_2.get_trainable_parameters())
|
| 85 |
+
result_swift_2 = model_swift_2(torch.ones((1, 3, 224, 224))).logits
|
| 86 |
+
print(f'test_swift_restuning_vit result_swift_2 shape: {result_swift_2.shape}, '
|
| 87 |
+
f'result_swift_2 sum: {torch.sum(result_swift_2)}')
|
| 88 |
+
|
| 89 |
+
self.assertTrue(all(torch.isclose(result_swift_1, result_swift_2).flatten()))
|
| 90 |
+
|
| 91 |
+
model_swift_1.save_pretrained(self.tmp_dir)
|
| 92 |
+
self.assertTrue(os.path.exists(os.path.join(self.tmp_dir, 'default')))
|
| 93 |
+
model_loaded = Swift.from_pretrained(model, self.tmp_dir)
|
| 94 |
+
self.model_comparison(model_swift_1, model_loaded)
|
| 95 |
+
|
| 96 |
+
def test_swift_restuning_diffusers_sd(self):
|
| 97 |
+
model_dir = snapshot_download('AI-ModelScope/stable-diffusion-v1-5')
|
| 98 |
+
from diffusers import UNet2DConditionModel
|
| 99 |
+
model = UNet2DConditionModel.from_pretrained(model_dir, subfolder='unet')
|
| 100 |
+
model.requires_grad_(False)
|
| 101 |
+
model2 = copy.deepcopy(model)
|
| 102 |
+
self.set_random_seed()
|
| 103 |
+
input_data = {
|
| 104 |
+
'sample': torch.ones((1, 4, 64, 64)),
|
| 105 |
+
'timestep': 10,
|
| 106 |
+
'encoder_hidden_states': torch.ones((1, 77, 768))
|
| 107 |
+
}
|
| 108 |
+
result_origin = model(**input_data).sample
|
| 109 |
+
print(f'test_swift_restuning_diffusers_sd result_origin shape: {result_origin.shape}, '
|
| 110 |
+
f'result_origin sum: {torch.sum(result_origin)}')
|
| 111 |
+
|
| 112 |
+
self.set_random_seed()
|
| 113 |
+
restuning_config = ResTuningConfig(
|
| 114 |
+
dims=[1280, 1280, 1280, 640, 320],
|
| 115 |
+
root_modules='mid_block',
|
| 116 |
+
stem_modules=['mid_block', 'up_blocks.0', 'up_blocks.1', 'up_blocks.2', 'up_blocks.3'],
|
| 117 |
+
target_modules='conv_norm_out',
|
| 118 |
+
tuner_cfg='res_group_adapter',
|
| 119 |
+
use_upsample=True,
|
| 120 |
+
upsample_out_channels=[1280, 1280, 640, 320, None],
|
| 121 |
+
zero_init_last=True)
|
| 122 |
+
|
| 123 |
+
model = Swift.prepare_model(model, config=restuning_config)
|
| 124 |
+
self.assertTrue(isinstance(model, SwiftModel))
|
| 125 |
+
print(model.get_trainable_parameters())
|
| 126 |
+
|
| 127 |
+
result = model(**input_data).sample
|
| 128 |
+
print(f'test_swift_restuning_diffusers_sd result shape: {result.shape}, result sum: {torch.sum(result)}')
|
| 129 |
+
model.save_pretrained(self.tmp_dir)
|
| 130 |
+
self.assertTrue(os.path.exists(os.path.join(self.tmp_dir, 'default')))
|
| 131 |
+
model2 = Swift.from_pretrained(model2, self.tmp_dir)
|
| 132 |
+
self.model_comparison(model, model2)
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
if __name__ == '__main__':
|
| 136 |
+
unittest.main()
|
tests/utils/__init__.py
ADDED
|
File without changes
|
tests/utils/test_file_utils.py
ADDED
|
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import shutil
|
| 3 |
+
import tempfile
|
| 4 |
+
import unittest
|
| 5 |
+
|
| 6 |
+
from swift.utils import copy_files_by_pattern
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
class TestFileUtils(unittest.TestCase):
|
| 10 |
+
|
| 11 |
+
def setUp(self):
|
| 12 |
+
self._tmp_dir = tempfile.TemporaryDirectory()
|
| 13 |
+
self.tmp_dir = self._tmp_dir.name
|
| 14 |
+
|
| 15 |
+
def tearDown(self):
|
| 16 |
+
shutil.rmtree(self.tmp_dir)
|
| 17 |
+
|
| 18 |
+
def test_copy_files(self):
|
| 19 |
+
os.makedirs(os.path.join(self.tmp_dir, 'source'))
|
| 20 |
+
os.makedirs(os.path.join(self.tmp_dir, 'source', 'subfolder'))
|
| 21 |
+
with open(os.path.join(self.tmp_dir, 'source', '1.txt'), 'w') as f:
|
| 22 |
+
f.write('')
|
| 23 |
+
with open(os.path.join(self.tmp_dir, 'source', 'subfolder', '2.txt'), 'w') as f:
|
| 24 |
+
f.write('')
|
| 25 |
+
copy_files_by_pattern(
|
| 26 |
+
os.path.join(self.tmp_dir, 'source'), os.path.join(self.tmp_dir, 'target'), ['*.txt', 'subfolder/*.txt'])
|
| 27 |
+
self.assertTrue(os.path.exists(os.path.join(self.tmp_dir, 'target', '1.txt')))
|
| 28 |
+
self.assertTrue(os.path.exists(os.path.join(self.tmp_dir, 'target', 'subfolder', '2.txt')))
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
if __name__ == '__main__':
|
| 32 |
+
unittest.main()
|
tests/utils/test_io_utils.py
ADDED
|
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import shutil
|
| 3 |
+
import tempfile
|
| 4 |
+
import unittest
|
| 5 |
+
|
| 6 |
+
from swift.utils import append_to_jsonl, get_logger, read_from_jsonl, write_to_jsonl
|
| 7 |
+
|
| 8 |
+
logger = get_logger()
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
class TestIOUtils(unittest.TestCase):
|
| 12 |
+
|
| 13 |
+
def setUp(self):
|
| 14 |
+
self._tmp_dir = tempfile.TemporaryDirectory()
|
| 15 |
+
self.tmp_dir = self._tmp_dir.name
|
| 16 |
+
# self.tmp_dir = 'test'
|
| 17 |
+
logger.info(f'self.tmp_dir: {self.tmp_dir}')
|
| 18 |
+
|
| 19 |
+
def tearDown(self):
|
| 20 |
+
shutil.rmtree(self.tmp_dir)
|
| 21 |
+
|
| 22 |
+
def test_jsonl(self):
|
| 23 |
+
fpath = os.path.join(self.tmp_dir, '1.jsonl')
|
| 24 |
+
obj_list = [{'aaa': 'bbb'}, 111, [1.1]]
|
| 25 |
+
write_to_jsonl(fpath, obj_list)
|
| 26 |
+
new_obj = {'bbb': 'aaa'}
|
| 27 |
+
obj_list.append(new_obj)
|
| 28 |
+
append_to_jsonl(fpath, new_obj)
|
| 29 |
+
new_obj_list = read_from_jsonl(fpath)
|
| 30 |
+
self.assertTrue(new_obj_list == obj_list)
|
| 31 |
+
|
| 32 |
+
def test_jsonl2(self):
|
| 33 |
+
fpath = os.path.join(self.tmp_dir, '1.jsonl')
|
| 34 |
+
obj_list = [{'aaa': 'bbb'}, 111, [1.1]]
|
| 35 |
+
for obj in obj_list:
|
| 36 |
+
append_to_jsonl(fpath, obj)
|
| 37 |
+
new_obj_list = read_from_jsonl(fpath)
|
| 38 |
+
self.assertTrue(new_obj_list == obj_list)
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
if __name__ == '__main__':
|
| 42 |
+
unittest.main()
|
tests/utils/test_split_str_parts_by.py
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from swift.llm.template import split_str_parts_by
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
def test_split_str_parts_by():
|
| 5 |
+
print(split_str_parts_by('aaaAction:bb\nbAction Inputs:\nabbb', ['Action:', 'Action Inputs:'], regex_mode=False))
|
| 6 |
+
print(split_str_parts_by('aaaAction:bb\nbAction Inputs:\nabbb', ['Action:', 'Action Inputs:'], regex_mode=True))
|
| 7 |
+
print(split_str_parts_by('aaa<tool_call>bbb</tool_call>ccc', ['<tool_call>.+?</tool_call>'], regex_mode=True))
|
| 8 |
+
print(split_str_parts_by('aaa<image>\nbb\nb<audio>\nabbb', ['<image>', '<audio>', '<video>'], regex_mode=False))
|
| 9 |
+
print(split_str_parts_by('aaa<image>\nbb\nb<audio>\nabbb', ['<image>', '<audio>', '<video>'], regex_mode=True))
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
if __name__ == '__main__':
|
| 13 |
+
test_split_str_parts_by()
|
tests/utils/test_torch_utils.py
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import unittest
|
| 2 |
+
|
| 3 |
+
from modelscope import Model
|
| 4 |
+
|
| 5 |
+
from swift.utils.torch_utils import find_sub_module
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
class TestTorchUtils(unittest.TestCase):
|
| 9 |
+
|
| 10 |
+
def test_find_sub_module(self):
|
| 11 |
+
model = Model.from_pretrained('damo/nlp_structbert_sentence-similarity_chinese-base')
|
| 12 |
+
self.assertTrue(find_sub_module(model, 'query') is not None)
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
if __name__ == '__main__':
|
| 16 |
+
unittest.main()
|